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Sparse Optimization Lecture: Dual Certificate in `1 Minimization



What is covered

� A review of dual certificate in the context of conic programming

� A condition that guarantees recovering a set of sparse vectors (whose

entries have the same signs), not for all k-sparse vectors /

� The condition depends on sign(xo), but not xo itself or b

� The condition is sufficient and necessary ,

� It also guarantees robust recovery against measurement errors ,

� The condition can be numerically verified (in polynomial time) ,

The underlying techniques are Lagrange duality, strict complementarity, and LP

strong duality.

Results in this lecture are drawn from various papers. For references, see:

H. Zhang, M. Yan, and W. Yin, One condition for all: solution uniqueness and robustness of

`1-synthesis and `1-analysis minimizations
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What is covered



Lagrange dual for conic programs

Let Ki be a first-orthant, second-order, or semi-definite cone. It is self-dual.

(Suppose a,b ∈ Ki. Then, aTb ≥ 0. If aTb = 0, either a = 0 or b = 0.)

� Primal:

min cTx s.t. Ax = b, xi ∈ Ki ∀i.

� Lagrangian relaxation:

L(x; s) = cTx + sT (Ax− b)

� Dual function:

d(s) = min
x
{L(x; s) : xi ∈ Ki ∀i} = −bT s− ι{(AT s+c)i∈Ki ∀i}

� Dual problem:

min
s
−d(s) ⇐⇒ min

s
bT s s.t. (AT s + c)i ∈ Ki ∀i

One problem might be simpler to solve than the other; solving one might help

solve the other.
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Lagrange dual for conic programs

• d(s) = infx{(c+AT s)Tx− sTb : xi ∈ Ki}
If (cT +AT s)i ∈ Ki the inner product is no less than zero; otherwise, it will

crash down to −∞. Thus d(s) = −bTy − ι{(AT s+c)i∈Ki ∀i} Where

ι{(AT s+c)i∈Ki ∀i} =

{
0, {(AT s+ c)i ∈ Ki ∀i}.
∞, otherwise

• min−d(s) ⇔ max d(s)



Dual certificate

Given that x∗ is primal feasible, i.e., obeying Ax∗ = b, x∗i ∈ Ki ∀i.

Question: is x∗ optimal?

Answer: One does not need to compare x∗ to all other feasible x.

A dual vector y∗ will certify the optimality of x∗.
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Dual certificate



Dual certificate

Theorem

Suppose x∗ is feasible (i.e., Ax∗ = b, x∗i ∈ Ki ∀i). If s∗ obeys

1. vanished duality gap: −bT s∗ = cTx∗, and

2. dual feasibility: (AT s∗ + c)i ∈ Ki,

then x∗ is primal optimal.

Pick any primal feasible x (i.e., Ax = b, xi ∈ Ki ∀i), we have

(c + AT s∗)Tx =
∑
i

(c + AT s∗)Ti︸ ︷︷ ︸
∈Ki

xi︸︷︷︸
∈Ki

≥ 0

and thus due to Ax = b,

cTx = (c + AT s∗)Tx− (AT s∗)Tx ≥ −(AT s∗)Tx = −bT s∗ = cTx∗.

Therefore, x∗ is optimal.

Corollary: (c + AT s∗)Tx∗ = 0 and (c + AT s∗)Ti x
∗
i = 0, ∀i.

Bottom line: dual vector y∗ = AT s∗ certifies the optimality of x∗.
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Dual certificate

• The illustration of ”vanished gap”

Figure: vanished gap

• To verify
∑
i(c+AT s∗)Ti xi ≥ 0, we use the property of Ki:

Suppose a,b ∈ Ki. Then, aTb ≥ 0. If aTb = 0, either a = 0 or b = 0

• We could prove the corollary by substituting x = x∗ on the left part of the

former inequality, forcing −(AT s∗)Tx = cTx∗



Dual certificate

A related claim:

Theorem

If any primal feasible x∗ and dual feasible s∗ have no duality gap, then x is

primal optimal and s is dual optimal.

Reason: the primal objective value of any primal feasible x ≥ the dual

objective value of any dual feasible s. Therefore, assuming both primal and

dual feasibilities, a pair of primal/dual objectives must be optimal.
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Dual certificate



Complementarity and strict complementarity

From ∑
i

(c + AT s∗)Ti x
∗
i = (c + AT s∗)Tx∗ = cTx∗ + bT s∗ = 0

and

(c + AT s∗)Ti︸ ︷︷ ︸
∈Ki

x∗i︸︷︷︸
∈Ki

≥ 0, ∀i.

we get

(c + AT s∗)Ti x
∗
i = 0, ∀i.

Hence, at least one of (c + AT s∗)Ti and x∗i is 0 (but they can be both zero.)

� If exactly one of (c + AT s∗)Ti and x∗i is zero (the other is nonzero), then

they are strictly complementary.

Certifying the uniqueness of x∗ requires a strictly complementary s∗.
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Complementarity and strict complementarity



`1 duality and dual certificate

Primal:

min ‖x‖1 s.t. Ax = b (1)

Dual:

maxbT s s.t. ‖AT s‖∞ ≤ 1

� Given a feasible x∗, if s∗ obeys

1. ‖AT s∗‖∞ ≤ 1, and

2. ‖x∗‖1 − bT s∗ = 0,

then y∗ = AT s∗ certifies the optimality of x∗.

� Any primal optimal x∗ must satisfy ‖x∗‖1 − bT s∗ = 0.
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`1 duality and dual certificate

• The dual problem for basis pursuit. (a special case in the 3rd slide)

The LP formulation of minx{‖x‖1 : Ax = b} is:

min
x
{1Tx1 + 1Tx2 Ax1 −Ax2 = b,x1,x2 � 0}

Since L(x, s) = ‖x‖1 + sT (Ax− b),

min
x
L(x, s)⇔ min

x
{‖x‖1 + sTAx} − sTb

‖x‖1 + sTAx =
∑
i |xi|+ (AT s)ixi. It has a lower bound if and only if (AT s)i

is no more than 1 for each i.

Thus the dual function is :

d(s) = −sTb+ ι{‖AT s‖∞≤1}

And the dual problem is:

max
s

bT s s.t. ‖AT s‖∞ ≤ 1



`1 duality and complementarity

� |a| ≤ 1 =⇒ ab ≤ |b|. � If ab = |b|, then

1. |a| < 1 ⇒ b = 0

2. a = 1 ⇒ b ≥ 0

3. a = −1 ⇒ b ≤ 0

� From ‖AT s∗‖∞ ≤ 1, we get ‖x∗‖1 = bT s∗ = (AT s∗)Tx∗ ≤ ‖x∗‖1 and

(AT s∗)i · xi = |xi|, ∀i.

Therefore,

1. if |(AT s∗)i| < 1, then x∗i = 0

2. if (AT s∗)i = 1, then x∗i ≥ 0

3. if (AT s∗)i = −1, then x∗i ≤ 0

Strict complementarity holds if for each i, 1− |(AT s∗)i| or xi is zero but not

both.
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`1 duality and complementarity

• (AT s∗)i · xi = |xi| implies (AT s∗)i and xi has the same sign. Thus

|xi|+ (AT s∗)i · xi = (1− |(AT s∗)i|)|xi|. The definition of strictly

complementarity requires 1− |(AT s∗)i| or xi is zero but not both.



Uniqueness of x∗

Suppose x∗ is a solution to the basis pursuit model.

Question: Is it the unique solution?

Define I := supp(x∗) = {i : x∗i 6= 0} and J = Ic.

� If s∗ is a dual certificate and ‖(AT s∗)J‖∞ < 1, xJ = 0 for all optimal x.

� For i ∈ I, (AT s∗)i = ±1 cannot determine xi
?
= 0 for optimal x. It is

possible that (AT s∗)i = ±1 yet xi = 0 (this is called degenerate.)

� On the other hand, if AIxI = b has a unique solution, denoted by x∗I , then

since x∗J = 0 is unique, x∗ = [x∗I ;x
∗
J ] = [x∗I ;0] is the unique solution to the

basis pursuit model.

� AIxI = b has a unique solution provided that AI has independent

columns, or equivalently, ker(AI) = {0}.
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Uniqueness of x∗

• Another illustration of the problem



Optimality and uniqueness

Condition

For a given x̄, the index sets I = supp(x̄) and J = Ic satisfy

1. ker(AI) = {0}

2. there exists y such that y ∈ R(AT ), yI = sign(x̄I), and ‖yJ‖∞ < 1.

Comments:

• part 1 guarantees unique x∗I as the solution to AIxI = b

• part 2 guarantees x∗J = 0

• y ∈ R(AT ) means y = AT s for some s

• the condition involves I and sign(x̄I), not the values of x̄I or b; but

different I and sign(x̄I) require a different condition

• RIP guarantees the condition hold for all small I and arbitrary signs

• the condition is easy to verify
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Optimality and uniqueness

• Now we care about whether the optimal solution x∗ is unique. Suppose

‖(AT s∗)J‖∞ < 1, all the elements on J are forced to be zero. Thus, the

uniqueness is determined by the property of AI . If ker(AI) = {0}, the

nonhomogeneous equation AIxI = bI has a unique solution. Thus, all the

elements on I could be uniquely determined.

• An illustration:



Optimality and uniqueness

Theorem

Suppose x̄ obeys Ax̄ = b and the above Condition, then x̄ is the unique

solution to min{‖x‖1 : Ax = b}.

In fact, the converse is also true, namely, the Condition is also necessary.
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Optimality and uniqueness

• To ensure the uniqueness, AI should be thin enough and at most a square. In

fact, for a good recovery, we usually require the columns of AI (corresponding to

the sparsity of the signal) to be fewer than (m+ 1)/2which could be interpreted

from the concept of “spark”.



Uniqueness of x∗

Part 1 ker(AI) = {0} is necessary.

Lemma

If 0 6= h ∈ ker(AI), then all xα = x∗ + α[h;0] for small α is optimal.

Proof.

• xα is feasible since Axα = Ax∗ = b.

• We know ‖xα‖1 ≥ ‖x∗‖1, but for small α around 0, we also have

‖xα‖1 = ‖x∗I + αh‖1 = (AT s∗)TI (x∗I + αh) = ‖x∗‖1 + α(AT s∗)TI h.

• Hence, (AT s∗)TI h = 0 and thus ‖xα‖1 = ‖x∗‖1. So, xα is also optimal.
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Uniqueness of x∗



Necessity

� Is part 2 necessary?

Introduce

min
y
‖yJ‖∞ s.t. y ∈ R(AT ), yI = sign(x̄I). (2)

If the optimal objective value < 1, then there exists y obeying part 2, so part 2

is also necessary.

We shall translate (2) and rewrite y ∈ R(AT ).
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Necessity

• ‖yJ‖∞ determines the stability of the signal recovery. As shown below, the

‖yJ‖∞ is related with the angle θ between the hyperplane and the diamond. The

smaller ‖yJ‖∞ is , the larger angle θ is, and a more stable recovery we may have.

Figure: The intersection of the hyperplane and the diamond



Necessity

Define a = [sign(x̄I);0] and basis Q of Null(A).

� If a ∈ R(AT ), set y = a. done.

� Otherwise, let y = a + z. Then

• y ∈ R(AT ) ⇔ QTy = 0 ⇔ QT z = −QTa

• yI = sign(x̄I) = aI ⇔ zI = 0

• aJ = 0 ⇒ ‖yJ‖∞ = ‖zJ‖∞

Equivalent problem:

min
z
‖zJ‖∞ s.t. QT z = −QTa, zI = 0. (3)

If the optimal objective value < 1, then part 2 is necessary.
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Necessity



Necessity

Theorem (LP strong duality)

If a linear program has a finite solution, its Lagrange dual has a finite solution.

The two solutions achieve the same primal and dual optimal objective.

Problem (3) is feasible and has a finite objective value. The dual of (3) is

max
p

(QTa)Tp s.t. ‖(Qp)J‖1 ≤ 1.

If its optimal objective value < 1, then part 2 is necessary.
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Necessity



Necessity

Lemma

If x∗ is unique, then the optimal objective of the following primal-dual

problems is strictly less than 1.

min
z
‖zJ‖∞ s.t. QT z = −QTa, zI = 0.

max
p

(QTa)Tp s.t. ‖(Qp)J‖1 ≤ 1.

Proof.

Uniqueness of x∗ =⇒ ∀h ∈ ker(A) \ {0}, ‖x∗‖1 < ‖x∗ + h‖1
=⇒ aTI hI < ‖hJ‖1

Therefore,

• if p∗ = 0, then ‖z∗J‖∞ = (QTa)Tp∗ = 0.

• if p∗ 6= 0, then h := Qp∗ ∈ ker(A) \ {0} obeys

‖z∗J‖∞ = (QTa)Tp∗ = aTI hI < ‖hJ‖1 ≤ ‖(Qp)J‖1 ≤ 1.

In both cases, the optimal objective value < 1.

17 / 24

Necessity

Lemma

If x∗ is unique, then the optimal objective of the following primal-dual

problems is strictly less than 1.

min
z
‖zJ‖∞ s.t. QT z = −QTa, zI = 0.

max
p

(QTa)Tp s.t. ‖(Qp)J‖1 ≤ 1.

Proof.

Uniqueness of x∗ =⇒ ∀h ∈ ker(A) \ {0}, ‖x∗‖1 < ‖x∗ + h‖1
=⇒ aTI hI < ‖hJ‖1

Therefore,

• if p∗ = 0, then ‖z∗J‖∞ = (QTa)Tp∗ = 0.

• if p∗ 6= 0, then h := Qp∗ ∈ ker(A) \ {0} obeys

‖z∗J‖∞ = (QTa)Tp∗ = aTI hI < ‖hJ‖1 ≤ ‖(Qp)J‖1 ≤ 1.

In both cases, the optimal objective value < 1.

2
0

1
3

-0
7

-1
2

Sparse Optimization Lecture: Dual Certificate in `1 Minimization

Necessity



Theorem

Suppose x̄ obeys Ax̄ = b. Then, x̄ is the unique solution to

min{‖x‖1 : Ax = b} if and only if the Condition holds.

Comments:

• the uniqueness requires strong duality result for problems involving ‖zJ‖∞
• strong duality does not hold for all convex programs

• strong duality does hold for convex polyhedral functions f(zJ), as well as

those with constraint qualifications (e.g., the Slater condition)

• indeed, the theorem generalizes to analysis `1 minimization: ‖ΨTx‖1
• does it generalize to

∑
‖xGi‖2 or ‖X‖∗? the key is strong duality for

‖ · ‖2 and ‖ · ‖∗
• also, the theorem generalizes to the noisy `1 models (next part...)
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• strong duality does not hold for all convex programs

• strong duality does hold for convex polyhedral functions f(zJ), as well as

those with constraint qualifications (e.g., the Slater condition)
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Noisy measurements

Suppose b is contaminated by noise: b = Ax + w

Appropriate models to recover a sparse x include

minλ‖x‖1 +
1

2
‖Ax− b‖22 (4)

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ δ (5)

Theorem

Suppose x̄ is a solution to either (4) or (5). Then, x̄ is the unique solution if

and only if the Condition holds for x̄.

Key intuition: reduce (4) to (1) with a specific b. Let x̂ be any solution to (4)

and b∗ := Ax̂. All solutions to (4) are solutions to

min ‖x‖1 s.t. Ax = b∗.

The same applies to (5). Recall that the Condition does not involve b.
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Stable recovery

Assumptions:

• x̄ and y satisfy the Condition. x̄ is the original signal.

• b = Ax̄ + w, where ‖w‖2 ≤ δ

• x∗ is the solution to

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ δ.

Goal: obtain a bound ‖x∗ − x̄‖2 ≤ Cδ.

Constant C shall be independent of δ.
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Stable recovery

Lemma

Define I = supp(x̄) and J = Ic.

‖x∗ − x̄‖1 ≤ C3δ + C4‖x∗J‖1,

where C3 = 2
√
|I| · r(I) and C4 = ‖A‖

√
|I| · r(I) + 1.

Proof.

� ‖x∗ − x̄‖1 = ‖x∗I − x̄I‖1 + ‖x∗J‖1
� ‖x∗I − x̄I‖1 ≤

√
|I| · ‖x∗I − x̄I‖2 ≤

√
|I| · r(I) · ‖AI(x

∗
I − x̄I)‖2, where

r(I) := sup
supp(u)=I,u 6=0

‖u‖
‖Au‖

(r(I) is related to one side of the RIP bound)

� introduce x̂ = [x∗I ;0].

� ‖AI(x
∗
I − x̄I)‖2 = ‖A(x̂− x̄)‖2 ≤ ‖A(x̂− x∗)‖2 + ‖A(x∗ − x̄)‖2︸ ︷︷ ︸

≤2δ

� ‖A(x̂− x∗)‖2 ≤ ‖A‖‖x̂− x∗‖2 ≤ ‖A‖‖x̂− x∗‖1 = ‖A‖‖x∗J‖1
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Stable recovery

Recall in the Condition, yI = sign(x̄) and ‖yJ‖∞ < 1

� ‖x∗I‖1 ≥ 〈yI ,x∗I〉

� ‖x∗J‖1 ≤ (1− ‖yJ‖∞)−1(‖x∗J‖1 − 〈yJ ,x∗〉)

Therefore,

� ‖x∗J‖1 ≤ (1− ‖yJ‖∞)−1(‖x∗‖1 − 〈y,x∗〉) = (1− ‖yJ‖∞)−1dy(x∗, x̄),

where

dy(x∗, x̄) = ‖x∗‖1 − ‖x̄‖1 − 〈y,x∗ − x̄〉

is the Bregman distance induced by ‖ · ‖1.

Recall in the Condition, y ∈ R(AT ) so y = ATβ for some vector β.

� dy(x∗, x̄) ≤ 2‖β‖2δ.

Lemma

Under the above assumptions,

‖x∗J‖1 ≤ 2(1− ‖yJ‖∞)−1‖β‖2δ.
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Stable recovery

Theorem

Assumptions:

• x̄ and y satisfy the Condition. x̄ is the original signal. y = ATβ.

• b = Ax̄ + w, where ‖w‖2 ≤ δ

• x∗ is the solution to

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ δ.

Conclusion:

‖x∗ − x̄‖1 ≤ Cδ,

where

C = 2
√
|I| · r(I) +

2‖β‖2(‖A‖
√
|I| · r(I) + 1)

1− ‖yJ‖∞

Comment: a similar bound can be obtained for minλ‖x‖1 + 1
2
‖Ax− b‖22 with

a condition on λ.
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• If ‖yJ‖∞ approaches 1, the constant C will blow up.

•
√
I should be corrected by

√
|I|.



Generalization

All the previous results (exact and stable recovery) generalize to the following

models:

min ‖ΨTx‖1 s.t. Ax = b

minλ‖ΨTx‖1 +
1

2
‖Ax− b‖22

min ‖ΨTx‖1 s.t. ‖Ax− b‖2 ≤ δ

Assume that A and Ψ each has independent rows, the update conditions are

Condition

For a given x̄, the index sets I = supp(ΨT x̄) and J = Ic satisfy

1. ker(ΨT
J ) ∩ ker(AI) = {0}

2. there exists y such that Ψy ∈ R(AT ), yI = sign(ΨT
I x̄), and ‖yJ‖∞ < 1.
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