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Examples of Sparse Optimization Applications

See online seminar at piazza.com
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Examples of Sparse Optimization Applications



Basis pursuit

min{‖x‖1 : Ax = b}

• find least `1-norm point on the affine plane {x : Ax = b}

• tends to return a sparse point (sometimes, the sparsest)

`1 ball
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Basis pursuit

• “min{f(x) : x ∈ C}” is a compact way of describing an optimization problem.

The function before “:” is the objective function and everything behind “:”

describes the feasible set or the constraints.

• The diamond in the figure is the isosurface of the `1-norm.



Basis pursuit

min{‖x‖1 : Ax = b}

• find least `1-norm point on the affine plane {x : Ax = b}

• tends to return a sparse point (sometimes, the sparsest)

`1 ball touches the affine plane

4 / 33

Basis pursuit

min{‖x‖1 : Ax = b}

• find least `1-norm point on the affine plane {x : Ax = b}

• tends to return a sparse point (sometimes, the sparsest)

`1 ball touches the affine plane

2
0

1
3

-0
7

-0
5

Sparse Optimization Lecture: Basic Sparse Optimization Models

Basis pursuit

• The optimization problem is geometrically interpreted in the figure. The diamond

(isosurface of the `1-norm) grows until it touches the plane (Ax = b).

• Why returns a sparse point?

As we can see in the figure, the borders of the diamond are pretty sharp. It is

very likely that only one vertex, rather than an edge or a face, touches the plane

first. So the solution is just a sparse point.

• However, it is possible that an entire edge or even an entire face of the diamond

touch the plane simultaneously. Thus, the solution may not be unique.



Basis pursuit denoising, LASSO

min
x
{‖Ax− b‖2 : ‖x‖1 ≤ τ}, (1a)

min
x
‖x‖1 +

µ

2
‖Ax− b‖22, (1b)

min
x
{‖x‖1 : ‖Ax− b‖2 ≤ σ}. (1c)

all models allow Ax∗ 6= b
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Basis pursuit denoising, LASSO

• ‖Ax− b‖2 ≤ σ allows the affine plane Ax = b to move along its normal

directions, i.e., represented by the row vectors of A, for up to σ.



Basis pursuit denoising, LASSO

min
x
{‖Ax− b‖2 : ‖x‖1 ≤ τ}, (2a)

min
x
‖x‖1 +

µ

2
‖Ax− b‖22, (2b)

min
x
{‖x‖1 : ‖Ax− b‖2 ≤ σ}. (2c)

• ‖ · ‖2 is most common for error but can be generalized to loss function L

• (2a) seeks for a least-squares solution with “bounded sparsity”

• (2b) is known as LASSO (least absolute shrinkage and selection operator).

it seeks for a balance between sparsity and fitting

• (2c) is referred to as BPDN (basis pursuit denoising), seeking for a sparse

solution from tube-like set {x : ‖Ax− b‖2 ≤ σ}

• they are equivalent (see later slides)

• in terms of regression, they select a (sparse) set of features (i.e., columns

of A) to linearly express the observation b
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Basis pursuit denoising, LASSO



Sparse under basis Ψ / `1-synthesis model

min
s
{‖s‖1 : AΨs = b} (3)

• signal x is sparsely synthesized by atoms from Ψ, so vector s is sparse

• Ψ is referred to as the dictionary

• commonly used dictionaries include both analytic and trained ones

• analytic examples: Id, DCT, wavelets, curvelets, gabor, etc., also their

combinations; they have analytic properties, often easy to compute (for

example, multiplying a vector takes O(n logn) instead of O(n2))

• Ψ can also be numerically learned from training data or partial signal

• they can be orthogonal, frame, or general
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Sparse under basis Ψ / `1-synthesis model

• Ψs = x. In the example of compressive imaging, x is the original image, A is

the sensing matrix, and Ax is implemented by the sensing device. b is the

recorded measurements. By using the dictionary Ψ, we can get a sparse vector s

instead of x, which makes it convenient to store or transmit the image.

• Different dictionaries are used/created according to different features in the

images. Even the size of the dictionary Ψ is subject to determination.

• DCT: discrete cosine transform.



Sparse under basis Ψ / `1-synthesis model

If Ψ is orthogonal, problem (3) is equivalent to

min
x
{‖Ψ∗x‖1 : Ax = b} (4)

by change of variable x = Ψs, equivalently s = Ψ∗x.

Related models for noise and approximate sparsity:

min
x
{‖Ax− b‖2 : ‖Ψ∗x‖1 ≤ τ},

min
x
‖Ψ∗x‖1 +

µ

2
‖Ax− b‖22,

min
x
{‖Ψ∗x‖1 : ‖Ax− b‖2 ≤ σ}.
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Sparse under basis Ψ / `1-synthesis model

• This model is more difficult to solve and to analyze than the one on the last

page, because the objective function is no longer seperable.



Sparse after transform / `1-analysis model

min
x
{‖Ψ∗x‖1 : Ax = b} (5)

Signal x becomes sparse under the transform Ψ (may not be orthogonal)

Examples of Ψ:

• DCT, wavelets, curvelets, ridgelets, ....

• tight frames, Gabor, ...

• (weighted) total variation

When Ψ is not orthogonal, the analysis is more difficult
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Sparse after transform / `1-analysis model



Example: sparsify an image

10 / 33

Example: sparsify an image

2
0

1
3

-0
7

-0
5

Sparse Optimization Lecture: Basic Sparse Optimization Models

Example: sparsify an image

This is Cameraman, one of the most frequently used test images.



 

 

(a) DCT coefficients (b) Haar wavelets (c) Local variation
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Figure: the DCT and wavelet coefficients are scaled for better visibility.
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• Figure (a), (b), and (c) are three different kinds of transforms applied to

Cameraman.

• Figure (c) represents the sizes of all local gradients for the original image. Given

all the local gradients, to restore the original image, we also need the average

value of all the pixels.

• The idea of compressing the image is to keep the largest coefficients and discard

others. In the figure (e), the curve for the magnitudes of sorted coefficients

generated by Harr wavelets method is pretty steep, and thus the compression

would incur very little loss of information and could almost restore the original

image.



Questions

1. Can we trust these models to return intended sparse solutions?

2. When will the solution be unique?

3. Will the solution be robust to noise in b?

4. Are constrained and unconstrained models equivalent? in what sense?

Questions 1–4 will be addressed in next lecture.

5. How to choose parameters?

• τ (sparsity), µ (weight), and σ (noise level) have different meanings

• applications determine which one is easier to set

• generality: use a test data set, then scale parameters for real data

• cross validation: reserve a subset of data to test the solution
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Questions

More remarks on choosing parameters:

• In the unconstrained model, we could see that x is of different orders in ‖ · ‖1
and ‖ · ‖22. Therefore, we should adjust the weight µ properly when the data and

solutions have different sizes and scales.

• Cross validation is a technique for assessing how the results of a model (and its

parameter selection) will generalize to an independent data set. One can partition

(A,b) to the training and testing datasets, run the model on the training set and

validating the results (and the parameter selection) on the testing set.



Joint/group sparsity

Joint sparse recovery model:

min
X
{‖X‖2,1 : A(X) = b} (6)

where

‖X‖2,1 :=
m∑
i=1

‖[xi1 xi,2 · · ·xin]‖2 .

• `2-norm is applied to each row of X

• `2,1-norm ball has sharp boundaries “across different rows”, which tend to

be touched by {X : A(X) = b}, so the solution tends to be row-sparse

• also ‖X‖p,q for 1 < p ≤ ∞, affects magnitudes of entries on the same row

• complex-valued signals are a special case
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Joint/group sparsity

• Example of joint sparsity: ‖x‖ := |x1|+ ‖(x2, x3)‖2

Isosurface of this norm

The two end points and horizontal circle of this figure are sharp so they tend to

touch the plane Ax = b. They correspond to x1 6= 0 and (x2, x3) 6= 0,

respectively. It is unlikely that all components of x are nonzero the same time.

• The norm ‖ · ‖2,1 is the `1-norm of row energies. Minimizing this objective

function, we often obtain a solution X with only few non-zero rows (group

sparsity).

• Norm for a complex vector is defined as the sum of the components’ magnitudes.



Joint/group sparsity

Decompose {1, . . . , n} = G1 ∪ G2 ∪ · · · ∪ GS .

• non-overlapping groups: Gi ∩ Gj = ∅, ∀i 6= j.

• otherwise, groups may overlap (modeling many interesting structures).

Group-sparse recovery model:

min
x
{‖x‖G,2,1 : Ax = b} (7)

where

‖x‖G,2,1 =

S∑
s=1

ws‖xGs‖2.
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Joint/group sparsity



Auxiliary constraints

Auxiliary constraints introduce additional structures of the underlying signal

into its recovery, which sometimes significantly improve recovery quality

• nonnegativity: x ≥ 0

• bound (box) constraints: l ≤ x ≤ u

• general inequalities: Qx ≤ q

They can be very effective in practice. They also generate “corners.”
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Auxiliary constraints



Reduce to conic programs

Sparse optimization often has nonsmooth objectives.

Classic conic programming solvers do not handle nonsmooth functions.

Basic idea: model nonsmoothness by inequality constraints.

Example: for given x, we have

‖x‖1 = min
x1,x2

{1T (x1 + x2) : x1 − x2 = x,x1 ≥ 0,x2 ≥ 0}. (8)

Therefore,

• min{‖x‖1 : Ax = b} reduces to a linear program (LP)

• minx ‖x‖1 + µ
2
‖Ax− b‖22 reduces to a bound constrained quadratic

program (QP)

• minx{‖Ax− b‖2 : ‖x‖1 ≤ τ} reduces to a bound constrained QP

• minx{‖x‖1 : ‖Ax− b‖2 ≤ σ} reduces to a second-order cone program

(SOCP)
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Reduce to conic programs

• In (8), we intend to decompose x into its positive part x1 ≥ 0 and negative part

x2 ≥ 0. For example, if x = (5,−2)T , we want to have x1 = (5, 0)T ,

x2 = (0, 2)T . For every i, either x1,i = or x2,i = 0 due to the minimization of

x1 + x2.

• In QP (quadratic programming), quadratic terms are only allowed in the objective

function. All constraints should be linear, equality or inequality, if there is any.



Conic programming

Basic form:

min
x
{cTx : Fx + g �K 0,Ax = b.}

“a �K b” stands for a− b ∈ K, which is a convex, closed, pointed cone.

Examples:

• first orthant (cone): Rn+ = {x ∈ Rn : x ≥ 0}.

• norm cone (2nd order cone): Q = {(x, t) : ‖x‖ ≤ t}

• polyhedral cone: P = {x : Ax ≥ 0}

• positive semidefinite cone: S+ = {X : X � 0,XT = X}
Example:

{
(x, y, z) :

[
x y

y z

]
∈ S+

}

xy

z

0

0.5

1

−1

0

1

0

0.5

1
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Conic programming

• A convex, closed, pointed cone is also called a proper convex cone. Pointed

means that the cone contains no line.

•
[
x y

y z

]
∈ S+ iff 

x ≥ 0

z ≥ 0

xz ≥ y2



Linear program

Model

min{cTx : Ax = b,x �K 0}

where K is the nonnegative cone (first orthant).

x �K 0⇐⇒ x ≥ 0.

Algorithms

• the Simplex method (move between vertices)

• interior-point methods (IPMs) (move inside the polyhedron)

• decomposition approaches (divide and conquer)

In primal IPM, x ≥ 0 is replaced by its logarithmic barrier:

ψ(y) =
∑
i

log(yi)

log-barrier formulation:

min{cTx− (1/t)
∑
i

log(xi) : Ax = b}
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Linear program



Second-order cone program

Model

min{cTx : Ax = b,x �K 0}

where K = K1 × · · · × KK ; each Kk is the second-order cone

Kk =
{
y ∈ Rnk : ynk ≥

√
y2

1 + · · ·+ y2
nk−1

}
.

IPM is the standard solver (though other options also exist)

Log-barrier of Kk:

ψ(y) = log
(
y2
nk
− (y2

1 + · · ·+ ynk−1)
)
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Second-order cone program

• The Simplex method move its points between vertices. There is no efficient

generalization of it to non-polyhedral cones.

• Interior-point methods move its points inside the feasible set. They can take

large and efficient steps, and are easy to generalize from polyhedron to other

convex sets.

• Log-barrier formulation eliminates the inequality constraints. One can project the

gradient of the objective to the plane, Ax = b, to find a descent direction.



Semi-definite program

Model

min{C •X : A(X) = b,X �K 0}

where K = K1 × · · · × KK ; each Kk = S
nk
+ .

IPM is the standard solver (though other options also exist)

Log-barrier of Snk
+ (still a concave function):

ψ(Y) = log det(Y).
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Semi-definite program

• There are a few equivalent ways to express the inner product of two matrices C

and X of the same size: C •X = tr(CTX) =
∑
i,j cijxij = 〈C,X〉.

• Proof of the concavity of ψ(Y) can be found on page 74, Boyd & Vandenberghe,

Convex Optimization.



(from Boyd & Vandenberghe, Convex Optimization)

properties (without proof): for y �K 0,

∇ψ(y) �K∗ 0, yT∇ψ(y) = θ

• nonnegative orthant Rn
+: ψ(y) =

∑n
i=1 log yi

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

• positive semidefinite cone Sn
+: ψ(Y ) = log detY

∇ψ(Y ) = Y −1, tr(Y∇ψ(Y )) = n

• second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)
1/2 ≤ yn+1}:

∇ψ(y) = 2

y2n+1 − y21 − · · · − y2n




−y1
...
−yn
yn+1


 , yT∇ψ(y) = 2
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(from Boyd & Vandenberghe, Convex Optimization)

Central path

• for t > 0, define x?(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x?(t) exists and is unique for each t > 0)

• central path is {x?(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx?(t) is tangent to
level curve of φ through x?(t)

c

x? x?(10)
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• In practice, t may increase to a very large number. But for each t, we only need

to carry one or a few iterations. (Damped Newton steps for example)



Log-barrier formulation:

min{tf0(x) + φ(x) : Ax = b}

Complexity of log-barrier interior-point method:

k ∼

⌈
log((

∑
i θi)/(εt

(0)))

logµ

⌉
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• This is a polynomial time algorithm.



Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

• update primal and dual variables at each iteration; no distinction
between inner and outer iterations

• often exhibit superlinear asymptotic convergence

• search directions can be interpreted as Newton directions for modified
KKT conditions

• can start at infeasible points

• cost per iteration same as barrier method
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• For students who can not fully understand this method, you may remember that

it is a very good method and use it when you have options.



`1 minimization by interior-point method

Model

min
x
{‖x‖1 : ‖Ax− b‖2 ≤ σ}

⇔

min
x

min
x1,x2

{1T (x1 + x2) : x1 ≥ 0,x2 ≥ 0,x1 − x2 = x, ‖Ax− b‖2 ≤ σ}

⇔
min
x1,x2

{1T (x1 + x2) : x1 ≥ 0,x2 ≥ 0, ‖A(x1 − x2)− b‖2 ≤ σ}

⇔

min
x1,x2

{1Tx1 + 1Tx2 : Ax1 −Ax2 + y = b, z = σ, (x1,x2, z,y) �K 0}

where (x1,x2, z,y) �K 0 means

• x1,x2 ∈ Rn+,

• (t,y) ∈ Qm+1.

Solver: Mosek, SDPT3, Gurobi.

Also, modeling language CVX and YALMIP.
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`1 minimization by interior-point method

• The first step of derivation uses the fact that:

‖x‖1 = min
x1,x2

{1T (x1 + x2) : x1 − x2 = x,x1 ≥ 0,x2 ≥ 0}.



Nuclear-norm minimization by interior-point method

If we can model

min
X
{‖X‖∗ : A(X) = b} (9)

as an SDP ... (how? see next slide) ...

then, we can also model

• minX{‖X‖∗ : ‖A(X)− b‖F ≤ σ}

• minX{‖A(X)− b‖F : ‖X‖∗ ≤ τ}

• minX µ‖X‖∗ + 1
2
‖A(X)− b‖2F

as well as problems involving tr(X) and spectral norm ‖X‖.

‖X‖ ≤ α⇐⇒ αI −X � 0.
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Nuclear-norm minimization by interior-point method

The proof of the last statement:

• ⇒ Since X is positive semidefinite, ‖X‖2 is the largest eigenvalue of X.

Therefore, αI −X is positive semidefinite.

• ⇐ Let X = VDVT be the spectral decomposition of X. V is orthogonal and D

is diagonal with all the eigenvalues Dii of X on the diagonal.

αI −X � 0⇔ αI −D � 0⇔ α−Dii ≥ 0, ∀i. Therefore, the largest

eigenvalue of X is not larger than α, i.e. ‖X‖ ≤ α.



Sparse calculus for `1

• inspect |x| to get some ideas:

y, z ≥ 0 and
√
yz ≥ |x| =⇒ 1

2
(y + z) ≥ √yz ≥ |x|.

moreover, 1
2
(y + z) =

√
yz = |x| if y = z = |x|.

• observe

y, z ≥ 0 and
√
yz ≥ |x| ⇐⇒

[
y x

x z

]
� 0.

So, [
y x

x z

]
� 0 =⇒ 1

2
(y + z) ≥ |x|.

• we attain 1
2
(y + z) = |x| if y = z = |x|.

Therefore, given x, we have

|x| = min
M

{
1

2
tr(M) :

[
0 1

0 0

]
•M = x,M = MT ,M � 0

}
.
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Sparse calculus for `1



Generalization to nuclear norm

• Consider X ∈ Rm×n (w.o.l.g., assume m ≤ n) and let’s try imposing[
Y X

XT Z

]
� 0

• Diagonalize X = UΣVT , Σ = diag(σ1, . . . , σm), ‖X‖∗ =
∑
i σi.

[UT ,−VT ]

[
Y X

XT Z

][
U

−V

]
= UTYU + VTZV −UTXV −VTXTU

= UTYU + VTZV − 2Σ � 0.

So, tr(UYUT + VZVT − 2Σ) = tr(Y) + tr(Z)− 2‖X‖∗ ≥ 0.

• To attain “=”, we can let Y = UΣUT and Z = VΣn×nV
T .
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Generalization to nuclear norm

• This derivation mimics the scalar case on the previous slide. The idea is that if

one imposes the constraint

[
Y X

XT Z

]
� 0, then 1

2
(tr(Y) + tr(Z)) ≥ ‖X‖∗

and = can be attained.

• The singular value decomposition (SVD) of a real matrix X: X = UΣVT ,where

UTU = I,VTV = I, Σ is diagonal with all the singular values of X on the

diagonal.

• Following its definition, tr(AB) = tr(BA).



Therefore,

‖X‖∗ = min
Y,Z

{
1

2
(tr(Y) + tr(Z)) :

[
Y X

XT Z

]
� 0

}
(10)

= min
M

{
1

2
tr(M) :

[
0 I

0 0

]
•M = X,M = MT ,M � 0

}
. (11)

Exercise: express the following problems as SDPs

• minX{‖X‖∗ : A(X) = b}

• minX µ‖X‖∗ + 1
2
‖A(X)− b‖F

• minL,S{‖L‖∗ + λ‖S‖1 : A(L + S) = b}
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• The reason to reformulate (10) into (11) is that: in (10), the positive semidesert

matrix
(

Y X
XT Z

)
is represented as a block matrix in which Y and Z are free but

X is given. It does not form a standard SDP, which is composed of positive

semi-definite matrices and their linear objective and constraints. In (11), M is

the unknown matrix. The first constraint together with M = MT make its

off-diagonal block equal to the given matrix X.



Practice of interior-point methods (IPMs)

• LP, SOCP, SDP are well known and have reliable (commercial,

off-the-shelf) solvers

• Yet, the most reliable solvers cannot handle large-scale problems (e.g.,
images, video, manifold learning, distributed stuff, ...)

• Example: to recover a still image, there can be 10M variables and 1M

constraints. Even worse, the constraint coefficients are dense. Result: Out

of memory.

• Simplex and active-set methods: matrix containing A must be inverted or

factorized to compute the next point (unless A is very sparse).

• IPMs approximately solve a Newton system and thus also factorize a

matrix involving A.

• Even large and dense matrices can be handled, for sparse optimization,

one should take advantages of the solution sparsity.

• Some compressive sensing problems have A with structures friendly for

operations like Ax and ATy.
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Practice of interior-point methods (IPMs)



Practice of interior-point methods (IPMs)

• The Simplex, active-set, and IPMs have reliable solvers; good to be the

benchmark.

• They have nice interfaces (including CVX and YALMIP, which save you

time.)

CVX and YALMIP are not solvers; they translate problems and then call

solvers; see http://goo.gl/zUlMK and http://goo.gl/1u0xP.

• They can return highly accurate solutions; some first-order algorithms

(coming later in this course) do not always.

• There are other remedies; see next slide.
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Practice of interior-point methods (IPMs)

http://goo.gl/zUlMK
http://goo.gl/1u0xP
http://goo.gl/zUlMK
http://goo.gl/1u0xP


Papers of large-scale SDPs

• Low-rank factorizations:

• S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving

semidefinite programs via low-rank factorization, Math. Program., 95:329–357, 2003.

• LMaFit, http://lmafit.blogs.rice.edu/

• First-order methods for conic programming:

• Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented Lagrangian methods

for semidefinite programming. Math. Program. Comput., 2(3-4):203–230, 2010.

• Matrix-free IPMs:

• K. Fountoulakis, J. Gondzio, P. Zhlobich. Matrix-free interior point method for compressed

sensing problems, 2012. http://www.maths.ed.ac.uk/~gondzio/reports/mfCS.html
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Papers of large-scale SDPs

http://lmafit.blogs.rice.edu/
http://www.maths.ed.ac.uk/~gondzio/reports/mfCS.html
http://lmafit.blogs.rice.edu/
http://www.maths.ed.ac.uk/~gondzio/reports/mfCS.html


Subgradient methods

Sparse optimization is typically nonsmooth, so it is natural to consider

subgradient methods.

• apply subgradient descent to, say, minx ‖x‖1 + µ
2
‖Ax− b‖22.

• apply projected subgradient descent to, say, minx{‖x‖1 : Ax = b}.

Good: subgradients are easy to derive, methods are simple to implement.

Bad: convergence requires carefully chosen step sizes (classical ones require

diminishing step sizes). Convergence rate is weak on paper (and in practice,

too?)

Further readings: http://arxiv.org/pdf/1001.4387.pdf,

http://goo.gl/qFVA6, http://goo.gl/vC21a.
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Subgradient methods
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