Sparse Optimization
Lecture: Dual Certificate in ℓ_{1} Minimization

Instructor: Wotao Yin Department of Mathematics, UCLA

July 2013

Note scriber: Zheng Sun

Those who complete this lecture will know

- what is a dual certificate for ℓ_{1} minimization
- a strictly complementary dual certificate guarantees exact recovery
- it also guarantees stable recovery

What is covered

- A review of dual certificate in the context of conic programming

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

- A condition that guarantees recovering a set of sparse vectors (whose entries have the same signs), not for all k-sparse vectors $)^{(}$
- The condition depends on $\operatorname{sign}\left(\mathbf{x}^{o}\right)$, but not \mathbf{x}^{o} itself or \mathbf{b}
- The condition is sufficient and necessary $)^{-}$
- It also guarantees robust recovery against measurement errors ©
- The condition can be numerically verified (in polynomial time) $)^{-}$

The underlying techniques are Lagrange duality, strict complementarity, and LP strong duality.

Results in this lecture are drawn from various papers. For references, see H. Zhang, M. Yan, and W. Yin, One condition for all: solution uniqueness and robustness of ℓ_{1}-synthesis and ℓ_{1}-analysis minimizations

Lagrange dual for conic programs

Let \mathcal{K}_{i} be a first-orthant, second-order, or semi-definite cone. It is self-dual. (Suppose $\mathbf{a}, \mathbf{b} \in \mathcal{K}_{i}$. Then, $\mathbf{a}^{T} \mathbf{b} \geq 0$. If $\mathbf{a}^{T} \mathbf{b}=0$, either $\mathbf{a}=0$ or $\mathbf{b}=0$.)

- Primal:

$$
\min \mathbf{c}^{T} \mathbf{x} \quad \text { s.t. } \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x}_{i} \in \mathcal{K}_{i} \forall i
$$

- Lagrangian relaxation:

$$
\mathcal{L}(\mathbf{x} ; \mathbf{s})=\mathbf{c}^{T} \mathbf{x}+\mathbf{s}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})
$$

- Dual function:

$$
d(\mathbf{s})=\min _{\mathbf{x}}\left\{\mathcal{L}(\mathbf{x} ; \mathbf{s}): \mathbf{x}_{i} \in \mathcal{K}_{i} \forall i\right\}=-\mathbf{b}^{T} \mathbf{s}-\iota_{\left\{\left(\mathbf{A}^{T} \mathbf{s}+\mathbf{c}\right)_{i} \in \mathcal{K}_{i} \forall i\right\}}
$$

- Dual problem:

$$
\min _{\mathbf{s}}-d(\mathbf{s}) \Longleftrightarrow \min _{\mathbf{s}} \mathbf{b}^{T} \mathbf{s} \quad \text { s.t. }\left(\mathbf{A}^{T} \mathbf{s}+\mathbf{c}\right)_{i} \in \mathcal{K}_{i} \forall i
$$

One problem might be simpler to solve than the other; solving one might help solve the other.

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

$$
L_{\text {Lagrange dual for conic programs }}
$$

- $d(s)=\inf _{\mathbf{x}}\left\{\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}\right)^{T} \mathbf{x}-\mathbf{s}^{T} \mathbf{b}: \mathbf{x}_{i} \in \mathcal{K}_{i}\right\}$

If $\left(\mathbf{c}^{T}+\mathbf{A}^{T} \mathbf{s}\right)_{i} \in \mathcal{K}_{i}$ the inner product is no less than zero; otherwise, it will crash down to $-\infty$. Thus $d(\mathbf{s})=-\mathbf{b}^{T} \mathbf{y}-\iota_{\left\{\left(\mathbf{A}^{T} \mathbf{s}+\mathbf{c}\right)_{i} \in \mathcal{K}_{i} \forall i\right\}}$ Where

$$
\iota_{\left\{\left(\mathbf{A}^{T} \mathbf{s}+\mathbf{c}\right)_{i} \in \mathcal{K}_{i} \forall i\right\}}= \begin{cases}0, & \left\{\left(\mathbf{A}^{T} \mathbf{s}+\mathbf{c}\right)_{i} \in \mathcal{K}_{i} \forall i\right\} . \\ \infty, & \text { otherwise }\end{cases}
$$

- $\min -d(\mathbf{s}) \Leftrightarrow \max d(\mathbf{s})$

Dual certificate

Given that \mathbf{x}^{*} is primal feasible, i.e., obeying $\mathbf{A} \mathbf{x}^{*}=\mathbf{b}, \mathbf{x}_{i}^{*} \in \mathcal{K}_{i} \forall i$.

Question: is x^{*} optimal?

Answer: One does not need to compare \mathbf{x}^{*} to all other feasible \mathbf{x}. A dual vector \mathbf{y}^{*} will certify the optimality of \mathbf{x}^{*}.

Dual certificate

Theorem

Suppose \mathbf{x}^{*} is feasible (i.e., $\mathbf{A} \mathbf{x}^{*}=\mathbf{b}, \mathbf{x}_{i}^{*} \in \mathcal{K}_{i} \forall i$). If \mathbf{s}^{*} obeys

1. vanished duality gap: $-\mathbf{b}^{T} \mathbf{s}^{*}=\mathbf{c}^{T} \mathbf{x}^{*}$, and
2. dual feasibility: $\left(\mathbf{A}^{T} \mathbf{s}^{*}+\mathbf{c}\right)_{i} \in \mathcal{K}_{i}$,
then x^{*} is primal optimal.
Pick any primal feasible \mathbf{x} (i.e., $\mathbf{A x}=\mathbf{b}, \mathbf{x}_{i} \in \mathcal{K}_{i} \forall i$), we have

$$
\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x}=\sum_{i} \underbrace{\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T}}_{\in \mathcal{K}_{i}} \underbrace{\mathbf{x}_{i}}_{\in \mathcal{K}_{i}} \geq 0
$$

and thus due to $\mathbf{A x}=\mathbf{b}$,

$$
\mathbf{c}^{T} \mathbf{x}=\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x}-\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x} \geq-\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x}=-\mathbf{b}^{T} \mathbf{s}^{*}=\mathbf{c}^{T} \mathbf{x}^{*}
$$

Therefore, \mathbf{x}^{*} is optimal.
Corollary: $\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x}^{*}=0$ and $\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T} \mathbf{x}_{i}^{*}=0, \forall i$.

- The illustration of "vanished gap"

Figure: vanished gap

- To verify $\sum_{i}\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T} \mathbf{x}_{i} \geq 0$, we use the property of \mathcal{K}_{i} : Suppose $\mathbf{a}, \mathbf{b} \in \mathcal{K}_{i}$. Then, $\mathbf{a}^{T} \mathbf{b} \geq 0$. If $\mathbf{a}^{T} \mathbf{b}=0$, either $\mathbf{a}=0$ or $\mathbf{b}=0$
- We could prove the corollary by substituting $\mathbf{x}=\mathbf{x}^{*}$ on the left part of the former inequality, forcing $-\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x}=\mathbf{c}^{T} \mathbf{x}^{*}$

Bottom line: dual vector $\mathbf{y}^{*}=\mathbf{A}^{T} \mathbf{s}^{*} \underline{\text { certifies }}$ the optimality of \mathbf{x}^{*}.

Dual certificate

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

A related claim

Theorem

If any primal feasible \mathbf{x}^{*} and dual feasible \mathbf{s}^{*} have no duality gap, then \mathbf{x} is primal optimal and s is dual optimal

Reason: the primal objective value of any primal feasible $\mathbf{x} \geq$ the dual objective value of any dual feasible s. Therefore, assuming both primal and dual feasibilities, a pair of primal/dual objectives must be optimal.

Complementarity and strict complementarity

From

$$
\sum_{i}\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T} \mathbf{x}_{i}^{*}=\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x}^{*}=\mathbf{c}^{T} \mathbf{x}^{*}+\mathbf{b}^{T} \mathbf{s}^{*}=0
$$

and

$$
\underbrace{\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T}}_{\in \mathcal{K}_{i}} \underbrace{\mathbf{x}_{i}^{*}}_{\in \mathcal{K}_{i}} \geq 0, \forall i
$$

we get

$$
\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T} \mathbf{x}_{i}^{*}=0, \forall i
$$

Hence, at least one of $\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T}$ and \mathbf{x}_{i}^{*} is 0 (but they can be both zero.)

- If exactly one of $\left(\mathbf{c}+\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}^{T}$ and \mathbf{x}_{i}^{*} is zero (the other is nonzero), then
they are strictly complementary.
Certifying the uniqueness of \mathbf{x}^{*} requires a strictly complementary s^{*}.

Primal:

$$
\min \|\mathbf{x}\|_{1} \quad \text { s.t. } \mathbf{A} \mathbf{x}=\mathbf{b}
$$

(1)

$$
\max \mathbf{b}^{T} \mathbf{s} \quad \text { s.t. }\left\|\mathbf{A}^{T} \mathbf{s}\right\|_{\infty} \leq 1
$$

- Given a feasible \mathbf{x}^{*}, if \mathbf{s}^{*} obeys

1. $\left\|\mathbf{A}^{T} \mathbf{s}^{*}\right\|_{\infty} \leq 1$, and
2. $\left\|\mathbf{x}^{*}\right\|_{1}-\mathbf{b}^{T} \mathbf{s}^{*}=0$,
then $\mathbf{y}^{*}=\mathbf{A}^{T} \mathrm{~s}^{*}$ certifies the optimality of x^{*}

- Any primal optimal \mathbf{x}^{*} must satisfy $\left\|\mathbf{x}^{*}\right\|_{1}-\mathbf{b}^{T} \mathbf{s}^{*}=0$.

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

N	
N	
O	L
N duality and dual certificate	

- The dual problem for basis pursuit. (a special case in the 3rd slide)

The LP formulation of $\min _{\mathbf{x}}\left\{\|\mathbf{x}\|_{1}: \mathbf{A x}=\mathbf{b}\right\}$ is:

$$
\min _{\mathbf{x}}\left\{\mathbf{1}^{T} \mathbf{x}^{1}+\mathbf{1}^{T} \mathbf{x}^{2} \mathbf{A} \mathbf{x}^{1}-\mathbf{A} \mathbf{x}^{2}=\mathbf{b}, \mathbf{x}^{1}, \mathbf{x}^{2} \succeq \mathbf{0}\right\}
$$

Since $L(\mathbf{x}, \mathbf{s})=\|\mathbf{x}\|_{1}+\mathbf{s}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})$,

$$
\min _{\mathbf{x}} L(\mathbf{x}, \mathbf{s}) \Leftrightarrow \min _{\mathbf{x}}\left\{\|\mathbf{x}\|_{1}+\mathbf{s}^{T} \mathbf{A} \mathbf{x}\right\}-\mathbf{s}^{T} \mathbf{b}
$$

$\|\mathbf{x}\|_{1}+\mathbf{s}^{T} \mathbf{A} \mathbf{x}=\sum_{i}\left|x_{i}\right|+\left(\mathbf{A}^{T} \mathbf{s}\right)_{i} x_{i}$. It has a lower bound if and only if $\left(\mathbf{A}^{T} \mathbf{s}\right)_{i}$ is no more than 1 for each i.
Thus the dual function is

$$
d(\mathbf{s})=-\mathbf{s}^{T} \mathbf{b}+\iota_{\left\{\left\|\mathbf{A}^{T} \mathbf{s}\right\|_{\infty} \leq 1\right\}}
$$

And the dual problem is:

$$
\max _{\mathbf{s}} \mathbf{b}^{T} \mathbf{s} \quad \text { s.t. }\left\|\mathbf{A}^{T} \mathbf{s}\right\|_{\infty} \leq 1
$$

$\rightarrow|a| \leq 1 \Longrightarrow a b \leq|b|$. If $a b=|b|$, then

1. $|a|<1 \Rightarrow b=0$
2. $a=1 \Rightarrow b \geq 0$
3. $a=-1 \Rightarrow b \leq 0$

- From $\left\|\mathbf{A}^{T} \mathbf{s}^{*}\right\|_{\infty} \leq 1$, we get $\left\|\mathbf{x}^{*}\right\|_{1}=\mathbf{b}^{T} \mathbf{s}^{*}=\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)^{T} \mathbf{x}^{*} \leq\left\|\mathbf{x}^{*}\right\|_{1}$ and

$$
\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i} \cdot x_{i}=\left|x_{i}\right|, \quad \forall i .
$$

Therefore,

1. if $\left|\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}\right|<1$, then $\mathbf{x}_{i}^{*}=0$
2. if $\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}=1$, then $\mathbf{x}_{i}^{*} \geq 0$
3. if $\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}=-1$, then $\mathbf{x}_{i}^{*} \leq 0$

Strict complementarity holds if for each $i, 1-\left|\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}\right|$ or \mathbf{x}_{i} is zero but not both.

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

- $\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i} \cdot x_{i}=\left|x_{i}\right|$ implies $\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}$ and x_{i} has the same sign. Thus $\left|x_{i}\right|+\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i} \cdot x_{i}=\left(1-\left|\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}\right|\right)\left|x_{i}\right|$. The definition of strictly complementarity requires $1-\left|\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}\right|$ or x_{i} is zero but not both.

Uniqueness of x^{*}

Suppose \mathbf{x}^{*} is a solution to the basis pursuit model.

Question: Is it the unique solution?

Define $I:=\operatorname{supp}\left(\mathbf{x}^{*}\right)=\left\{i: \mathbf{x}_{i}^{*} \neq 0\right\}$ and $J=I^{c}$.

- If \mathbf{s}^{*} is a dual certificate and $\left\|\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{J}\right\|_{\infty}<1, \mathbf{x}_{J}=0$ for all optimal \mathbf{x}.
- For $i \in I,\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}= \pm 1$ cannot determine $x_{i} \stackrel{?}{=} 0$ for optimal \mathbf{x}. It is possible that $\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{i}= \pm 1$ yet $x_{i}=0$ (this is called degenerate.)
- On the other hand, if $\mathbf{A}_{I} \mathbf{x}_{I}=\mathbf{b}$ has a unique solution, denoted by \mathbf{x}_{I}^{*}, then since $\mathbf{x}_{J}^{*}=0$ is unique, $\mathbf{x}^{*}=\left[\mathbf{x}_{I}^{*} ; \mathbf{x}_{J}^{*}\right]=\left[\mathbf{x}_{I}^{*} ; \mathbf{0}\right]$ is the unique solution to the basis pursuit model.
- $\mathbf{A}_{I} \mathbf{x}_{I}=\mathbf{b}$ has a unique solution provided that \mathbf{A}_{I} has independent columns, or equivalently, $\operatorname{ker}\left(\mathbf{A}_{I}\right)=\{0\}$

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

- Uniqueness of \mathbf{x}^{*}

\qquad

- Another illustration of the problem

Condition

For a given $\overline{\mathbf{x}}$, the index sets $I=\operatorname{supp}(\overline{\mathbf{x}})$ and $J=I^{c}$ satisfy

1. $\operatorname{ker}\left(\mathbf{A}_{I}\right)=\{0\}$
2. there exists \mathbf{y} such that $\mathbf{y} \in \mathcal{R}\left(\mathbf{A}^{T}\right), \mathbf{y}_{I}=\operatorname{sign}\left(\overline{\mathbf{x}}_{I}\right)$, and $\left\|\mathbf{y}_{J}\right\|_{\infty}<1$.

Comments:

- part 1 guarantees unique \mathbf{x}_{I}^{*} as the solution to $\mathbf{A}_{I} \mathbf{x}_{I}=\mathbf{b}$
- part 2 guarantees $\mathbf{x}_{J}^{*}=0$
- $\mathbf{y} \in \mathcal{R}\left(\mathbf{A}^{T}\right)$ means $\mathbf{y}=\mathbf{A}^{T} \mathbf{s}$ for some \mathbf{s}
- the condition involves I and $\operatorname{sign}\left(\overline{\mathbf{x}}_{I}\right)$, not the values of $\overline{\mathbf{x}}_{I}$ or \mathbf{b}; but different I and $\operatorname{sign}\left(\overline{\mathbf{x}}_{I}\right)$ require a different condition
- RIP guarantees the condition hold for all small I and arbitrary signs
- the condition is easy to verify

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization Optimality and uniqueness

- Now we care about whether the optimal solution \mathbf{x}^{*} is unique. Suppose $\left\|\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{J}\right\|_{\infty}<1$, all the elements on J are forced to be zero. Thus, the uniqueness is determined by the property of \mathbf{A}_{I}. If $\operatorname{ker}\left(\mathbf{A}_{I}\right)=\{0\}$, the nonhomogeneous equation $\mathbf{A}_{I} \mathbf{x}_{I}=\mathbf{b}_{I}$ has a unique solution. Thus, all the elements on I could be uniquely determined.
- An illustration:

Theorem

Suppose $\overline{\mathbf{x}}$ obeys $\mathbf{A} \overline{\mathbf{x}}=\mathbf{b}$ and the above Condition, then $\overline{\mathbf{x}}$ is the unique solution to $\min \left\{\|\mathbf{x}\|_{1}: \mathbf{A x}=\mathbf{b}\right\}$

In fact, the converse is also true, namely, the Condition is also necessary.

- To ensure the uniqueness, \mathbf{A}_{I} should be thin enough and at most a square. In fact, for a good recovery, we usually require the columns of A_{I} (corresponding to the sparsity of the signal) to be fewer than $(m+1) / 2$ which could be interpreted from the concept of "spark"

Uniqueness of x^{*}

Part $1 \operatorname{ker}\left(\mathbf{A}_{I}\right)=\{0\}$ is necessary.

Lemma

If $0 \neq \mathbf{h} \in \operatorname{ker}\left(\mathbf{A}_{I}\right)$, then all $\mathbf{x}_{\alpha}=\mathbf{x}^{*}+\alpha[\mathbf{h} ; \mathbf{0}]$ for small α is optimal.

Proof.

- \mathbf{x}_{α} is feasible since $\mathbf{A} \mathbf{x}_{\alpha}=\mathbf{A} \mathbf{x}^{*}=\mathbf{b}$.
- We know $\left\|\mathbf{x}_{\alpha}\right\|_{1} \geq\left\|\mathbf{x}^{*}\right\|_{1}$, but for small α around 0 , we also have $\left\|\mathbf{x}_{\alpha}\right\|_{1}=\left\|\mathbf{x}_{I}^{*}+\alpha \mathbf{h}\right\|_{1}=\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{I}^{T}\left(\mathbf{x}_{I}^{*}+\alpha \mathbf{h}\right)=\left\|\mathbf{x}^{*}\right\|_{1}+\alpha\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{I}^{T} \mathbf{h}$
- Hence, $\left(\mathbf{A}^{T} \mathbf{s}^{*}\right)_{I}^{T} \mathbf{h}=0$ and thus $\left\|\mathbf{x}_{\alpha}\right\|_{1}=\left\|\mathbf{x}^{*}\right\|_{1}$. So, \mathbf{x}_{α} is also optimal.

Necessity

- Is part 2 necessary?

Introduce

$$
\begin{equation*}
\min _{\mathbf{y}}\left\|\mathbf{y}_{J}\right\|_{\infty} \quad \text { s.t. } \quad \mathbf{y} \in \mathcal{R}\left(\mathbf{A}^{T}\right), \mathbf{y}_{I}=\operatorname{sign}\left(\overline{\mathbf{x}}_{I}\right) \tag{2}
\end{equation*}
$$

If the optimal objective value <1, then there exists y obeying part 2 , so part 2 is also necessary.
We shall translate (2) and rewrite $\mathbf{y} \in \mathcal{R}\left(\mathbf{A}^{T}\right)$.

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

$\begin{aligned} & \text { N} \\ & \text { 人̀ } \\ & \text { ले } \\ & \text { in } \end{aligned}$

Nomen
Tatan

- $\left\|\mathbf{y}_{J}\right\|_{\infty}$ determines the stability of the signal recovery. As shown below, the $\left\|\mathbf{y}_{J}\right\|_{\infty}$ is related with the angle θ between the hyperplane and the diamond. The smaller $\left\|\mathbf{y}_{J}\right\|_{\infty}$ is , the larger angle θ is, and a more stable recovery we may have.

Figure: The intersection of the hyperplane and the diamond

Define $\mathbf{a}=\left[\operatorname{sign}\left(\overline{\mathbf{x}}_{I}\right) ; \mathbf{0}\right]$ and basis \mathbf{Q} of $\operatorname{Null}(\mathbf{A})$.

- If $\mathbf{a} \in \mathcal{R}\left(\mathbf{A}^{T}\right)$, set $\mathbf{y}=\mathbf{a}$. done.
- Otherwise, let $\mathbf{y}=\mathbf{a}+\mathbf{z}$. Then
- $\mathbf{y} \in \mathcal{R}\left(\mathbf{A}^{T}\right) \Leftrightarrow \mathbf{Q}^{T} \mathbf{y}=0 \Leftrightarrow \mathbf{Q}^{T} \mathbf{z}=-\mathbf{Q}^{T} \mathbf{a}$
- $\mathbf{y}_{I}=\operatorname{sign}\left(\overline{\mathbf{x}}_{I}\right)=\mathbf{a}_{I} \Leftrightarrow \mathbf{z}_{I}=0$
- $\mathbf{a}_{J}=0 \Rightarrow\left\|\mathbf{y}_{J}\right\|_{\infty}=\left\|\mathbf{z}_{J}\right\|_{\infty}$

Equivalent problem:

$$
\begin{equation*}
\min _{\mathbf{z}}\left\|\mathbf{z}_{J}\right\|_{\infty} \quad \text { s.t. } \mathbf{Q}^{T} \mathbf{z}=-\mathbf{Q}^{T} \mathbf{a}, \mathbf{z}_{I}=0 \tag{3}
\end{equation*}
$$

If the optimal objective value <1, then part 2 is necessary.

$$
\text { ive value }<1 \text {, then part } 2 \text { is necessary. }
$$

Necessity

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{i} \\ & \text { N} \end{aligned}$

Theorem (LP strong duality)

If a linear program has a finite solution, its Lagrange dual has a finite solution.
The two solutions achieve the same primal and dual optimal objective.
Problem (3) is feasible and has a finite objective value. The dual of (3) is

$$
\max _{\mathbf{p}}\left(\mathbf{Q}^{T} \mathbf{a}\right)^{T} \mathbf{p} \quad \text { s.t. }\left\|(\mathbf{Q} \mathbf{p})_{J}\right\|_{1} \leq 1 .
$$

If its optimal objective value <1, then part 2 is necessary.

Necessity

Lemma

If \mathbf{x}^{*} is unique, then the optimal objective of the following primal-dual

$$
\min _{\mathbf{z}}\left\|\mathbf{z}_{J}\right\|_{\infty} \quad \text { s.t. } \mathbf{Q}^{T} \mathbf{z}=-\mathbf{Q}^{T} \mathbf{a}, \mathbf{z}_{I}=0
$$

$$
\max _{\mathbf{p}}\left(\mathbf{Q}^{T} \mathbf{a}\right)^{T} \mathbf{p} \quad \text { s.t. }\left\|(\mathbf{Q} \mathbf{p})_{J}\right\|_{1} \leq 1
$$

Proof.

Uniqueness of $\mathbf{x}^{*} \Longrightarrow \forall \mathbf{h} \in \operatorname{ker}(\mathbf{A}) \backslash\{0\},\left\|\mathbf{x}^{*}\right\|_{1}<\left\|\mathbf{x}^{*}+\mathbf{h}\right\|_{1}$
$\Longrightarrow \mathbf{a}_{I}^{T} \mathbf{h}_{I}<\left\|\mathbf{h}_{J}\right\|_{1}$
Therefore,

- if $\mathbf{p}^{*}=0$, then $\left\|\mathbf{z}_{J}^{*}\right\|_{\infty}=\left(\mathbf{Q}^{T} \mathbf{a}\right)^{T} \mathbf{p}^{*}=0$.
- if $\mathbf{p}^{*} \neq 0$, then $\mathbf{h}:=\mathbf{Q} \mathbf{p}^{*} \in \operatorname{ker}(\mathbf{A}) \backslash\{0\}$ obeys
$\left\|\mathbf{z}_{J}^{*}\right\|_{\infty}=\left(\mathbf{Q}^{T} \mathbf{a}\right)^{T} \mathbf{p}^{*}=\mathbf{a}_{I}^{T} \mathbf{h}_{I}<\left\|\mathbf{h}_{J}\right\|_{1} \leq\left\|(\mathbf{Q} \mathbf{p})_{J}\right\|_{1} \leq 1$.
In both cases, the optimal objective value <1.

Suppose $\overline{\mathbf{x}}$ obeys $\mathbf{A} \overline{\mathbf{x}}=\mathbf{b}$. Then, $\overline{\mathbf{x}}$ is the unique solution to
$\min \left\{\|\mathbf{x}\|_{1}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\}$ if and only if the Condition holds.

Comments:

- the uniqueness requires strong duality result for problems involving $\left\|\mathbf{z}_{J}\right\|_{\infty}$
- strong duality does not hold for all convex programs
- strong duality does hold for convex polyhedral functions $f\left(\mathbf{z}_{J}\right)$, as well as those with constraint qualifications (e.g., the Slater condition)
- indeed, the theorem generalizes to analysis ℓ_{1} minimization: $\left\|\Psi^{T} \mathbf{x}\right\|_{1}$
- does it generalize to $\sum\left\|\mathbf{x}_{\mathcal{G}_{i}}\right\|_{2}$ or $\|\mathbf{X}\|_{*}$? the key is strong duality for $\|\cdot\|_{2}$ and $\|\cdot\|_{*}$
- also, the theorem generalizes to the noisy ℓ_{1} models (next part...)

Noisy measurements

Suppose \mathbf{b} is contaminated by noise: $\mathbf{b}=\mathbf{A x}+\mathbf{w}$
Appropriate models to recover a sparse \mathbf{x} include

$$
\begin{align*}
& \min \lambda\|\mathbf{x}\|_{1}+\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} \tag{4}\\
& \min \|\mathbf{x}\|_{1} \quad \text { s.t. }\|\mathbf{A x}-\mathbf{b}\|_{2} \leq \delta \tag{5}
\end{align*}
$$

Theorem

Suppose $\overline{\mathbf{x}}$ is a solution to either (4) or (5). Then, $\overline{\mathbf{x}}$ is the unique solution if and only if the Condition holds for $\overline{\mathbf{x}}$.

Key intuition: reduce (4) to (1) with a specific \mathbf{b}. Let $\hat{\mathbf{x}}$ be any solution to (4) and $\mathbf{b}^{*}:=\mathbf{A} \hat{\mathbf{x}}$. All solutions to (4) are solutions to

$$
\min \|\mathbf{x}\|_{1} \quad \text { s.t. } \mathbf{A x}=\mathbf{b}^{*} .
$$

The same applies to (5). Recall that the Condition does not involve b.

Stable recovery

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

 cot ank semant

Assumptions:

- $\overline{\mathbf{x}}$ and \mathbf{y} satisfy the Condition. $\overline{\mathbf{x}}$ is the original signal.
- $\mathbf{b}=\mathbf{A} \overline{\mathbf{x}}+\mathbf{w}$, where $\|\mathbf{w}\|_{2} \leq \delta$
- x^{*} is the solution to

$$
\min \|\mathbf{x}\|_{1} \quad \text { s.t. }\|\mathbf{A x}-\mathbf{b}\|_{2} \leq \delta .
$$

Goal: obtain a bound $\left\|\mathrm{x}^{*}-\overline{\mathbf{x}}\right\|_{2} \leq C \delta$.
Constant C shall be independent of δ.

Stable recovery

Lemma

Define $I=\operatorname{supp}(\overline{\mathbf{x}})$ and $J=I^{c}$

$$
\left\|\mathbf{x}^{*}-\overline{\mathbf{x}}\right\|_{1} \leq C_{3} \delta+C_{4}\left\|\mathbf{x}_{J}^{*}\right\|_{1}
$$

where $C_{3}=2 \sqrt{|I|} \cdot r(I)$ and $C_{4}=\|\mathbf{A}\| \sqrt{|I|} \cdot r(I)+1$.

Proof.

- $\left\|\mathbf{x}^{*}-\overline{\mathbf{x}}\right\|_{1}=\left\|\mathrm{x}_{I}^{*}-\overline{\mathbf{x}}_{I}\right\|_{1}+\left\|\mathrm{x}_{J}^{*}\right\|_{1}$
- $\left\|\mathbf{x}_{I}^{*}-\overline{\mathbf{x}}_{I}\right\|_{1} \leq \sqrt{|I|} \cdot\left\|\mathbf{x}_{I}^{*}-\overline{\mathbf{x}}_{I}\right\|_{2} \leq \sqrt{|I|} \cdot r(I) \cdot\left\|\mathbf{A}_{I}\left(\mathbf{x}_{I}^{*}-\overline{\mathbf{x}}_{I}\right)\right\|_{2}$, where

$$
r(I):=\sup _{\operatorname{supp}(\mathbf{u})=I, \mathbf{u} \neq 0} \frac{\|\mathbf{u}\|}{\|\mathbf{A} \mathbf{u}\|}
$$

($r(I)$ is related to one side of the RIP bound)

- introduce $\hat{\mathbf{x}}=\left[\mathbf{x}_{I}^{*} ; \mathbf{0}\right]$.
- $\left\|\mathbf{A}_{I}\left(\mathbf{x}_{I}^{*}-\overline{\mathbf{x}}_{I}\right)\right\|_{2}=\|\mathbf{A}(\hat{\mathbf{x}}-\overline{\mathbf{x}})\|_{2} \leq\left\|\mathbf{A}\left(\hat{\mathbf{x}}-\mathbf{x}^{*}\right)\right\|_{2}+\underbrace{\left\|\mathbf{A}\left(\mathbf{x}^{*}-\overline{\mathbf{x}}\right)\right\|_{2}}_{<2 \delta}$
- $\left\|\mathbf{A}\left(\hat{\mathbf{x}}-\mathbf{x}^{*}\right)\right\|_{2} \leq\|\mathbf{A}\|\left\|\hat{\mathbf{x}}-\mathbf{x}^{*}\right\|_{2} \leq\|\mathbf{A}\|\left\|\hat{\mathbf{x}}-\mathbf{x}^{*}\right\|_{1}=\|\mathbf{A}\|\left\|\mathbf{x}_{J}^{*}\right\|_{1}$

Recall in the Condition, $\mathbf{y}_{I}=\operatorname{sign}(\overline{\mathbf{x}})$ and $\left\|\mathbf{y}_{J}\right\|_{\infty}<1$

- $\left\|\mathbf{x}_{I}^{*}\right\|_{1} \geq\left\langle\mathbf{y}_{I}, \mathbf{x}_{I}^{*}\right\rangle$
- $\left\|\mathbf{x}_{J}^{*}\right\|_{1} \leq\left(1-\left\|\mathbf{y}_{J}\right\|_{\infty}\right)^{-1}\left(\left\|\mathbf{x}_{J}^{*}\right\|_{1}-\left\langle\mathbf{y}_{J}, \mathbf{x}^{*}\right\rangle\right)$

Therefore,

- $\left\|\mathbf{x}_{J}^{*}\right\|_{1} \leq\left(1-\left\|\mathbf{y}_{J}\right\|_{\infty}\right)^{-1}\left(\left\|\mathbf{x}^{*}\right\|_{1}-\left\langle\mathbf{y}, \mathbf{x}^{*}\right\rangle\right)=\left(1-\left\|\mathbf{y}_{J}\right\|_{\infty}\right)^{-1} d_{y}\left(\mathbf{x}^{*}, \overline{\mathbf{x}}\right)$,
where

$$
d_{\mathbf{y}}\left(\mathbf{x}^{*}, \overline{\mathbf{x}}\right)=\left\|\mathbf{x}^{*}\right\|_{1}-\|\overline{\mathbf{x}}\|_{1}-\left\langle\mathbf{y}, \mathbf{x}^{*}-\overline{\mathbf{x}}\right\rangle
$$

is the Bregman distance induced by $\|\cdot\|_{1}$.
Recall in the Condition, $\mathbf{y} \in \mathcal{R}\left(\mathbf{A}^{T}\right)$ so $\mathbf{y}=\mathbf{A}^{T} \beta$ for some vector β.

- $d_{\mathbf{y}}\left(\mathbf{x}^{*}, \overline{\mathbf{x}}\right) \leq 2\|\beta\|_{2} \delta$.

Lemma

Under the above assumptions,

$$
\left\|\mathbf{x}_{J}^{*}\right\|_{1} \leq 2\left(1-\left\|\mathbf{y}_{J}\right\|_{\infty}\right)^{-1}\|\beta\|_{2} \delta .
$$

Stable recovery

Theorem

Assumptions:

- $\overline{\mathbf{x}}$ and \mathbf{y} satisfy the Condition. $\overline{\mathbf{x}}$ is the original signal. $\mathbf{y}=\mathbf{A}^{T} \beta$.
- $\mathbf{b}=\mathbf{A} \overline{\mathbf{x}}+\mathbf{w}$, where $\|\mathbf{w}\|_{2} \leq \delta$
- x^{*} is the solution to

$$
\min \|\mathbf{x}\|_{1} \quad \text { s.t. }\|\mathbf{A x}-\mathbf{b}\|_{2} \leq \delta .
$$

Conclusion:

$$
\left\|\mathrm{x}^{*}-\overline{\mathbf{x}}\right\|_{1} \leq C \delta
$$

where

$$
C=2 \sqrt{|I|} \cdot r(I)+\frac{2\|\beta\|_{2}(\|\mathbf{A}\| \sqrt{|I|} \cdot r(I)+1)}{1-\left\|\mathbf{y}_{J}\right\|_{\infty}}
$$

Comment: a similar bound can be obtained for $\min \lambda\|\mathbf{x}\|_{1}+\frac{1}{2}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$ with a condition on λ.

Sparse Optimization Lecture: Dual Certificate in ℓ_{1} Minimization

| N | |
| :--- | :--- | :--- |
| N | LStable recovery |
| O | |
| N | |
| N | |

- If $\left\|\mathbf{y}_{J}\right\|_{\infty}$ approaches 1 , the constant C will blow up.
- \sqrt{I} should be corrected by $\sqrt{|I|}$.

Generalization

All the previous results (exact and stable recovery) generalize to the following models:

$$
\begin{aligned}
& \min \left\|\Psi^{T} \mathbf{x}\right\|_{1} \quad \text { s.t. } \mathbf{A} \mathbf{x}=\mathbf{b} \\
& \min \lambda\left\|\Psi^{T} \mathbf{x}\right\|_{1}+\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} \\
& \min \left\|\Psi^{T} \mathbf{x}\right\|_{1} \quad \text { s.t. }\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \leq \delta
\end{aligned}
$$

Assume that \mathbf{A} and Ψ each has independent rows, the update conditions are

Condition

For a given $\overline{\mathbf{x}}$, the index sets $I=\operatorname{supp}\left(\Psi^{T} \overline{\mathbf{x}}\right)$ and $J=I^{c}$ satisfy

1. $\operatorname{ker}\left(\Psi_{J}^{T}\right) \cap \operatorname{ker}\left(\mathbf{A}_{I}\right)=\{0\}$
2. there exists \mathbf{y} such that $\Psi \mathbf{y} \in \mathcal{R}\left(\mathbf{A}^{T}\right), \mathbf{y}_{I}=\operatorname{sign}\left(\Psi_{I}^{T} \overline{\mathbf{x}}\right)$, and $\left\|\mathbf{y}_{J}\right\|_{\infty}<1$.
