How Python™ Works

Built-in data structures
Compiling and Interpreting Python

*The CPython implementation;
there are others

UNIVERSITY OF OREGON e CIS 210

O

Multiple Implementations

CPython: Python implemented in C
(What we have been using)

Jython: Python implemented in Java
» Uses Java classes in place of Python libraries

Iron Python: Python implemented in C#
* Runs on Microsoft CLR / .net framework
PyPy: Python in Python

* Originally a just-in-time translator; now Python -> C

UNIVERSITY OF OREGON e CIS 210

O

CPython Implementation

Caveats:
Some simplifications
Some guesswork

(there was more guesswork before | found Laurent Luce’s
blog: http://www.laurentluce.com/)

O

UNIVERSITY OF OREGON e CIS 210

CPython is a program

foo.py

N

CPython

CPython is written in C CPython data

Compiled into machine code structures
named “python” or “python3” C libraries

Every Python data type is

implemented by a C data
structure in CPython

O

UNIVERSITY OF OREGON e CIS 210

The Python Compiler/Interpreter

Py tok
okens
= 32 . x || =1[32]] ;
X Lexical
if x > 153é — analysis —s | if || x || > || 15
y = :
‘/ sy
Parser: ~ 132
Syntax :
Analysis \\
stmts
Bytecode

generator 7X / N\
X 32 > =

7\ I

.pycC / X 15| |y | |32

2 0 LOAD_CONST 1 (32) abstract
3 STORE_FAST 0 (x)
3 6 LOAD_FAST 0 (x) syntax tree
9 LOAD_CONST 2 (15
12 COMPARE_OP 4 (>)
15 POP_JUMP_IF_FALSE 27
4 18 LOAD_CONST 1 (32)
21 STORE_FAST 1y

[

Interpreter

(simplified)

(more on this below)

O UNIVERSITY OF OREGON e CIS 210

Everything is an object

I’'ve been hying oversimplifying
a little in drawing diagrams
likes this ...

X 332 GameBoard
y | @— —» 'foo" __init__
, ‘\\

class ¢

rows 47

cols 52

UNIVERSITY OF OREGON e CIS 210

O

Everything is an object

I’'ve been hng oversimplifying (I’'m still omitting some details,
a little in drawing diagrams ... and getting others wrong.)
because reality gets a little
messy.
332 |] e—
X .—/y int — ./3
type
y | O
z Q e
o— str
”fOO"

GameBoard [

S

class
rows 47
cols 52

UNIVERSITY OF OREGON e CIS 210

O

Data structures in CPython

For every built-in object type in Python ...

integer, string, dict, set, etc

... there is a CPython data structure
implemented in C

(and compiled to machine language)

UNIVERSITY OF OREGON e CIS 210

O

Integer

Even integers are objects, with methods (!)

X +y is actually a method call to

X.__add__(y)

(Lots of cute tricks to make this reasonably fast)

x=5

O

class

class

value

UNIVERSITY OF OREGON

e CIS 210

‘type'
class '
_add__ | &——— .
sub | @&—/—>
__mult_ | @&——>
o——>

Strings in CPython

x = "foo"
X @— class —> .
hash
Sval o—> |f| |O| IOI 0

String value refers to an array of characters,
ending with a nul (zero byte), as in the C
language.

O

UNIVERSITY OF OREGON e CIS 210

Lists in CPython

x=[3,2,4]

X o—> |
len 3

e ¢ ¢

VNN

3 2 4

References an array longer than the current list length,
so that x.append(7) will be fast. Re-allocates an array
when necessary.

UNIVERSITY OF OREGON e CIS 210

O

Alternative List Data Structures

w @

N | —@

4><—-'.

Q]
N\

Fast insert, delete
from either end;
slow to find lis[99]
(like List in Java)

Fast insert, delete
only at end; fast to
find or change lis[99]
(like Vector in Java)

O

UNIVERSITY OF OREGON

e CIS 210

Dictionaries are “hash tables”

@
b ¢
! \
'horse' | 97 'goat’ 23

hash('horse') == 12
hash('goat') == 29

Pseudo-random but deterministic “scatter storage” based on a
“hash function”

O

UNIVERSITY OF OREGON e CIS 210

Ways to implement dictionaries

Search tree: Like binary search, but “go

'dog' 16
» | « left” or “go right” depending on
\ comparison. Database files use a
cat’ | 29 ‘horse' | 97 version of this.
| //0 | 0\\ Complication: keeping the tree
o ”
'goat’ ‘ 23 'zebra' ‘ 32 balanced'
0 1 2 3 4 s 5 7 8 9 Hash table: Fast on average, but
hash('horse') == 12 . .
S '\\ hash('goat') == 29 potentially slow in the worst case
‘\ e hash('zebra') == because of “collisions” (equal hashes).
| Compilers use this for variable names.
C'horse' | 97 |\ | 'goat’ | 23 Complications: Handling collisions,
zebra | 32 | expanding full tables.

UNIVERSITY OF OREGON e CIS 210

O

Python sets are also hash tables

{'horse’, 'goat’, 'zebra' }

0 1 2 3 4 5 6 7 8 9

hash(‘horse') ==22 % 10 ==2
d Q ? hash('goat') == 98 % 10 ==
/ \ x hash('zebra')==34 % 10==4
'horse’ 'zebra' 'goat’

Hash codes are actually large numbers; position is remainder
when divided by table size. The hash table is expanded (copied
to a larger table) if it becomes 2/3 full.

Java library equivalents: hashmap, hashset

O

UNIVERSITY OF OREGON e CIS 210

The Python Compiler/Interpreter (simplified)
Py tok
okens
X =32 Lexical 2L 2L
if x > 15 —> analysis — | if || x || > |15
y = 32 .
_— IR
Parser: |4 malevylm
Syntax :
Analysis
\ stmts
Bytecode "
generator 7™X 7N\
///’ x| [32] | > =
7\ |
.pyC / X 15| |y | |32
2 0 LOAD_CONST 1 (32) abstract
3 STORE_FAST 0 ()
3 6 LOAD_FAST 0 (x) syntax tree
9 LOAD_CONST 2 (15

4

12 COMPARE_OP
15 POP_JUMP_IF_FALSE 27

18 LOAD_CONST
21 STORE_FAST

4)

1 (32)
1 (y)

o

Interpreter

O UNIVERSITY OF OREGON e CIS 210

The Python Compiler/Interpreter (simplified)
Py
= E tokens
X = 32 Lexical : '
if x> 15 analysis —> [][x 1> 115
y = 32 L {1y
Parser: = 132
Syntax :
Conventional compiler: Analysis
Similar to Java, C, C#, N stmts
etc. Bytecode . -
generator 7X 7/ N\
X 32 > =
7\ I
.pycC / X 15 y | |32
2 0 LOAD_CONST 1 (32) abstract
3 STORE_FAST 0 ()
3 6 LOAD_FAST 0 (x) . Syntax tree
|9 LOAD_CONST 2 (15) Code for Python virtual
COMPARE_OP 4 (>)
15 POP_JUMP_IF_FALSE 27 StaCk maCh|ne
4 18 LOAD_CONST 1 (32)
21 STORE_FAST 1 (y)
Python virtual stack
Interpreter machine
O UNIVERSITY OF OREGON e (CIS 210

Python vs. C, Java, etc.

CPython compiler generates byte code
 vs: C compiler generates machine code (the interpreter
is the computer)

* vs: standard Java compiler generates byte code (also for
a stack machine)

* vs. Dalek Java compiler (Android) generates byte code
for a virtual register machine

Python values are all objects in the heap

e vs: Cvalues can be in the stack or the heap, untagged

 vs: Java “primitive” values are in the stack and
untagged; objects are in the heap and tagged

Compiled? Interpreted? Both!

O

UNIVERSITY OF OREGON e CIS 210

