Non-Linear Problems

Systems of Nonlinear Equations

- Given a function $F : \mathbb{R}^n \to \mathbb{R}^n$, find a point x such that F(x) = 0.
- The 1-D case is covered in undergraduate classes.
- The best software for this problem is some variant on Richard Brent's zeroin, available in Netlib. In Matlab, it is called fzero.
- Note: Solving nonlinear equations is a close kin to solving optimization problems.
 - Easier than optimization, since a "local solution" is just fine.
 - Harder than optimization, since there is no natural merit function f(x) to measure progress.

Special case: Polynomial systems

- If *F* is a polynomial in the variables *x*, use special purpose software
- Enables finding all solutions reliably
- Example of a polynomial system:

$$x^2y^3 + xy = 2$$
$$2xy^2 + x^2y + xy = 0$$

- Traub algorithm
- Homotopy methods specialized for polynomials

Newton's method

• Instead of the Hessian matrix, we have the Jacobian matrix of first derivatives:

$$J_{ik} = \partial F_i / \partial x_k$$

- Matrix is generally not symmetric
- Use Newton's method

$$F_i(x_k + \alpha p_k) = F_i(x_k) + \alpha J_{ik} p_k + O(\alpha^2)$$

- However line searches are more difficult to guide, since we can't measure progress using a scalar function *f*(x).
- Some attempts have been made to use ||F(x)|| as a merit function
- However there are difficulties with this approach.
- Convergence will not be quadratic in general

Newton's method

• Derivation: By Taylor series,

 $\mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_k) + J(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + \mathcal{O}(\|\mathbf{x} - \mathbf{x}_k\|^2).$

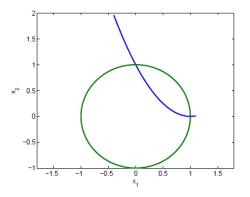
- For $\mathbf{x} = \mathbf{x}^*$, also $\mathbf{f}(\mathbf{x}) = \mathbf{0}$.
- Neglect nonlinear term and define method by

$$\mathbf{0} = \mathbf{f}(\mathbf{x}_k) + J(\mathbf{x}_k)(\mathbf{x}_{k+1} - \mathbf{x}_k).$$

• This is conceptually identical to the procedure (Chapter 3) for one function in one variable.

• Algorithm: Given an initial guess \mathbf{x}_0 ; for k = 0, 1, ..., until convergence solve $J(\mathbf{x}_k)\mathbf{p} = -\mathbf{f}(\mathbf{x}_k),$ set $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{p}.$ end Example: a parabola meets a circle

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \mathbf{f}(\mathbf{x}) = \begin{pmatrix} x_1^2 - 2x_1 - x_2 + 1 \\ x_1^2 + x_2^2 - 1 \end{pmatrix}.$$



Two solutions: $(0,1)^T$ and $(1,0)^T$.

$$J(\mathbf{x}) = \begin{pmatrix} 2x_1 - 2 & -1\\ 2x_1 & 2x_2 \end{pmatrix}$$

• Starting at $\mathbf{x}_0 = (0, 0)^T$ is bad because $J(\mathbf{x}_0)$ is singular!

- 2 Starting at $\mathbf{x}_0 = (1, 1)^T$ obtain root $(0, 1)^T$ in 5 iterations. Observe quadratic convergence.
- 3 Starting at $\mathbf{x}_0 = (-1, 1)^T$ obtain root $(1, 0)^T$ in 5 iterations. Observe quadratic convergence.

Example: two-point boundary value ordinary differential equation

• Consider the differential problem

$$u''(t) + e^{u(t)} = 0, \quad 0 < t < 1,$$

 $u(0) = u(1) = 0.$

• Discretize on a uniform mesh (grid) $t_i = ih$, i = 0, 1, ..., n + 1, where (n+1)h = 1:

$$\frac{v_{i+1} - 2v_i + v_{i-1}}{h^2} + e^{v_i} = 0, \qquad i = 1, 2, \dots, n.$$
$$v_0 = v_{n+1} = 0.$$

• This is a system of nonlinear equations, with $\mathbf{x} \leftarrow \mathbf{v}$ and $f_i(\mathbf{v}) = \frac{v_{i+1}-2v_i+v_{i-1}}{h^2} + e^{v_i}$.

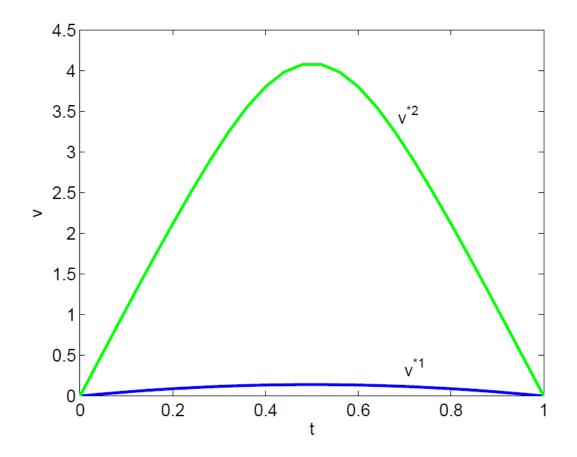
Jacobian matrix is possibly large but tridiagonal

$$J = \frac{1}{h^2} \begin{pmatrix} -2 + h^2 e^{v_1} & 1 & & \\ 1 & -2 + h^2 e^{v_2} & 1 & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 + h^2 e^{v_{n-1}} & 1 \\ & & & 1 & -2 + h^2 e^{v_n} \end{pmatrix}$$

- Initial guess $\mathbf{v}_0 = \alpha \left(t_1 (1 t_1), \dots, t_n (1 t_n) \right)^T$.
- Take various values of α and see what happens, setting tol = 1.e-8, n = 24:
 - **1** $\alpha = 0 \Rightarrow$ converges in 4 iterations
 - 2 $\alpha = 10 \Rightarrow$ converges in 6 iterations
 - **3** $\alpha = 20 \Rightarrow$ converges in 6 iterations to another solution

$$\bullet$$
 $\alpha = 50 \Rightarrow$ diverges

Two solutions



Non linear least squares

- Can we use the mechanism of unconstrained optimization?
- Form a scalar function $||F(x)||^2$
- Then we can use optimization algorithms for this cost function
- Easily generalizes to case where we have overdetermined systems
- Gradient: **g**(**x**)=2**J**^t**F**(**x**)
- Hessian: $\mathbf{H}(\mathbf{x})=2\mathbf{J}^{\mathrm{t}}\partial F_{\mathrm{i}}/\partial x_{\mathrm{k}}+\mathbf{Z}$
- Complicated term: Z=Sum of matrix products involving 2nd derivatives
- Ignoring the Z term and solving system is called "Gauss Newton"

Newton-Like Methods

• Return to original system

$$J_{ik} p_k = -F_i(x_k)$$

- Finite Difference Newton method: If J is not available, approximate it using finite differences. not recommended
- Inexact Newton method: Instead of solving the linear system J(x(k))p(k) = -F(x(k)) exactly, use an iterative method to obtain an approximate solution.
- Usual choice of iterative method is GMRES,
- matrix-vector products are evaluated by differencing F in the guess direction

Quasi-Newton methods:

- If storage is not a problem, store and update an approximation to J.
- The usual formula is Broyden's method:

$$\mathbf{B}^{(k+1)} = \mathbf{B}^{(k)} + \frac{(\mathbf{y} - \mathbf{B}^{(k)}\mathbf{s})\mathbf{s}^T}{\mathbf{s}^T\mathbf{s}}$$

where $\mathbf{y} = \mathbf{F}(\mathbf{x}^{(k+1)}) - \mathbf{F}(\mathbf{x}^{(k)})$ and $\mathbf{s} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$. Then

 $\mathbf{B}^{(k+1)}\mathbf{s} = \mathbf{y}$ Secant condition

and if $\mathbf{s}^T \mathbf{v} = \mathbf{0}$, then

 $\mathbf{B}^{(k+1)}\mathbf{v} = \mathbf{B}^{(k)}\mathbf{v} \,.$

 superlinear convergence if the direction is (asymptotically) close enough to the Newton direction

Continuation methods

- Want to solve **F**(**x**) = 0.
- Know the solution to some easy problem F_a(x) = 0.
- Example: F_a(x) = x a for some constant vector a.
- Formulate the problem
- $\rho_a(\lambda, \mathbf{x}) = \lambda \mathbf{F}(\mathbf{x}) + (1 \lambda)\mathbf{F}_a(\mathbf{x})$
- where λ is a real number in the interval [0, 1].
- The solution to ρ_a(0, x) = 0 is known (for our example, it is just a),
- The solution to ρ_a (1, x) = 0 is the solution to our desired problem.

Algorithm

- Initialize $\lambda = 0$ and $\mathbf{x} =$ solution to $\mathbf{F}_{a}(\mathbf{x}) = 0$.
- While $\lambda < 1$,
 - Increase λ by a small amount.
 - Solve $\rho_a(\lambda, \mathbf{x}) = 0$ using the previous solution vector as a starting point to solve the new problem.
- Hope that solution exists for intermediate problems
- Hope solution is well-behaved as λ changes
- Issues:
 - Turning points, bifurcations, non-existence, divergence
- For continuous functions **F**, and with **F**_a having a unique solution, then ρ_a will exist for almost all values of λ
- If we have issues, it turns out that choosing another value of a in F_a will lead to convergence
- Issues
 - choosing the stepsize for λ .
 - choosing the tolerance in the nonlinear equation solver.

Differentiating along the curve

- Parametrize λ and x along the solution path arc length as λ(s) and x(s)
- s is the arc length

$$ho_{\mathbf{a}}(\lambda(s), \mathbf{x}(s)) = \mathbf{0},$$

SO

$$\frac{d}{ds}\boldsymbol{\rho}_{\mathbf{a}}(\lambda(s),\mathbf{x}(s)) = \mathbf{0}$$

For uniqueness, we normalize so that

$$\lambda(0) = 0 \ , \ \mathbf{x}(0) = \mathbf{a} \, .$$

$$\left\| \left(\frac{d\lambda}{ds}, \frac{d\mathbf{x}}{ds} \right) \right\| = 1 \,.$$

- Use ideas from ODE solution to solve the system
- Hompack, by Watson and co-workers, is a high-quality system for solving nonlinear equations by continuation algorithms.