Suppose V has complex shape
Include V in a domain W that is simply sampled
randomly

Need a function which can verify if a sample is
inside V or not

evaluate f for points inside
Set it equal to zero for points outside

Try to make W enclose V as closely as possible

— E.g. find axes and rotate a rectangular region W to
enclose V

Error estimate is based on the points actually
inside in this case



Importa nce sampling
Take integrand f

Write it as a product of a function g and f/g
Goal: h=f/g should be almost constant
Requirement: g should be positive

f de=f gdezf hgdV
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Choose g to be a probability density function fv pdV =1
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So we generate samples from the probability distribution
functions of p




Stratified sampling

Run the sampling in a hierarchical fashion
— Note: this is a standard idea in numerical methods

— If you need to do something N times — why not use
information you get along the way

Basic idea: divide the volume V intom
subregions

Perform Monte Carlo integration over each
subregion

Add points to regions that have larger variance
Can show overall variance is reduced

Note: in high dimensions doing hierarchies is
expensive



Mixed approaches

Importance sampling requires knowledge of a
p thatis close to f

We may not know f

Use hierarchical stratified sampling to build an
estimate f with a smaller number of points in
each subdomain

Build a p that looks like f



Quasi Random numbers

In many applications we need truly random numbers
that are independent and identically distributed (iid)

However this means that we have a high probability of
sampling quantities repeatedly

Go to example

And moreover we may correspondingly undersample
other areas!

In fact mathematicians have a term for this —
“discrepancy”

— Consider a subset of the domain of volume a
— Count number of points in this volume, m

— Discrepancy =aN-m



Quasi-Random sequences

Want to pick sample points “at random”, yet spread out in
some self-avoiding way

Sequences of k-tuples that fill k-space more uniformly than
pseudo-random points

Improve asymptotic complexity of search and well spread in
multiple dimensions

Sampling error decreases as O(N-1) as opposed to O(N-1/2) for
pseudo-random
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Synthetic experiments

O

¢ Track ellipse with fixed aspect
ratio

¢ 3-D state space (x, Y, 0)

¢ Each dimension driven by an
independent 2"d order
harmonic oscillator x =ax_ tax,_, +bo,
4 50 Monte Carlo trials, 500
frame sequence

¢ Run experiments with
pseudo- and quasi-random
points and compare errors



Error (in pixels)

log2(avg. rmse (pixels) in xc)

Synthetic experiments

Error distribution for x-coord of center
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