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Implicit Methods 

• There are second set of multi-step methods, which are 

known as “implicit” methods.   

– “implicit” => not directly revealed 

• Here it means that the value of the function at the later 

time is not provided in an “explicit” formula, but in an 

equation 

• Since future data is used an iterative method must be 

used to iterate an initial guess to convergence 

•  Could use Runge-Kutta or Adams Bashforth to start the 

initial value problem. 

 

Backward Euler 

• We approximated the derivative at the initial point. 

• In backward let us approximate it at the final point 

• Find yn+1 so that 

yn+1 = yn+ h f(tn+1;yn+1) : 

• Taylor series derivation 

y(t) = y(t+h)−hy’(t+h)+ ½ h2 y’’() 

yn+1 = yn + hfn+1 

• How can we use it? Must solve a non-linear equation 

• Generally not used in this way, but as a “correction step” 

in a “predictor-corrector” scheme. 
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Modified Euler Method 

The Modified Euler method uses the slope at both 

old and the new location and is a predictor-

corrector technique.  

 

 

 

The method uses the average slope between the 

two locations. 
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Modified Euler Method 

The algorithm will be:  

 

Initial guess of the value 
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MEM: Improves order of the method 

If we were to look at the Taylor series expansion  

 

Use a forward difference to represent the 2nd 

derivative  
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Predictor Corrector methods 

• P (predict): Guess yn+1 (e.g., using Euler's method). 

• E (evaluate): Evaluate fn+1 = f(tn+1; yn+1). 

• C (correct): Plug the current guess in, to get a new guess: 

yn+1 = yn + hnfn+1 : 

• E: Evaluate   

fn+1 = f(tn+1; yn+1). 

• Repeat the CE steps if necessary. 

• We call this a PECE (or PE(CE)k) scheme. 
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One Step Method 

• These methods allow us to vary the step size. 

• Use only one initial value. 

• After each step is completed the past step is 

“forgotten:  We do not use this information. 

The one-step techniques 

Explicit and One-Step Methods 

Up until this point we have dealt with: 

• Euler Method 

• Runge-Kutta Methods 

These methods are called explicit methods, 

because they use only the information from 

previous steps. 

Moreover these are one-step methods 
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Multi-Step Methods 

The principle behind a multi-step method 

is to use past values, y and/or dy/dx to 

construct a polynomial that approximate 

the derivative function. 

• Represent f(x,y) as a polynomial in x using known values 

over the past few steps. 

• E.g., using Lagrangian form and equal steps, we have for 

3 steps 

• (-2h, f-2) (-h, f-1), (0,f0)  

• So the polynomial is  

• f(x)=f-2(x+h)x/(2h2) -f-1(x+2h)x/h2+f0(x+h) (x+2h) /(2h2) 

=(x2(f-2+2f-1+f0)+hx(f-2+4f-1+3f0)+2h2f0)/2h2 

• Integrate from (xi,xi+1)  
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Multi-Step Methods 

These methods are known as explicit schemes because 

the use of current and past values are used to obtain the 

future step. 

 

The method is initiated by using either a set of known 

results or from the results of a Runge-Kutta to start the 

initial value problem. 

Adam Bashforth Method   (4 Point) 

Example 

 

Consider                                   Exact Solution 

 

 

The initial condition is: 

The step size is: 
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4 Point Adam Bashforth 

From the 4th order Runge Kutta 

 

 

 

The 4 Point Adam Bashforth is: 

 

 

 
  250141.1340141.1,3.0

178597.1218597.1,2.0

094829.1104829.1,1.0

0000.11,0









f

f

f

f

 01.02.00.3 9375955
24

1.0
   ffffy 

4 Point Adam Bashforth 

The results are: 

 

 

 

Upgrade the values 
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4 Point Adam Bashforth Method - 

Example 

The values for the Adam Bashforth  

x Adam Bashforth f(x,y) sum 4th order Runge-Kutta Exact

0 1 1 1 1

0.1 1.104828958 1.094829 1.104828958 1.104829

0.2 1.218596991 1.178597 1.218596991 1.218597

0.3 1.34014081 1.250141 30.72919 1.34014081 1.340141

0.4 1.468179116 1.308179 31.94617 1.468174786 1.468175

0.5 1.601288165 1.351288 32.78612 1.601278076 1.601279

0.6 1.737896991 1.377897 33.20969 1.737880409 1.737881

0.7 1.876270711 1.386271 33.17302 1.876246365 1.876247

0.8 2.014491614 1.374492 32.62766 2.014458009 2.014459

0.9 2.150440205 1.34044 31.52015 2.150395695 2.150397

1 2.281774162 1.281774 29.79136 2.281716852 2.281718

4 Point Adam Bashforth Method - 

Example 

The explicit Adam 

Bashforth method gave 

solution gives good 

results without having to 

go through large number 

of calculations.  

 

4 Point Adam Bashforth Example
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Modified Euler’s Method Example 

Consider 

 

 

The initial condition is: 

The step size is: 

The analytical solution is: 
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Modified Euler’s Method Example 

The results are: 

 Estimated Solution Average Exact Error

xn yn y'n hy'n yn+1 y'n+1 h(y'n+y'n+1 ) / 2 Solution

0 1.00000 1.00000 0.02000 1.02000 1.04000 0.02040 1.00000 0.00000

0.02 1.02040 1.04040 0.02081 1.04121 1.08121 0.02122 1.02040 0.00000

0.04 1.04162 1.08162 0.02163 1.06325 1.12325 0.02205 1.04162 -0.00001

0.06 1.06366 1.12366 0.02247 1.08614 1.16614 0.02290 1.06367 -0.00001

0.08 1.08656 1.16656 0.02333 1.10989 1.20989 0.02376 1.08657 -0.00001

0.1 1.11033 1.21033 0.02421 1.13453 1.25453 0.02465 1.11034 -0.00001

0.12 1.13498 1.25498 0.02510 1.16008 1.30008 0.02555 1.13499 -0.00002

0.14 1.16053 1.30053 0.02601 1.18654 1.34654 0.02647 1.16055 -0.00002

0.16 1.18700 1.34700 0.02694 1.21394 1.39394 0.02741 1.18702 -0.00002

0.18 1.21441 1.39441 0.02789 1.24229 1.44229 0.02837 1.21443 -0.00003

0.2 1.24277 1.44277 0.02886 1.27163 1.49163 0.02934 1.24281 -0.00003
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Implicit Multi-Step Methods 

The main method is Adams Moulton  Method 

 i 1 i i 1y     5 8
12

h
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Three Point Adams-Moulton Method 
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Four Point Adams-Moulton Method 

Implicit Multi-Step Methods 

•The method uses what is known as a Predictor-Corrector 

technique.   

•explicit scheme to estimate the initial guess  

•uses the value to guess the future y* and dy/dx= f*(x,y*) 

• Using these results, apply Adam Moulton method 
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Implicit Multi-Step Methods 

Adams third order Predictor-Corrector scheme. 

 

Use  the Adam Bashforth three point explicit scheme for 

the initial guess.  

 

 
 

Use the Adam Moulton  three point implicit scheme to 

take a second step.   
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Adam Moulton Method        (3 point) 

Example 

 

Consider                                   Exact Solution 

 

 

The initial condition is: 

The step size is: 
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4 Point Adam Bashforth 

From the 4th order Runge Kutta 

 

 

 

The 3 Point Adam Bashforth is: 
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3 Point Adam Moulton  

Predictor-Corrector Method 

The results of explicit scheme is: 

 

 

The functional values are: 
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3 Point Adam Moulton  

Predictor-Corrector Method 

The results of implicit scheme is: 

 

 

The functional values are: 
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3 Point Adam Moulton  

Predictor-Corrector Method 

The values for the Adam Moulton  

Adam Moulton Three Point Predictor-Corrector Scheme

x y f sum y* f* sum

0 1 1

0.1 1.104829 1.094829

0.2 1.218597 1.178597 0.121587 1.340184 1.250184 0.121541

0.3 1.340138 1.250138 0.128081 1.468219 1.308219 0.12803

0.4 1.468168 1.308168 0.133155 1.601323 1.351323 0.133098

0.5 1.601266 1.351266 0.136659 1.737925 1.377925 0.136597

0.6 1.737863 1.377863 0.138429 1.876291 1.386291 0.138359

0.7 1.876222 1.386222 0.13828 2.014502 1.374502 0.138204

0.8 2.014425 1.374425 0.136013 2.150438 1.340438 0.135928

0.9 2.150353 1.340353 0.131404 2.281757 1.281757 0.13131

1 2.281663 1.281663 0.124206 2.405869 1.195869 0.124102
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3 Point Adam Moulton  

Predictor-Corrector Method 

The implicit Adam 

Moulton method gave 

solution gives good 

results without using 

more than a three points.  

 

Adam Moulton 3 Point Implicit Scheme
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Nonlinearity 

• In general the quantity on the right hand side, f, in the 

standard form can be a nonlinear function of t and y. 

• Nonlinearity implies multiple solutions and “chaos” 

• Also has a bearing on how well a numerical solver can 

integrate the ODE 
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Linearized Diff Eq. 

• Standard form 

 

• Local behavior of the solution to a differential equation 
near any point (tc, yc) can be analyzed by expanding f(t,y) 
in a two-dimensional Taylor series. 

f(t, y) = f(tc,yc) + (t- tc) + J(y - yc) + … 

• where    =  f/ t (tc,yc) 

 J =  f/ y (tc,yc) 

– (We already used such expansions for deriving the RK method) 

• These equations are linear and can consider the three 
terms on the rhs separately 

• Behavior of differential equation governed by the 
structure of the Jacobian matrix J  

 ,
dy

f t y
dt


 0 0y t y

Linearized differential equations 
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Jacobian properties 

• Interesting equation  

• In one dimension it can be integrated to obtain the local solution  

y=C exp(J t) 

• Express solution similarly for a system. 

• Use the eigendecomposition of the Jacobian matrix 

J=V V-1 
– V  matrix with columns as eigenvectors 

–   eigenvalues arranged as a diagonal matrix 

• Why? It removes the coupling of terms in the right hand side by 
diagonalizing the matrix 

• y’=Jy.   So   V-1y’=V-1JVV-1y 

• Let V x = y  so  x=V-1y 

• transforms the local system of equations to  

• dxk/dt =k xk   xk(t) = e
k

(t-t
c
) x(tc) 

 

dy
Jy

dt


• A single component xk(t) has the following behaviors 

according to  k  =k + i k  

• If k is positive it grows 

• It decays if k is negative,  

• and oscillates if k is nonzero.  

• Example: harmonic oscillator  d2 y /d t2 = -y 

• s a linear system. The Jacobian is simply the matrix 

• J = [ 0  1 ] 

          [ -1 0 ] 

• has purely imaginary eigenvalues 
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Eigenvalues of examples considered 
Another example from the book 

 

 

 

 

 

 

 

 

 

 

 

 

• one eigenvalue is real and positive,  
so that component is growing.  

• One eigenvalue is real and negative,  
corresponding to a decaying component. 

•  Two eigenvalues are purely imaginary,  
corresponding to oscillatory components.  

Jacobian and ode behavior 

• J =  f/  y 

• Then a single ODE is 

–  stable at a point (tc, yc) if J(tc ,  yc) < 0. 

–  unstable at a point (tc, yc) if J(tc ,  yc) > 0. 

–  stiff at a point (tc, yc) if J(tc ,  yc)  << 0. 

• A system of ODEs is 

–  stable at a point (tc, yc)  if the real part of all the eigenvalues 

of the matrix J(tc, yc)  are negative (converse if some are 

positive) 

–  stiff at a point (tc, yc)  if the real parts of more than one 

eigenvalue of J(tc, yc) are negative and wildly different. 
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Stiffness 

• Stiffness 

– A problem is stiff if the solution being sought is varying slowly, but there are 

nearby solutions that vary rapidly, so the numerical method must take small 

steps to obtain satisfactory results. 

• Example problem: A match is lit and the fire grows as a ball of 

flame. until it reaches a critical size. It then remains at that size 

because the amount of oxygen being consumed by the combustion 

in the interior of the ball balances the amount available through the 

surface. 

• Let y(t) represent the ball radius. y2 is proportional to the surface 

area while y3 to the volume 

– y’ = y2 – y3 

– y(0) =  
– 0 · t · 2/ 

Solution using regular and stiff-solver 

• choose =0.01 and 0.0001 

• Solve with RK45 

• Observe 

• Solve with ode23s 

• Observe 


