Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

2013-07-12

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

> Instructor: Watao Yin Department of Mathematics, UCLA July 2013

Note scriber: Zheng Sun

These also complete this instant will income • what is a deal continuous for ℓ_1 minimization

a strictly complementary dual confileate guarantees must res
 it also guarantees stable removes

Instructor: Wotao Yin Department of Mathematics, UCLA July 2013

Note scriber: Zheng Sun

Those who complete this lecture will know

- what is a dual certificate for ℓ_1 minimization
- a strictly complementary dual certificate guarantees exact recovery
- it also guarantees stable recovery

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

What is covered

2013-07-12

What is covered

- ► A review of dual certificate in the context of conic programming
- ► A condition that guarantees recovering a set of sparse vectors (whose entries have the same signs), *not* for all *k*-sparse vectors ©
- The condition depends on $sign(\mathbf{x}^o)$, but not \mathbf{x}^o itself or \mathbf{b}
- \blacktriangleright The condition is sufficient and necessary
- $\blacktriangleright\,$ It also guarantees robust recovery against measurement errors $\odot\,$
- ► The condition can be numerically verified (in polynomial time) ☺

The underlying techniques are Lagrange duality, strict complementarity, and LP strong duality.

Results in this lecture are drawn from various papers. For references, see: H. Zhang, M. Yan, and W. Yin, One condition for all: solution uniqueness and robustness of ℓ_1 -synthesis and ℓ_1 -analysis minimizations

ь
errors ©
l time) ©
slementarity, and LP
eferences, see: and releasions of

What is covered

A review of dual certificate in the context of conic programmin

Lagrange dual for conic programs

Let \mathcal{K}_i be a first-orthant, second-order, or semi-definite cone. It is self-dual.

(Suppose $\mathbf{a}, \mathbf{b} \in \mathcal{K}_i$. Then, $\mathbf{a}^T \mathbf{b} \ge 0$. If $\mathbf{a}^T \mathbf{b} = 0$, either $\mathbf{a} = 0$ or $\mathbf{b} = 0$.)

► Primal:

$$\min \mathbf{c}^T \mathbf{x} \quad \text{s.t.} \ \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x}_i \in \mathcal{K}_i \ \forall i.$$

Lagrangian relaxation:

$$\mathcal{L}(\mathbf{x}; \mathbf{s}) = \mathbf{c}^T \mathbf{x} + \mathbf{s}^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$

► Dual function:

$$d(\mathbf{s}) = \min_{\mathbf{x}} \{ \mathcal{L}(\mathbf{x}; \mathbf{s}) : \mathbf{x}_i \in \mathcal{K}_i \ \forall i \} = -\mathbf{b}^T \mathbf{s} - \iota_{\{(\mathbf{A}^T \mathbf{s} + \mathbf{c})_i \in \mathcal{K}_i \ \forall i\}}$$

► Dual problem:

$$\min_{\mathbf{s}} -d(\mathbf{s}) \iff \min_{\mathbf{s}} \mathbf{b}^T \mathbf{s} \quad \text{s.t.} \ (\mathbf{A}^T \mathbf{s} + \mathbf{c})_i \in \mathcal{K}_i \ \forall i$$

One problem might be simpler to solve than the other; solving one might help solve the other.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

One problem might be simpler to solve than the other; solving one might help solve the other.

•
$$d(s) = \inf_{\mathbf{x}} \{ (\mathbf{c} + \mathbf{A}^T \mathbf{s})^T \mathbf{x} - \mathbf{s}^T \mathbf{b} : \mathbf{x}_i \in \mathcal{K}_i \}$$

If $(\mathbf{c}^T + \mathbf{A}^T \mathbf{s})_i \in \mathcal{K}_i$ the inner product is no less than zero; otherwise, it will crash down to $-\infty$. Thus $d(\mathbf{s}) = -\mathbf{b}^T \mathbf{y} - \iota_{\{(\mathbf{A}^T \mathbf{s} + \mathbf{c})_i \in \mathcal{K}_i \, \forall i\}}$ Where
 $\iota_{\{(\mathbf{A}^T \mathbf{s} + \mathbf{c})_i \in \mathcal{K}_i \, \forall i\}} = \begin{cases} 0, & \{(\mathbf{A}^T \mathbf{s} + \mathbf{c})_i \in \mathcal{K}_i \, \forall i\}. \\ \infty, & \text{otherwise} \end{cases}$

• $\min -d(\mathbf{s}) \Leftrightarrow \max d(\mathbf{s})$

2013-07-12

Dual certificate

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Dual certificate

Given that \mathbf{x}^* is primal feasible, i.e., obeying $\mathbf{A}\mathbf{x}^* \equiv \mathbf{b}, \ \mathbf{x}_i^* \in \mathcal{K}_i \ \forall i$. Question: is \mathbf{x}^* cotimal?

Dual certificate

Answer: One does not need to compare x^{*} to all other feasible x. A dual vector y^{*} will certify the optimality of $x^{*}.$

Given that \mathbf{x}^* is *primal feasible*, i.e., obeying $\mathbf{A}\mathbf{x}^* = \mathbf{b}$, $\mathbf{x}_i^* \in \mathcal{K}_i \ \forall i$.

Question: is \mathbf{x}^* optimal?

Answer: One does *not* need to compare \mathbf{x}^* to all other feasible \mathbf{x} .

A dual vector \mathbf{y}^* will certify the optimality of \mathbf{x}^* .

2013-07-12

Dual certificate

Theorem

Suppose \mathbf{x}^* is feasible (i.e., $\mathbf{A}\mathbf{x}^* = \mathbf{b}$, $\mathbf{x}_i^* \in \mathcal{K}_i \ \forall i$). If \mathbf{s}^* obeys 1. vanished duality gap: $-\mathbf{b}^T \mathbf{s}^* = \mathbf{c}^T \mathbf{x}^*$, and 2. dual feasibility: $(\mathbf{A}^T \mathbf{s}^* + \mathbf{c})_i \in \mathcal{K}_i$, then \mathbf{x}^* is primal optimal.

Pick any *primal feasible* \mathbf{x} (i.e., $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x}_i \in \mathcal{K}_i \forall i$), we have

$$(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)^T \mathbf{x} = \sum_i \underbrace{(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T}_{\in \mathcal{K}_i} \underbrace{\mathbf{x}_i}_{\in \mathcal{K}_i} \ge 0$$

and thus due to $\mathbf{A}\mathbf{x} = \mathbf{b}$,

$$\mathbf{c}^T \mathbf{x} = (\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)^T \mathbf{x} - (\mathbf{A}^T \mathbf{s}^*)^T \mathbf{x} \ge -(\mathbf{A}^T \mathbf{s}^*)^T \mathbf{x} = -\mathbf{b}^T \mathbf{s}^* = \mathbf{c}^T \mathbf{x}^*.$$

Therefore, \mathbf{x}^{\ast} is optimal.

Corollary:
$$(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)^T \mathbf{x}^* = 0$$
 and $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T \mathbf{x}_i^* = 0, \forall i.$

Bottom line: dual vector $\mathbf{y}^* = \mathbf{A}^T \mathbf{s}^*$ certifies the optimality of \mathbf{x}^* .

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

• The illustration of "vanished gap"

- To verify $\sum_{i} (\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T \mathbf{x}_i \ge 0$, we use the property of \mathcal{K}_i : Suppose $\mathbf{a}, \mathbf{b} \in \mathcal{K}_i$. Then, $\mathbf{a}^T \mathbf{b} \ge 0$. If $\mathbf{a}^T \mathbf{b} = 0$, either $\mathbf{a} = 0$ or $\mathbf{b} = 0$
- We could prove the corollary by substituting ${\bf x}={\bf x}^*$ on the left part of the former inequality, forcing $-({\bf A}^T{\bf s}^*)^T{\bf x}={\bf c}^T{\bf x}^*$

 $\label{eq:Dual certificate} Dual certificate$ Theorem Success x^* is feasible (i.e. $Ax^* = b, \ x^* \in \mathcal{K}, \ \forall i$). If x^* observes

1. vanished duality gap: $-\mathbf{b}^T \mathbf{x}^* = \mathbf{c}^T \mathbf{x}^*$, and 2. dual feasibility: $(\mathbf{A}^T \mathbf{x}^* + \mathbf{c})_i \in \mathcal{K}_i$, then \mathbf{x}^* is orienal outlinal.

Pick any arimal feasible x (i.e., Ax = b, $x_i \in K_i$ Y(), we have

Bottom line: dual vector $y^* = \mathbf{A}^T \mathbf{s}^*$ certifies the optimality of \mathbf{x}^*

 $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)^T \mathbf{x} = \sum_i \underbrace{(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T}_{(K_i)} \underbrace{\mathbf{x}_i}_{(K_i)} \ge 0$

$$\begin{split} \mathbf{c}^T\mathbf{x} &= (\mathbf{c} + \mathbf{A}^T\mathbf{s}^*)^T\mathbf{x} - (\mathbf{A}^T\mathbf{s}^*)^T\mathbf{x}^* \geq (\mathbf{A}^T\mathbf{s}^*)^T\mathbf{x} = -\mathbf{b}^T\mathbf{s}^* = \mathbf{c}^T\mathbf{x}^* \\ \text{Therefore, } \mathbf{x}^* \text{ is optimal.} \\ \text{Corollary: } (\mathbf{c} + \mathbf{A}^T\mathbf{s}^*)^T\mathbf{x}^* = 0 \text{ and } (\mathbf{c} + \mathbf{A}^T\mathbf{s}^*)^T\mathbf{x}^* \equiv 0. \ \forall i. \end{split}$$

Dual certificate

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Dual certificate

2

2013-07-1

A related claim

Theorem

If any primal feasible x⁺ and dual feasible s⁺ have no duality gap, then x is primal optimal and s is dual optimal.

Dual certificate

Reason: the primal objective value of any primal feasible $x \ge$ the dual objective value of any dual feasible x. Therefore, assuming both primal and dual feasibilities, a pair of primal/dual objectives must be optimal.

A related claim:

Theorem

If any primal feasible x^* and dual feasible s^* have no duality gap, then x is primal optimal and s is dual optimal.

Reason: the primal objective value of any primal feasible $x \ge$ the dual objective value of any dual feasible s. Therefore, assuming both primal and dual feasibilities, a pair of primal/dual objectives must be optimal.

Complementarity and strict complementarity

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

CT-Complementarity and strict complementarity

From

$$\sum_{i} (\mathbf{c} + \mathbf{A}^{T} \mathbf{s}^{*})_{i}^{T} \mathbf{x}_{i}^{*} = (\mathbf{c} + \mathbf{A}^{T} \mathbf{s}^{*})^{T} \mathbf{x}^{*} = \mathbf{c}^{T} \mathbf{x}^{*} + \mathbf{b}^{T} \mathbf{s}^{*} = 0$$

and

$$\underbrace{(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T}_{\in \mathcal{K}_i} \underbrace{\mathbf{x}_i^*}_{\in \mathcal{K}_i} \ge 0, \ \forall i.$$

we get

$$(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T \mathbf{x}_i^* = 0, \ \forall i.$$

Hence, at least one of $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T$ and \mathbf{x}_i^* is 0 (but they can be both zero.)

► If exactly one of $(\mathbf{c} + \mathbf{A}^T \mathbf{s}^*)_i^T$ and \mathbf{x}_i^* is zero (the other is nonzero), then they are strictly complementary.

Certifying the uniqueness of x^* requires a strictly complementary s^* .

From $\sum_{i} (e + A^{i} e^{i}) \leq e + A^{i} e^{i} e^{i} e^{i} = e^{i} e^{i} e^{i} e^{i} = e^{i} e^{i} e^{i} e^{i} e^{i} = e^{i} e^{i}$

Complementarity and strict complementarity

 ℓ_1 duality and dual certificate

Primal:

$$\min \|\mathbf{x}\|_1$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

Dual:

 $\max \mathbf{b}^T \mathbf{s} \quad \text{s.t.} \ \|\mathbf{A}^T \mathbf{s}\|_{\infty} \le 1$

- \blacktriangleright Given a feasible $\mathbf{x}^*,$ if \mathbf{s}^* obeys
- 1. $\|\mathbf{A}^T\mathbf{s}^*\|_{\infty} \leq 1$, and
- 2. $\|\mathbf{x}^*\|_1 \mathbf{b}^T \mathbf{s}^* = 0$,

then $\mathbf{y}^* = \mathbf{A}^T \mathbf{s}^*$ certifies the optimality of \mathbf{x}^* .

• Any primal optimal \mathbf{x}^* must satisfy $\|\mathbf{x}^*\|_1 - \mathbf{b}^T \mathbf{s}^* = 0$.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

 ${{{ }}{ }}{{ }}{ }_{1}$ duality and dual certificate

2013-07-12

(1)

/ duality and dual certificate

• The dual problem for basis pursuit. (a special case in the 3rd slide) The LP formulation of $\min_{\mathbf{x}} \{ \|\mathbf{x}\|_1 : \mathbf{A}\mathbf{x} = \mathbf{b} \}$ is: $\min_{\mathbf{x}} \{ \mathbf{1}^T \mathbf{x}^1 + \mathbf{1}^T \mathbf{x}^2 \mathbf{A} \mathbf{x}^1 - \mathbf{A} \mathbf{x}^2 = \mathbf{b}, \mathbf{x}^1, \mathbf{x}^2 \succeq \mathbf{0} \}$ Since $L(\mathbf{x}, \mathbf{s}) = \|\mathbf{x}\|_1 + \mathbf{s}^T (\mathbf{A}\mathbf{x} - \mathbf{b}),$ $\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{s}) \Leftrightarrow \min_{\mathbf{x}} \{ \|\mathbf{x}\|_1 + \mathbf{s}^T \mathbf{A} \mathbf{x} \} - \mathbf{s}^T \mathbf{b}$ $\|\mathbf{x}\|_1 + \mathbf{s}^T \mathbf{A} \mathbf{x} = \sum_i |x_i| + (\mathbf{A}^T \mathbf{s})_i x_i.$ It has a lower bound if and only if $(\mathbf{A}^T \mathbf{s})_i$ is no more than 1 for each *i*. Thus the dual function is :

 $d(\mathbf{s}) = -\mathbf{s}^T \mathbf{b} + \iota_{\{\|\mathbf{A}^T\mathbf{s}\|_{\infty} \leq 1\}}$

And the dual problem is:

$$\max_{\mathbf{s}} \mathbf{b}^T \mathbf{s} \quad \text{s.t.} \ \|\mathbf{A}^T \mathbf{s}\|_{\infty} \le 1$$

 ℓ_1 duality and complementarity

 $\blacktriangleright \quad |a| \leq 1 \implies ab \leq |b|. \ \blacktriangleright \quad \text{If } ab = |b|, \text{ then}$

1. $|a| < 1 \Rightarrow b = 0$

 $2. \ a=1 \ \Rightarrow \ b\geq 0$

3. $a = -1 \Rightarrow b \leq 0$

 $\blacktriangleright \quad \mathsf{From} \ \|\mathbf{A}^T\mathbf{s}^*\|_{\infty} \leq 1, \text{ we get } \|\mathbf{x}^*\|_1 = \mathbf{b}^T\mathbf{s}^* = (\mathbf{A}^T\mathbf{s}^*)^T\mathbf{x}^* \leq \|\mathbf{x}^*\|_1 \text{ and }$

$$(\mathbf{A}^T \mathbf{s}^*)_i \cdot x_i = |x_i|, \quad \forall i.$$

Therefore,

1. if $|(\mathbf{A}^T \mathbf{s}^*)_i| < 1$, then $\mathbf{x}_i^* = 0$ 2. if $(\mathbf{A}^T \mathbf{s}^*)_i = 1$, then $\mathbf{x}_i^* \ge 0$ 3. if $(\mathbf{A}^T \mathbf{s}^*)_i = -1$, then $\mathbf{x}_i^* \le 0$

Strict complementarity holds if for each i, $1 - |(\mathbf{A}^T \mathbf{s}^*)_i|$ or \mathbf{x}_i is zero but not both.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

 ℓ_1 duality and complementarity

$$\label{eq:constraints} \begin{split} f_{1}(a,bd) & and componentially\\ (f_{1}(1) & = a + b + b + b, b + b \\ 1 & |a| < a + b + b \\ 2 & |a| < a + b + b \\ 2 & |a| < a + b + b \\ 2 & |a| < a + b + b \\ (A^{(a)})_{1} & |a| & |a| \\ A^{(a)})_{2} & |a| \\ A^{(a)})$$

Strict complementarity holds if for each i, $1 - |(\mathbf{A}^T \mathbf{s}^*)_i|$ or \mathbf{x}_i is zero but no

• $(\mathbf{A}^T \mathbf{s}^*)_i \cdot x_i = |x_i|$ implies $(\mathbf{A}^T \mathbf{s}^*)_i$ and x_i has the same sign. Thus $|x_i| + (\mathbf{A}^T \mathbf{s}^*)_i \cdot x_i = (1 - |(\mathbf{A}^T \mathbf{s}^*)_i|)|x_i|$. The definition of strictly complementarity requires $1 - |(\mathbf{A}^T \mathbf{s}^*)_i|$ or x_i is zero but not both.

2013-07-12

Uniqueness of \mathbf{x}^*

Suppose \mathbf{x}^* is a solution to the basis pursuit model.

Question: Is it the unique solution?

Define $I := \operatorname{supp}(\mathbf{x}^*) = \{i : \mathbf{x}_i^* \neq 0\}$ and $J = I^c$.

If s* is a dual certificate and ||(A^Ts*)_J||_∞ < 1, x_J = 0 for all optimal x.
For i ∈ I, (A^Ts*)_i = ±1 cannot determine x_i ? 0 for optimal x. It is possible that (A^Ts*)_i = ±1 yet x_i = 0 (this is called *degenerate*.)

▶ On the other hand, if $\mathbf{A}_I \mathbf{x}_I = \mathbf{b}$ has a *unique* solution, denoted by \mathbf{x}_I^* , then since $\mathbf{x}_J^* = 0$ is unique, $\mathbf{x}^* = [\mathbf{x}_I^*; \mathbf{x}_J^*] = [\mathbf{x}_I^*; \mathbf{0}]$ is the unique solution to the basis pursuit model.

▶ $A_I x_I = b$ has a *unique* solution provided that A_I has independent columns, or equivalently, ker $(A_I) = \{0\}$.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Suppose x" is a solution to the basis pursuit me Question: Is it the unique solution?

Define $I := \operatorname{supp}(\mathbf{x}^*) = \{i : \mathbf{x}_i^* \neq 0\}$ and $J = I^*$

• If s^* is a dual certificate and $\|(\mathbf{A}^T s^*)_J\|_{\infty} < 1$, $\mathbf{x}_J = 0$ for all optimal \mathbf{x} . • For $i \in I_i$ $(\mathbf{A}^T s^*)_i = \pm 1$ cannot determine $x_i \stackrel{?}{=} 0$ for optimal \mathbf{x} . It is possible that $(\mathbf{A}^T s^*)_i = \pm 1$ yet $x_i = 0$ (this is called degenerate.)

Uniqueness of x*

• On the other hand, if $A_1x_3\equiv b$ has a unique solution, denoted by x_3^* , there since $x_3^*\equiv 0$ is unique, $x^*\equiv [x_3^*,x_3^*]\equiv [x_3^*;0]$ is the unique solution to the basis pursuit model.

• $A_{\ell X \ell} = b$ has a unique solution provided that A_{ℓ} has independent columns, or equivalently, $ker(A_{\ell}) = \{0\}$.

• Another illustration of the problem

Optimality and uniqueness

Condition

```
For a given \bar{\mathbf{x}}, the index sets I = \operatorname{supp}(\bar{\mathbf{x}}) and J = I^c satisfy
```

- 1. ker $(\mathbf{A}_I) = \{0\}$
- 2. there exists y such that $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$, $\mathbf{y}_I = \operatorname{sign}(\bar{\mathbf{x}}_I)$, and $\|\mathbf{y}_J\|_{\infty} < 1$.

Comments:

- part 1 guarantees unique $\mathbf{x}_{\mathit{I}}^*$ as the solution to $\mathbf{A}_{\mathit{I}}\mathbf{x}_{\mathit{I}}=\mathbf{b}$
- part 2 guarantees $\mathbf{x}_J^* = \mathbf{0}$
- + $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$ means $\mathbf{y} = \mathbf{A}^T \mathbf{s}$ for some \mathbf{s}
- the condition involves I and $sign(\bar{\mathbf{x}}_I)$, not the values of $\bar{\mathbf{x}}_I$ or b; but different I and $sign(\bar{\mathbf{x}}_I)$ require a different condition
- $\bullet\,$ RIP guarantees the condition hold for all small I and arbitrary signs
- the condition is easy to verify

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Optimality and uniqueness

$$\label{eq:second} \begin{split} & for equive and <math display="inline">f \equiv equival, and f \geq r$$
 satisfy 1 , Iarr(A) = [0] , 1 , Iarr(A) = [0] , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , and 3 , and 3

Ontimality and unimprocess

- Now we care about whether the optimal solution \mathbf{x}^* is unique. Suppose $\|(\mathbf{A}^T\mathbf{s}^*)_J\|_{\infty} < 1$, all the elements on J are forced to be zero. Thus, the uniqueness is determined by the property of \mathbf{A}_I . If $\ker(\mathbf{A}_I) = \{0\}$, the nonhomogeneous equation $\mathbf{A}_I\mathbf{x}_I = \mathbf{b}_I$ has a unique solution. Thus, all the elements on I could be uniquely determined.
- An illustration:

2013-07-12

Optimality and uniqueness

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Optimality and uniqueness

2013-07-12

Optimality and uniqueness

Theorem Subpre X step to and the above Condition, then X is the unique solution to $\min\{\|\mathbf{x}\| : \mathbf{A}\mathbf{x} = \mathbf{b}\}$. In fact, the converse is also true, namely, the Condition is also necessary.

Thee

Theorem

Suppose $\bar{\mathbf{x}}$ obeys $A\bar{\mathbf{x}} = \mathbf{b}$ and the above Condition, then $\bar{\mathbf{x}}$ is the unique solution to $\min\{\|\mathbf{x}\|_1 : A\mathbf{x} = \mathbf{b}\}$.

In fact, the converse is also true, namely, the Condition is also necessary.

• To ensure the uniqueness, A_I should be thin enough and at most a square. In fact, for a good recovery, we usually require the columns of A_I (corresponding to the sparsity of the signal) to be fewer than (m + 1)/2which could be interpreted from the concept of "spark".

Uniqueness of x^*

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

—Uniqueness of x*

 \sim

2013-07-1

Part 1 $lor(\mathbf{A}_{I}) = \{0\}$ is necessary.

Proof.

If $0 \neq h \in kee(A_I)$, then all $x_n = x^* + o[h; 0]$ for small α is optimal

Uniqueness of x*

• \mathbf{x}_n is feasible since $\mathbf{A}\mathbf{x}_n = \mathbf{A}\mathbf{x}^* = \mathbf{b}$.

- We know $\|\mathbf{x}_n\|_1 \geq \|\mathbf{x}^*\|_1,$ but for small α around 0, we also have $\|\mathbf{x}_{\alpha}\|_{1} = \|\mathbf{x}_{l}^{*} + \alpha \mathbf{h}\|_{1} = (\mathbf{A}^{T}\mathbf{s}^{*})_{l}^{T}(\mathbf{x}_{l}^{*} + \alpha \mathbf{h}) = \|\mathbf{x}^{*}\|_{1} + \alpha(\mathbf{A}^{T}\mathbf{s}^{*})_{l}^{T}\mathbf{h}.$ • Hence, $(\mathbf{A}^T \mathbf{s}^*)^T \mathbf{h} = 0$ and thus $\|\mathbf{x}_n\|_1 = \|\mathbf{x}^*\|_1$. So, \mathbf{x}_n is also optimal.

Part 1 ker $(\mathbf{A}_I) = \{0\}$ is necessary.

Lemma

If $0 \neq \mathbf{h} \in \ker(\mathbf{A}_I)$, then all $\mathbf{x}_{\alpha} = \mathbf{x}^* + \alpha[\mathbf{h}; \mathbf{0}]$ for small α is optimal.

Proof.

- \mathbf{x}_{α} is feasible since $\mathbf{A}\mathbf{x}_{\alpha} = \mathbf{A}\mathbf{x}^* = \mathbf{b}$.
- We know $\|\mathbf{x}_{\alpha}\|_{1} \geq \|\mathbf{x}^{*}\|_{1}$, but for small α around 0, we also have $\|\mathbf{x}_{\alpha}\|_{1} = \|\mathbf{x}_{I}^{*} + \alpha \mathbf{h}\|_{1} = (\mathbf{A}^{T}\mathbf{s}^{*})_{I}^{T}(\mathbf{x}_{I}^{*} + \alpha \mathbf{h}) = \|\mathbf{x}^{*}\|_{1} + \alpha(\mathbf{A}^{T}\mathbf{s}^{*})_{I}^{T}\mathbf{h}.$
- Hence, $(\mathbf{A}^T \mathbf{s}^*)_I^T \mathbf{h} = 0$ and thus $\|\mathbf{x}_{\alpha}\|_1 = \|\mathbf{x}^*\|_1$. So, \mathbf{x}_{α} is also optimal.

Necessity

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

► Is part 2 necessary?

Introduce

$$\min_{\mathbf{y}} \|\mathbf{y}_J\|_{\infty} \quad \text{s.t.} \quad \mathbf{y} \in \mathcal{R}(\mathbf{A}^T), \ \mathbf{y}_I = \operatorname{sign}(\bar{\mathbf{x}}_I). \tag{2}$$

If the optimal objective value < 1, then there exists ${\bf y}$ obeying part 2, so part 2 is also necessary.

We shall translate (2) and rewrite $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$.

• $\|\mathbf{y}_J\|_{\infty}$ determines the stability of the signal recovery. As shown below, the $\|\mathbf{y}_J\|_{\infty}$ is related with the angle θ between the hyperplane and the diamond. The smaller $\|\mathbf{y}_J\|_{\infty}$ is , the larger angle θ is, and a more stable recovery we may have.

Necessity

Figure: The intersection of the hyperplane and the diamond

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Necessity

Necessity

Define $\mathbf{a} = [\operatorname{sign}(\bar{\mathbf{x}}_I); \mathbf{0}]$ and basis \mathbf{Q} of $\operatorname{Null}(\mathbf{A})$.

- ▶ If $\mathbf{a} \in \mathcal{R}(\mathbf{A}^T)$, set $\mathbf{y} = \mathbf{a}$. done.
- ▶ Otherwise, let y = a + z. Then
- $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T) \Leftrightarrow \mathbf{Q}^T \mathbf{y} = 0 \Leftrightarrow \mathbf{Q}^T \mathbf{z} = -\mathbf{Q}^T \mathbf{a}$
- $\mathbf{y}_I = \operatorname{sign}(\bar{\mathbf{x}}_I) = \mathbf{a}_I \iff \mathbf{z}_I = 0$
- $\mathbf{a}_J = 0 \Rightarrow \|\mathbf{y}_J\|_{\infty} = \|\mathbf{z}_J\|_{\infty}$

Equivalent problem:

$$\min_{\mathbf{z}} \|\mathbf{z}_J\|_{\infty} \quad \text{s.t. } \mathbf{Q}^T \mathbf{z} = -\mathbf{Q}^T \mathbf{a}, \ \mathbf{z}_I = 0.$$
(3)

If the optimal objective value < 1, then part 2 is necessary.

Necessity

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Necessity

Theorem (LP strong duality)

If a linear program has a finite solution, its Lagrange dual has a finite solution. The two solutions achieve the same primal and dual optimal objective.

Problem (3) is feasible and has a finite objective value. The dual of (3) is

 $\max_{\mathbf{p}} \left(\mathbf{Q}^T \mathbf{a} \right)^T \mathbf{p} \quad \text{s.t. } \| (\mathbf{Q} \mathbf{p})_J \|_1 \le 1.$

If its optimal objective value < 1, then part 2 is necessary.

Necessity

Lemma

If \mathbf{x}^* is unique, then the optimal objective of the following primal-dual problems is strictly less than 1.

$$\begin{split} \min_{\mathbf{z}} \|\mathbf{z}_J\|_{\infty} \quad s.t. \ \mathbf{Q}^T \mathbf{z} &= -\mathbf{Q}^T \mathbf{a}, \ \mathbf{z}_I = 0.\\ \max_{\mathbf{p}} \left(\mathbf{Q}^T \mathbf{a} \right)^T \mathbf{p} \quad s.t. \ \| (\mathbf{Q} \mathbf{p})_J \|_1 \leq 1. \end{split}$$

Proof.

Uniqueness of $\mathbf{x}^* \implies \forall \mathbf{h} \in \ker(\mathbf{A}) \setminus \{0\}, \ \|\mathbf{x}^*\|_1 < \|\mathbf{x}^* + \mathbf{h}\|_1$ $\implies \mathbf{a}_I^T \mathbf{h}_I < \|\mathbf{h}_J\|_1$

Therefore,

• if $\mathbf{p}^* = 0$, then $\|\mathbf{z}_J^*\|_{\infty} = (\mathbf{Q}^T \mathbf{a})^T \mathbf{p}^* = 0$.

• if
$$\mathbf{p}^* \neq 0$$
, then $\mathbf{h} := \mathbf{Q}\mathbf{p}^* \in \ker(\mathbf{A}) \setminus \{0\}$ obeys
 $\|\mathbf{z}_J^*\|_{\infty} = (\mathbf{Q}^T \mathbf{a})^T \mathbf{p}^* = \mathbf{a}_I^T \mathbf{h}_I < \|\mathbf{h}_J\|_1 \le \|(\mathbf{Q}\mathbf{p})_J\|_1 \le 1.$

In both cases, the optimal objective value < 1.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Necessity

If x' is unique, then the optimal objective of the following primal-dual

Lemma

Theorem

Suppose $\bar{\mathbf{x}}$ obeys $A\bar{\mathbf{x}} = \mathbf{b}$. Then, $\bar{\mathbf{x}}$ is the unique solution to $\min\{\|\mathbf{x}\|_1 : A\mathbf{x} = \mathbf{b}\}$ if and only if the Condition holds.

Comments:

- the uniqueness requires strong duality result for problems involving $\|\mathbf{z}_J\|_\infty$
- strong duality does not hold for all convex programs
- strong duality does hold for convex polyhedral functions $f(\mathbf{z}_J)$, as well as those with constraint qualifications (e.g., the Slater condition)
- indeed, the theorem generalizes to analysis ℓ_1 minimization: $\|\Psi^T \mathbf{x}\|_1$
- does it generalize to $\sum \|\mathbf{x}_{\mathcal{G}_i}\|_2$ or $\|\mathbf{X}\|_*$? the key is strong duality for $\|\cdot\|_2$ and $\|\cdot\|_*$
- also, the theorem generalizes to the noisy ℓ_1 models (next part...)

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Noisy measurements

Suppose ${\bf b}$ is contaminated by noise: ${\bf b}={\bf A}{\bf x}+{\bf w}$

Appropriate models to recover a sparse \mathbf{x} include

$$\min \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
(4)

$$\min \|\mathbf{x}\|_1 \quad \text{s.t.} \; \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \delta \tag{5}$$

Theorem

Suppose $\bar{\mathbf{x}}$ is a solution to either (4) or (5). Then, $\bar{\mathbf{x}}$ is the unique solution if and only if the Condition holds for $\bar{\mathbf{x}}$.

Key intuition: reduce (4) to (1) with a specific b. Let $\hat{\mathbf{x}}$ be any solution to (4) and $\mathbf{b}^* := \mathbf{A}\hat{\mathbf{x}}$. All solutions to (4) are solutions to

 $\min \|\mathbf{x}\|_1 \quad \text{s.t. } \mathbf{A}\mathbf{x} = \mathbf{b}^*.$

The same applies to (5). Recall that the Condition does not involve b.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Noisy measurements

Suppose b is contaminated by noise: $\mathbf{b} \equiv \mathbf{A}\mathbf{x} + \mathbf{v}$ Appropriate models to recover a sparse \mathbf{x} include

> $\min \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ ($\min \|\mathbf{x}\|_1 = \mathbf{st} \cdot \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \delta$ ()

Theorem Suppose \bar{x} is a solution to either (4) or (5). Then, \bar{x} is the unique solution if and only if the Condition holds for \bar{x} .

Key intuition: reduce (4) to (1) with a specific b. Let \dot{x} be any solution to (4) and $b^*:=A\dot{x}$. All solutions to (4) are solutions to

 $\min \|\mathbf{x}\|_1$ s.t. $\mathbf{A}\mathbf{x} \equiv \mathbf{b}^*$.

The same applies to (5). Recall that the Condition does not involve b.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Stable recovery

Assumptions:

- $\bar{\mathbf{x}}$ and \mathbf{y} satisfy the Condition. $\bar{\mathbf{x}}$ is the *original signal*.
- $\mathbf{b} = \mathbf{A}\bar{\mathbf{x}} + \mathbf{w}$, where $\|\mathbf{w}\|_2 \leq \delta$
- \mathbf{x}^* is the solution to

 $\min \|\mathbf{x}\|_1 \quad \text{s.t.} \ \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \le \delta.$

Goal: obtain a bound $\|\mathbf{x}^* - \bar{\mathbf{x}}\|_2 \leq C\delta$.

Constant C shall be independent of δ .

Lemma

Define $I = \operatorname{supp}(\bar{\mathbf{x}})$ and $J = I^c$.

 $\|\mathbf{x}^* - \bar{\mathbf{x}}\|_1 \le C_3 \delta + C_4 \|\mathbf{x}_J^*\|_1,$

where $C_3 = 2\sqrt{|I|} \cdot r(I)$ and $C_4 = \|\mathbf{A}\|\sqrt{|I|} \cdot r(I) + 1$.

Proof.

 $\|\mathbf{x}^* - \bar{\mathbf{x}}\|_1 = \|\mathbf{x}_I^* - \bar{\mathbf{x}}_I\|_1 + \|\mathbf{x}_J^*\|_1 \\ \|\mathbf{x}_I^* - \bar{\mathbf{x}}_I\|_1 \le \sqrt{|I|} \cdot \|\mathbf{x}_I^* - \bar{\mathbf{x}}_I\|_2 \le \sqrt{|I|} \cdot r(I) \cdot \|\mathbf{A}_I(\mathbf{x}_I^* - \bar{\mathbf{x}}_I)\|_2, \text{ where }$

$$r(I) := \sup_{\text{supp}(\mathbf{u})=I, \mathbf{u}\neq 0} \frac{\|\mathbf{u}\|}{\|\mathbf{A}\mathbf{u}\|}$$

(r(I) is related to one side of the RIP bound)

► introduce $\hat{\mathbf{x}} = [\mathbf{x}_I^*; \mathbf{0}].$

$$\begin{aligned} & \quad \mathbf{||} \mathbf{A}_{I}(\mathbf{x}_{I}^{*} - \bar{\mathbf{x}}_{I})||_{2} = ||\mathbf{A}(\hat{\mathbf{x}} - \bar{\mathbf{x}})||_{2} \leq ||\mathbf{A}(\hat{\mathbf{x}} - \mathbf{x}^{*})||_{2} + \underbrace{||\mathbf{A}(\mathbf{x}^{*} - \bar{\mathbf{x}})||_{2}}_{\leq 2\delta} \\ & \quad \mathbf{||} \mathbf{A}(\hat{\mathbf{x}} - \mathbf{x}^{*})||_{2} \leq ||\mathbf{A}|| ||\hat{\mathbf{x}} - \mathbf{x}^{*}||_{2} \leq ||\mathbf{A}|| ||\hat{\mathbf{x}} - \mathbf{x}^{*}||_{1} = ||\mathbf{A}|| ||\mathbf{x}_{J}^{*}||_{1} \end{aligned}$$

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Stable recovery

Recall in the Condition, $\mathbf{y}_I = \operatorname{sign}(\bar{\mathbf{x}})$ and $\|\mathbf{y}_J\|_{\infty} < 1$

- $\blacktriangleright \|\mathbf{x}_I^*\|_1 \geq \langle \mathbf{y}_I, \mathbf{x}_I^* \rangle$
- $||\mathbf{x}_{J}^{*}||_{1} \leq (1 ||\mathbf{y}_{J}||_{\infty})^{-1} (||\mathbf{x}_{J}^{*}||_{1} \langle \mathbf{y}_{J}, \mathbf{x}^{*} \rangle)$

Therefore,

 $||\mathbf{x}_{J}^{*}||_{1} \leq (1 - ||\mathbf{y}_{J}||_{\infty})^{-1} (||\mathbf{x}^{*}||_{1} - \langle \mathbf{y}, \mathbf{x}^{*} \rangle) = (1 - ||\mathbf{y}_{J}||_{\infty})^{-1} d_{y}(\mathbf{x}^{*}, \bar{\mathbf{x}}),$ where

 $d_{\mathbf{y}}(\mathbf{x}^*, \bar{\mathbf{x}}) = \|\mathbf{x}^*\|_1 - \|\bar{\mathbf{x}}\|_1 - \langle \mathbf{y}, \mathbf{x}^* - \bar{\mathbf{x}} \rangle$

is the *Bregman distance* induced by $\|\cdot\|_1$.

Recall in the Condition, $\mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$ so $\mathbf{y} = \mathbf{A}^T \boldsymbol{\beta}$ for some vector $\boldsymbol{\beta}$.

 $\blacktriangleright d_{\mathbf{v}}(\mathbf{x}^*, \bar{\mathbf{x}}) < 2 \|\beta\|_2 \delta.$

Lemma

Under the above assumptions,

$$\|\mathbf{x}_{J}^{*}\|_{1} \leq 2(1 - \|\mathbf{y}_{J}\|_{\infty})^{-1} \|\beta\|_{2} \delta.$$

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Stable recovery Recall in the Condition, $y_I \equiv sign(\hat{x})$ and $|y_I|_{\infty} < 1$ ▶ $\|\mathbf{x}_{j}^{*}\|_{1} \le (1 - \|\mathbf{y}_{j}\|_{\infty})^{-1}(\|\mathbf{x}_{j}^{*}\|_{1} - \langle \mathbf{y}_{j}, \mathbf{x}^{*}))$ Therefore. ▶ $\|\mathbf{x}_{J}^{*}\|_{1} \le (1 - \|\mathbf{y}_{J}\|_{\infty})^{-1}(\|\mathbf{x}^{*}\|_{1} - \langle \mathbf{y}, \mathbf{x}^{*}\rangle) \equiv (1 - \|\mathbf{y}_{J}\|_{\infty})^{-1}d_{2}(\mathbf{x}^{*}, \hat{\mathbf{x}}),$

 $d_{\mathbf{y}}(\mathbf{x}^*, \hat{\mathbf{x}}) \equiv \|\mathbf{x}^*\|_1 - \|\hat{\mathbf{x}}\|_1 - \langle \mathbf{y}, \mathbf{x}^* - \hat{\mathbf{x}} \rangle$

is the Breeman distance induced by || - | -

Recall in the Condition, $y \in \mathcal{R}(\mathbf{A}^T)$ so $y = \mathbf{A}^T \beta$ for some vector β

Lemma

 $\|\mathbf{x}_{J}^{*}\|_{1} \le 2(1 - \|\mathbf{y}_{J}\|_{\infty})^{-1} \|\beta\|_{2}\delta.$

Theorem

Assumptions:

- $\bar{\mathbf{x}}$ and \mathbf{y} satisfy the Condition. $\bar{\mathbf{x}}$ is the original signal. $\mathbf{y} = \mathbf{A}^T \boldsymbol{\beta}$.
- $\mathbf{b} = \mathbf{A}\bar{\mathbf{x}} + \mathbf{w}$, where $\|\mathbf{w}\|_2 < \delta$
- **x**^{*} *is the solution to*
 - $\min \|\mathbf{x}\|_1 \quad s.t. \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2 \le \delta.$

Conclusion:

$$\|\mathbf{x}^* - \bar{\mathbf{x}}\|_1 \le C\delta$$

where

$$C = 2\sqrt{|I|} \cdot r(I) + \frac{2\|\beta\|_2(\|\mathbf{A}\|\sqrt{|I|} \cdot r(I) + 1)}{1 - \|\mathbf{y}_J\|_{\infty}}$$

Comment: a similar bound can be obtained for $\min \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ with a condition on λ .

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

- If $\|\mathbf{y}_{I}\|_{\infty}$ approaches 1, the constant C will blow up.
- \sqrt{I} should be corrected by $\sqrt{|I|}$.

Stable recovery • $\hat{\mathbf{x}}$ and \mathbf{y} satisfy the Condition. $\hat{\mathbf{x}}$ is the original signal. $\mathbf{y} = \mathbf{A}^T \boldsymbol{\beta}$.

 $\min ||\mathbf{x}||_1 \quad \text{s.t.} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2 \le \delta.$

 $\|\mathbf{x}^* - \hat{\mathbf{x}}\|_1 \le C\delta$,

 $C = 2\sqrt{|I|} \cdot r(I) + \frac{2\|\beta\|_2(\|\mathbf{A}\| \sqrt{|I|} \cdot r(I) + 1)}{1 - \|\mathbf{y}_I\|_{\infty}}$ Comment: a similar bound can be obtained for $\min \lambda \|\mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ with

Theorem

where

a condition on λ .

• $\mathbf{b} = \mathbf{A}\bar{\mathbf{x}} + \mathbf{w}$, where $\|\mathbf{w}\|_2 \le \delta$.

• x" is the solution to

Generalization

All the previous results (exact and stable recovery) generalize to the following models:

$$\begin{split} \min \|\Psi^T \mathbf{x}\|_1 \quad \text{s.t. } \mathbf{A}\mathbf{x} &= \mathbf{b} \\ \min \lambda \|\Psi^T \mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ \min \|\Psi^T \mathbf{x}\|_1 \quad \text{s.t. } \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 &\leq \delta \end{split}$$

Assume that ${\bf A}$ and Ψ each has independent rows, the update conditions are

Condition

For a given $\bar{\mathbf{x}}$, the index sets $I = \operatorname{supp}(\Psi^T \bar{\mathbf{x}})$ and $J = I^c$ satisfy

1. $\operatorname{ker}(\Psi_J^T) \cap \operatorname{ker}(\mathbf{A}_I) = \{0\}$

2. there exists \mathbf{y} such that $\Psi \mathbf{y} \in \mathcal{R}(\mathbf{A}^T)$, $\mathbf{y}_I = \operatorname{sign}(\Psi_I^T \bar{\mathbf{x}})$, and $\|\mathbf{y}_J\|_{\infty} < 1$.

Sparse Optimization Lecture: Dual Certificate in ℓ_1 Minimization

Generalization

All the previous results (exact and stable recovery) generalize to the following models:

$$\begin{split} \min \| \boldsymbol{\Psi}^T \mathbf{x} \|_1 & \text{s.t.} \mathbf{A} \mathbf{x} = \mathbf{b} \\ \min \lambda \| \boldsymbol{\Psi}^T \mathbf{x} \|_1 + \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \\ \min \| \boldsymbol{\Psi}^T \mathbf{x} \|_1 & \text{s.t.} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2 \leq \delta \end{split}$$

Assume that ${\bf A}$ and Ψ each has independent rows, the update conditions are

For a given $\hat{\mathbf{x}}$, the index sets $I = \sup_{\mathbf{x}} p(\Psi^T \hat{\mathbf{x}})$ and $J = I^*$ satisfy 1. $\log(\Psi_1^T) \cap \log(\mathbf{A}_I) = \{0\}$

2. there exists \mathbf{y} such that $\Psi\mathbf{y}\in\mathcal{R}(\mathbf{A}^{\mathrm{T}}),$ $\mathbf{y}_{1}=\mathrm{sign}(\Psi_{1}^{\mathrm{T}}\bar{\mathbf{x}}),$ and $\|\mathbf{y}_{2}\|_{\infty}<1.$