
Suppose V has complex shape 
• Include V in a domain W that is simply sampled 

randomly 

• Need a function which can verify if a sample is 
inside V or not 

• evaluate f for points inside 

• Set it equal to zero for points outside 

• Try to make W enclose V as closely as possible 
– E.g. find axes and rotate a rectangular region W to 

enclose V  

• Error estimate is based on the points actually 
inside in this case 

 



Importance sampling 
• Take integrand f 

• Write it as a product of a function g  and f/g 

• Goal: h=f/g should be almost constant 

• Requirement: g should be positive 
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• Choose g to be a probability density function  𝑝𝑑𝑉
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• So we generate samples from the probability distribution 
functions of p 
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Stratified sampling 
• Run the sampling in a hierarchical fashion 

– Note: this is a standard idea in numerical methods 
– If you need to do something N times – why not use 

information you get along the way 

• Basic idea: divide the volume V  into m 
subregions 

• Perform Monte Carlo integration over each 
subregion 

• Add points to regions that have larger variance 
• Can show overall variance is reduced 
• Note: in high dimensions doing hierarchies is 

expensive 



Mixed approaches 

• Importance sampling requires knowledge of a 
p  that is close to f 

• We may not know f 

• Use hierarchical stratified sampling to build an 
estimate  f  with a smaller number of points in 
each subdomain 

• Build a p  that looks like f 



Quasi Random numbers 

• In many applications we need truly random numbers 
that are independent and identically distributed (iid) 

• However this means that we have a high probability of 
sampling quantities repeatedly 

• Go to example 

• And moreover we may correspondingly undersample 
other areas! 

• In fact mathematicians have a term for this – 
“discrepancy” 
– Consider a subset of the domain of volume α 

– Count number of points in this volume, m 

– Discrepancy = αN - m 



Quasi-Random sequences 

• Want to pick sample points “at random”, yet spread out in 
some self-avoiding way 

• Sequences of k-tuples that fill k-space more uniformly than 
pseudo-random points 

• Improve asymptotic complexity of search and well spread in 
multiple dimensions 

• Sampling error decreases as O(N-1) as opposed to O(N-1/2) for 
pseudo-random 





Synthetic experiments 

 Track ellipse with fixed aspect 
ratio 

 3-D state space (xc, yc, σ) 

 Each dimension driven by an 
independent 2nd order 
harmonic oscillator  

 50 Monte Carlo trials, 500 
frame sequence 

 Run experiments with 
pseudo- and quasi-random 
points and compare errors  
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