

Generating random numbers on a computer

• Could use mechanical or natural processes to generate
random samples

• E.g. for uniform distributions use a spinner
• Not good for simulation:
• The samples are irreproducible;

– if someone else wanted to use the software, they would
get a different result and not know whether it was because
of their different sequence of random numbers or because
of a bug.

• Tedious: Computers run through enormous quantities
of random numbers, and it is just not feasible to
generate them manually.

• Because of this, we use pseudorandom numbers in
computer software.

Linear Congruential generator
• Choose natural numbers a, M and N
• Chooseinitial value (“seed”) Z0 ∈ {1, . . .M − 1}.
• For i = 1, 2, . . . Set Zi = (aZi−1 + c) mod M, and Xi = Zi/M.
• Zi are in {0, 1, . . . ,M − 1}
• Thus Xi are in the interval [0, 1).
• sequence of pseudo-random numbers only depends on the

seed Z0.
• Running the pseudo-random number generator twice with

the same seed thus generates exactly the same sequence
of pseudo-random numbers.

• Let a = 81, c = 35, M = 256, and seed Z0 = 4.
• Z1 = (81 · 4 + 35) mod 256 = 359 mod 256 = 103
• Z2 = (81 · 103 + 35) mod 256 = 8378 mod 256 = 186
• Z3 = (81 · 186 + 35) mod 256 = 15101 mod 256 = 253
• . .

RANDU
• very popular in the 1970s (IBM’s System/360 & System/370, DEC

PDP-11).

• used a = 216 + 3, c = 0, and M = 231.

• The numbers generated by RANDU lie on only 15 hyperplanes in
the 3-dimensional unit cube

Random numbers

• Random to the bone

– Their FFTs are random

– Their projections are random

– Their transformations should be random

– …

– They should be memoryless

PRN Generator
• Fairly cheap to generate uniformly distributed pseudorandom

numbers.

• Pseudo-random number generators for the uniform distribution
are easy to write

– very, very difficult to write a good one.

• Use good random number generators

• Samples from other distributions are usually generated by taking
two or more uniformly distributed pseudorandom numbers and
manipulating them using functions such as sin, cos, and exp.

• Art of Computer Programming, vol 2 by Knuth
– is quite enlightening, talking about the generation of pseudorandom

numbers as well as how to test whether a program is generating
pseudorandom numbers that are a good approximation to random.

• The standard functions in Matlab for generating pseudorandom
normal and exponentially distributed sequences are okay …

Estimating π via simulation
• How I wish I could remember to places eight ..

3 1 4 1 5 9 2 6 5

• Idea construct a square sheet
 with a circle drawn on it.

• Put it into a light rain

– Into each area some rain must fall

• Number of drops in the square
proportional to its area

• Also in circle

• Count drops, and take ratio

• Gives an estimate for π/4

Questions
• How quickly does it

converge?
– How many samples
– What is the error?

• Cannot talk of error
– Expected value is the answer
– Variance is an estimate of the

error

• Knowing we are sampling
from a uniform distribution,
and that the distribution
that the drop is inside or
outside is binomial, we can
get the variance

• Converges to zero as n1/2

Generalize: Monte Carlo Integration

Interpolation

Jargon: Methods whose expectation converges to the answer we
are looking for are called maximum likelihood

