Properties of samples from random distributions

The mean or average value or expected value of a set of samples {z;},
r1=1,....n,Is
T
1

and the sample variance is

=1
If the mean 11 is unknown, then one estimate is

T

J??z — 1 Z(rz - au'n)g ‘

n—1
1=1

Properties of distributions

A random distribution is characterized by a probability density function
fla).
e [he domain of the function is the set of possible values that could be

obtained by taking random samples of the function. Call this domain ().

e The range of the function excludes [—oc, 0).

ff(J;) da

is the probability that a sample from this distribution is in the set defined
by . (Replace the integral by a summation if the domain is discrete.)

e [he value

e Because of these properties, we see that

/ flr)yde=1.
(2

(Or the sum of the probabilities is 1 in the discrete domain case.)

The mean of a distribution and variance of the distribution is the average
value you would expect to get for the sample mean and variance if you took
a large number of very large sets of samples. They can be computed by

[= /rf(r)dr
()

o = f(r —) f(x)da
0

The uniform distribution over the interval [0, m] has

Mean:

Variance:

The exponential distribution with parameter 1 has
R
fla) = —e "
f

for x € [0, 00).

Mean: u

Variance: i?
The normal distribution with parameters ;1 and o: has

F2) = e (a=m?/(20%)

vV 2mo?

for € (—o0, 00).

Mean: u

Variance: o2

The world i1s normal.

The Central Limit Theorem: Let f(x) be any distribution with mean yt and
(finite) variance 0. Take a random sample of size n from f(x), and call
the mean of the sample 7z,. Define the random variable 1, by

Ty — I
Yn = \/E ,{ -
o
Then the distribution for 1,, approaches the normal distribution with mean

0 and variance 1 as 7n increases.

Therefore, even if we know nothing about a distribution, except that its
variance is finite, we can use samples from it To construct samples from a
distribution that is near normal.

Generating random numbers on a computer

Could use mechanical or natural processes to generate
random samples

E.g. for uniform distributions use a spinner
Not good for simulation:

The samples are irreproducible;

— if someone else wanted to use the software, they would
get a different result and not know whether it was because
of their different sequence of random numbers or because
of a bug.

Tedious: Computers run through enormous quantities
of random numbers, and it is just not feasible to
generate them manually.

Because of this, we use pseudorandom numbers in
computer software.

Linear Congruential generator

Choose natural numbersa, M and N

Chooseinitial value (“seed”) Z, € {1,...M - 1}.
Fori=1,2,...SetZ =(aZ_, +c) mod M, and X; = Z/M.
Zarein{0,1,... M-1}

Thus X, are in the interval [0, 1).

sequence of pseudo-random numbers only depends on the
seed Z,.

Running the pseudo-random number generator twice with
the same seed thus generates exactly the same sequence
of pseudo-random numbers.

Let a = 81, c =35, M = 256, and seed Z, = 4.
Z,=(81-4+35) mod 256 =359 mod 256 = 103
Z,=(81-103 + 35) mod 256 = 8378 mod 256 = 186
Z;=(81-186 +35) mod 256 = 15101 mod 256 = 253

RANDU

e very popular in the 1970s (IBM’s System/360 & System/370, DEC
PDP-11).

e useda=2%+3 ¢c=0,and M =231,

The numbers generated by RANDU lie on only 15 hyperplanes in
the 3-dimensional unit cube

Random numbers

e Random to the bone
— Their FFTs are random
— Their projections are random

— Their transformations should be random

— They should be memoryless

PRN Generator

Fairly cheap to generate uniformly distributed pseudorandom
numbers.

Pseudo-random number generators for the uniform distribution
are easy to write

— very, very difficult to write a good one.
Use good random number generators

Samples from other distributions are usually generated by taking
two or more uniformly distributed pseudorandom numbers and
manipulating them using functions such as sin, cos, and exp.

Art of Computer Programming, vol 2 by Knuth

— is quite enlightening, talking about the generation of pseudorandom
numbers as well as how to test whether a program is generating
pseudorandom numbers that are a good approximation to random.

The standard functions in Matlab for generating pseudorandom

normal and exponentially distributed sequences are okay ...

Estimating 1t via simulation

How | wish | could remember to places eight ..
3 1 4 1 5 9 2 6 5

ldea construct a square sheet
with a circle drawn on it.

Put it into a light rain

— Into each area some rain must fall

Number of drops in the square
proportional to its area

Also in circle

Count drops, and take ratio

. . 1 ded
Gives an estimate for /4 {IgiryJ:r__;l} S

rl
[1dedy 2-2 4
{(—1<z,y<1)

Questions

How quickly does it
converge?

— How many samples
— What is the error?

Cannot talk of error
— Expected value is the answer
— Variance is an estimate of the
error

Knowing we are sampling
from a uniform distribution,
and that the distribution
that the drop is inside or
outside is binomial, we can K
get the variance Sample size

Converges to zero as n'/2

Monte Carlo estimate of 7 (with 90% confidence interval)

-

3.5

Estimate of =
3.0

25

2.0

Generalize: Monte Carlo Integration

Suppose we are asked to estimate the value
1 1
I = / C e f f(;I‘-l._ C e ;1.‘1{])1)(;1‘-1._ C e ,;1“-1[})d;l.‘1d;1‘-2d;1‘-3d;1‘4d;1‘-5d;I‘-Gd;IT?d;I‘-gd;I‘-ngl(}
0 0

- [F(x)p(x) dx

Notation:

o X = [;1.’1._ ce ,;1‘-1[]].

e () =1[0,1] x ... x [0,1] is the region of integration, the unit hypercube in
RY_ It can actually be any region, but this will do fine as an example.

e Usually p(x) is a constant, equal to 1 divided by the volume of (2, but
we'll use more general functions p later.

We just need p(x) to be a probability density function, so it should be
nonnegative with
/-p(x) dx = 1.
Q0

How might we approach the problem of computing 7

Interpolation

Fit a polynomial (or your favorite type of function) to f(x)p(x) using
sample values of the function, and then integrate the polynomial
analytically.

For example, a polynomial of degree 2 in each variable would have terms of
the form

0.0 000 0.0.0.0°.0

T{ToTT Te TgTnTgTeLy
where the number in each box is 0, 1, or 2. So it has 3'” = 59, 049
coefficients, and we would need 59,049 function values to determine these.

But recall from 460 that usually you need to divide the region into small
boxes so that a polynomial is a good approximation within each box.

If we divide the interval [0, 1] into 5 pieces, we make 5'” boxes, with 59,049
function evaluations in each!

Clearly, this method is expensive!

Option 2: product rules

functions f(x)p(x) can be well approximated by a separable function

fX)p(x) = fi(aq) fa(xa) ... fiolzio) -

1T case we can approximate our integral by
1 1
I ~= / fl(;lfl) dl’l C / fm(:lfl[]) d;I?l(]
0 0

; works, it is great, but we aren't often that lucky.

Option 3: Use your favorite 1-d method

If we have a function quad that integrates functions of a single variable
then we can use quad to compute

1
f g(xy)dry
0

as long as we can evaluate g(z)!

But g(z) is just an integration, so we can evaluate it using quad, too!
We end up with 10 nested calls to quad. Again, this is very expensive!
See Pointer 18.1.

Monte Carlo integration

ldea:

e Generate n points {z")} that are randomly distributed with probability
density function p
For our example integration problem, if p(x) is constant, this requires
generating 10n random numbers, uniformly distributed in [0, 1].

e [hen
1 T E
Hn = ;Zf(z())
=1

Is an approximation to the mean value of f in the region, and therefore
the value of the integral is

I ~ / p(x) dzidzodrsdrydrsdrgdrrdrsdrodriy = py.
0

Error estimate

e [he expected value of this estimate is the true value of the integral;
very nicel

e In fact, for large n, the estimates have a distribution of o/\/n times a
normal distribution (with mean 0, variance 1), where

— [(600~ 1Pplx) ax.
QO
where €2 is the domain of the integral we are estimating and
f(x)p(x)dx = 1.
Q

Note that the variance is a constant independent of the dimension d of
the integration!

Jargon: Methods whose expectation converges to the answer we
are looking for are called maximum likelihood

Variance-reduction methods

Suppose that we want to estimate

I= [f(x)dx
Q

where 2 is a region in R'Y with volume equal to one.

Method 1: Our Monte Carlo estimate of this integral involves taking

uniformly distributed samples from €2 and taking the average value of f(x)
at these samples.

Method 2: Let's choose a function p(x) satisfying p(x) > 0 for all x € ©,

normalized so that
/ p(x) = 1.
Q

= (x)_) X) dx
I= 0 P(X)I()d

Then

We can get a Monte Carlo estimate of this integral by taking samples from

the distribution with probability density p(x) and taking the average value
of f(x)/p(x) at these samples.

When will Method 2 be better than Method 17

Recall that the variance of our estimate is proportional to

#= G r) e

so if we chose p so that f(x)/p(x) is close to constant, then o is close to
zero!

Note that this requires that f(x) should be close to having a constant sign.

Intuitively, why does importance sampling work?

e In regions where f(x) is big, p(x) will also be big, so there is a high
probability that we will sample from these regions.

e In regions where f(x) is small, the p(x) will also be small, so we won't
waste time sampling from regions that don't contribute much to the
integral.

Intuitively, why does importance sampling work?

e In regions where f(x) is big, p(x) will also be big, so there is a high
probability that we will sample from these regions.

e In regions where f(x) is small, the p(x) will also be small, so we won't
waste time sampling from regions that don't contribute much to the
integral.

