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Those who complete this lecture will know

® what is a dual certificate for £1 minimization
® 3 strictly complementary dual certificate guarantees exact recovery

® it also guarantees stable recovery
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» A review of dual certificate in the context of conic programming

» A condition that guarantees recovering a set of sparse vectors (whose

entries have the same signs), not for all k-sparse vectors @

» The condition depends on sign(x°), but not x° itself or b

» The condition is sufficient and necessary ©®

» It also guarantees robust recovery against measurement errors ©
>

The condition can be numerically verified (in polynomial time) ©

The underlying techniques are Lagrange duality, strict complementarity, and LP
strong duality.

Results in this lecture are drawn from various papers. For references, see:
H. Zhang, M. Yan, and W. Yin, One condition for all: solution uniqueness and robustness of

£1-synthesis and ¢;-analysis minimizations
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Lagrange dual for conic programs

Let /C; be a first-orthant, second-order, or semi-definite cone. It is self-dual. Lagrange dual for conic programs

(Suppose a,b € K;. Then, a”’b > 0. If a”’b = 0, eithera=0or b =0.)
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» Primal:

minc’x st. Ax=b, x; € K; Vi.
o d(s) = infx{(c+ ATs)Tx —sTb :x; € K;}

If (cT + ATs)i € KC; the inner product is no less than zero; otherwise, it will

» Lagrangian relaxation:
crash down to —co. Thus d(s) = —bTy — L{(ATs+e); ek, viy Where

) AT T _
L(x;s)=c x+s (Ax—Db) 0, {(ATs+c); € K; Vi}.

L T =
A ZEK; Y .
{(ATste);ek; vi} {oo, otherwise

» Dual function:
- e min —d(s) < maxd(s)
d(s) = min{L(x;s) : x; € K; Vi} = —b" s — iy aTs 0),ex; vi}

» Dual problem:
min —d(s) <= minb’s st. (ATs+c)ieK; Vi

One problem might be simpler to solve than the other; solving one might help

solve the other.
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Dual certificate

Dual certificate
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Given that x* is primal feasible, i.e., obeying Ax* = b, x; € K; Vi.
Question: is x* optimal?

Answer: One does not need to compare x* to all other feasible x.

A dual vector y* will certify the optimality of x*.
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Dual certificate

N
Theorem g Dual certificate
Suppose x* is feasible (i.e., Ax* =b, xj € K; Vi). Ifs™ obeys g'
(o]
1. vanished duality gap: —b”s* = c¢*x*, and
2. dual feasibility: (ATs* +c); € K;,
) ) ) e The illustration of "vanished gap”
then x* is primal optimal.
Pick any primal feasible x (i.e., Ax = b, x; € K; Vi), we have ds¥ = orxE
d(s) primal c™x
T _+\T T _\T _ 1 |
c+A's) x= c+A's"); x; >0 —
( ) Z ( )l \Z/ vanished gap
¢ ex; €X;
and thus due to Ax = b, Figure: vanished gap
T T x\T T s\T T _x\T T * T *
cx=(c+A's)x-(A's") x>—-(A's") ' x=-b's"=c x". e To verify 3=, (c + ATs*)Tx; > 0, we use the property of K;:
. i Suppose a,b € ;. Then, al’b > 0. If al’b =0, eithera=00r b =0
Therefore, x* is optimal.
e We could prove the corollary by substituting x = x* on the left part of the
Corollary: (c + ATs*)Tx* =0 and (c + ATs*)Ix} =0, Vi. former inequality, forcing —(A™s*)"x = ¢*x*

Bottom line: dual vector y* = A”'s™ certifies the optimality of x*.



Dual certificate

A related claim:

Theorem
If any primal feasible x* and dual feasible s* have no duality gap, then x is
primal optimal and s is dual optimal.

Reason: the primal objective value of any primal feasible x > the dual
objective value of any dual feasible s. Therefore, assuming both primal and

dual feasibilities, a pair of primal/dual objectives must be optimal.
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Dual certficate




Complementarity and strict complementarity

From
Z (c+A"s")x; = (c+ATs") 'x" =c"x"+b"s" =0
i

and
(c+A"s")] x; >0, Vi.
—_—

ex; ex;
we get

(c+ ATs")]x; =0, Vi.

Hence, at least one of (c + A”s*)¥ and x} is 0 (but they can be both zero.)

» If exactly one of (c + ATs*)] and x} is zero (the other is nonzero), then
they are strictly complementary.

Certifying the uniqueness of x* requires a strictly complementary s*.

2013-07-12
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Complementarity and strict complementarity
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{1 duality and dual certificate

21 duality and dual certificate
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Primal:
min ||x||; st. Ax=Db (1)

Dual: e The dual problem for basis pursuit. (a special case in the 3rd slide)
maxbls st ||ATSHoo <1 The LP formulation of minyg{||x||1 : Ax = b} is:

min{17x! + 17x? Ax! — Ax? = b,x!,x? = 0}
X

Since L(x,s) = ||x||1 + s (Ax —b),
» Given a feasible x*, if s obeys
y min L(x,s) < min{||x|[1 + sTAx} —sTb
X X
T =
. <
1 JA7s e <1, and Ixll1 +sTAx =3, |zi| + (ATs);x;. It has a lower bound if and only if (ATs);
2. [|x*|l1 = bTs* =0, is no more than 1 for each i.
T . Thus the dual function is :
then y* = A’ s™ certifies the optimality of x™. -
. . . ” d(s) = =s" b+ aTg) o<1}
» Any primal optimal x* must satisfy ||x*||; — b"s" = 0. B
And the dual problem is:

maxbTs st [[ATs|e0 < 1
s
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/1 duality and complementarity

N
g £ duality and complementarity
> la| <1 = ab< |b|. » If ab=|b], then &
S
1. laj]<1 = b=0
2.a=1=b>0
3 1 b <0 o (ATs*); - x; = |z;| implies (ATs*); and z; has the same sign. Thus
ra=—1= 0= |z;| + (ATs*); -z, = (1 — |(ATs*);|)|x;|. The definition of strictly
» From HATS*H <1, we get |[x*||; = bls* — (ATS*)TX* < [|x*[lx and complementarity requires 1 — [(AT's*);| or a; is zero but not both.
oo = ' - - —

(ATS*)Z' X = |CCZ‘, V3.
Therefore,
1. if |(ATs*);| < 1, then x; =0
2. if (ATS*)i =1, then x; >0
3. if (ATS*)i = —1, then x; <0

Strict complementarity holds if for each i, 1 — |(ATs*);| or x; is zero but not
both.
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Uniqueness of x*

S

B' Uniqueness of x*

)
Suppose x* is a solution to the basis pursuit model. =
Question: [s it the unique solution?
Define I := supp(x*) = {i : xj # 0} and J = I°. e Another illustration of the problem
» If s* is a dual certificate and ||(ATs*)||eo < 1, x; = 0 for all optimal x.
» Foric I, (ATs*); = £1 cannot determine x; 20 for optimal x. It is norm{x.1}
possible that (A7s*); = &1 yet &; = 0 (this is called degenerate.) i

cTx¥=—bTg*

» On the other hand, if Arx; = b has a unique solution, denoted by x7, then
since x7 = 0 is unique, x* = [x};x5] = [x7; 0] is the unique solution to the
basis pursuit model. Gerp @

» A;x; = b has a unique solution provided that A has independent
columns, or equivalently, ker(A;) = {0}.
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Optimality and uniqueness

N
g LOptimality and uniqueness
Condition E
(o]
For a given X, the index sets I = supp(X) and J = I¢ satisfy
1. ker(Ar) = {0}
> th i b th R(AT . _ d 1 e Now we care about whether the optimal solution x* is unique. Suppose
. there exists y such thaty € R(A"), yr = sign(xr), and [lys]l <1. I(ATs*) s]loo < 1, all the elements on J are forced to be zero. Thus, the
uniqueness is determined by the property of Aj. If ker(A;) = {0}, the
Comments: nonhomogeneous equation A;x; = by has a unique solution. Thus, all the
. N . elements on I could be uniquely determined.
e part 1 guarantees unique x7 as the solution to A;x; =b
e An illustration:
e part 2 guarantees x5 =0
e y € R(AT) means y = A”s for some s x1
e the condition involves I and sign(Xr), not the values of X; or b; but
different I and sign(Xs) require a different condition - —_
_— b
o RIP guarantees the condition hold for all small I and arbitrary signs
norm(ATs*_ infinity)<1 4]

the condition is easy to verify
xd
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Optimality and uniqueness

Optimality and uniqueness
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e To ensure the uniqueness, A should be thin enough and at most a square. In
Theorem fact, for a good recovery, we usually require the columns of A; (corresponding to
the sparsity of the signal) to be fewer than (m + 1)/2which could be interpreted

Suppose x obeys Ax = b and the above Condition, then X is the unique from the concept of “spark” .

solution to min{||x||: : Ax = b}.

In fact, the converse is also true, namely, the Condition is also necessary.



Uniqueness of x*
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Uniqueness of x*
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Part 1 ker(A;) = {0} is necessary.

Lemma
If0 # h € ker(Aj), then all xo = x* + alh; 0] for small « is optimal.

Proof.
e X, is feasible since Ax, = Ax* = b.
e We know ||xql[1 > ||x*||1, but for small & around 0, we also have
%ol = [Ix7 + ahlly = (ATs")7 (x] + ah) = [|x*[l1 + «(ATs")T h.
e Hence, (A"s*)Th =0 and thus ||xa |1 = ||x*||1. So, X4 is also optimal.

O



Necessity

» Is part 2 necessary?
Introduce

min [ysfe sty € R(AT), yr = sign(%1). (2)
If the optimal objective value < 1, then there exists y obeying part 2, so part 2
is also necessary.

We shall translate (2) and rewrite y € R(AT).

Necessity

Sparse Optimization Lecture: Dual Certificate in £1 Minimization

> e part 2 necessay?

Necessity
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e ||yslloo determines the stability of the signal recovery. As shown below, the
[ly 7lloo is related with the angle 6 between the hyperplane and the diamond. The
smaller ||y s|leo is , the larger angle 6 is, and a more stable recovery we may have.

Ir theta

b=Ax+z

Figure: The intersection of the hyperplane and the diamond




Necessity

Define a = [sign(X;); 0] and basis Q of Null(A).
> Ifac R(AT), set y = a. done.
» Otherwise, let y = a+z. Then

e ycR(AT) & QTy =0 & Q"z=-Q"a
o yr =sign(xXs) =ar & z;=0
ca;=0 = [[yslle =zl

Equivalent problem:

min |zl st. Q'z=-Q"a, z; =0. (3)

If the optimal objective value < 1, then part 2 is necessary.

2013-07-12
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Necessity

)



Necessity

Theorem (LP strong duality)

If a linear program has a finite solution, its Lagrange dual has a finite solution.

The two solutions achieve the same primal and dual optimal objective.
Problem (3) is feasible and has a finite objective value. The dual of (3) is
max (Q7a)"p st (@)l <1

If its optimal objective value < 1, then part 2 is necessary.

16 /24
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Necessity

Lemma
If X* is unique, then the optimal objective of the following primal-dual

problems is strictly less than 1.

min ||zs||ec st QTz = fQTa, zr = 0.
z

max (Q"a)"p st [(Qp)s[r < 1.

Proof.
Uniqueness of x* = Vh € ker(A) \ {0}, ||x*|lx < ||x* + hlx
= ajh; < ||hy|
Therefore,
e if p* =0, then ||z%]c = (QTa)"p* = 0.
o if p* #£0, then h:= Qp”* € ker(A) \ {0} obeys
|27l = (Q"a)"p* = aihr < [/hy[ls < [[(Qp)s[l1 < L.

In both cases, the optimal objective value < 1.

2013-07-12
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Theorem

Suppose x obeys Ax = b. Then, X is the unique solution to
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min{||x||1 : Ax = b} if and only if the Condition holds.

Comments:

the uniqueness requires strong duality result for problems involving ||zs ||
strong duality does not hold for all convex programs

strong duality does hold for convex polyhedral functions f(zs), as well as
those with constraint qualifications (e.g., the Slater condition)

indeed, the theorem generalizes to analysis £ minimization: | U7x||;

does it generalize to " ||xg,||2 or || X||.? the key is strong duality for
|- ll2 and || - ||

also, the theorem generalizes to the noisy ¢1 models (next part...)
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Noisy measurements

Suppose b is contaminated by noise: b = Ax +w

Appropriate models to recover a sparse x include
. 1
min Alfx[[1 + 5 [[Ax — b3 (4)

min ||x]|1 st [|[Ax—Db|2 <4 (5)

Theorem

Suppose X is a solution to either (4) or (5). Then, X is the unique solution if
and only if the Condition holds for X.

Key intuition: reduce (4) to (1) with a specific b. Let X be any solution to (4)
and b* := Ax. All solutions to (4) are solutions to

min ||x||1 st Ax=Db".

The same applies to (5). Recall that the Condition does not involve b.

19 /24
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Noisy measurements

The same apo

e o (5). Recl




Stable recovery

Assumptions:

e X and y satisfy the Condition. X is the original signal.

e b=Ax+w, where |w|2 <§

e x* is the solution to
min ||x]]1  s.t. [|[Ax — blj2 < 4.

Goal: obtain a bound ||x* — x||2 < C9.

Constant C' shall be independent of §.

2013-07-12
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Stable recovery




Stable recovery

Lemma
Define I = supp(x) and J = I°.

[x* = %[l1 < C56 + Cal|x] 1,
where Cy = 2+/T] - 7(I) and Ca = | AT - () + 1.
Proof.

> lx* =%l = llx — %2l + x5 ]
> lxi =%l < V/IIT- 1 — Zalle < /T - v(1) - [|A1(x — %1)ll2, where

[[ull

r([l) =

( ) supp(u)=1,u#0 HAu”

(r(I) is related to one side of the RIP bound)

» introduce X = [x7;0].

> [[Ar(x7 = %1)ll2 = [A(XK = R)[l2 < [A(K = x")|l2 + AKX —%)]2
—_—————

<26
> [AG =xT)]2 < JAfllIx = x"l2 < [|AfllI% = <[l = [|A[lIx5 ]

O

2013-07-12
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Stable recovery

Recall in the Condition, y; = sign(x) and |y slje <1
- lIxils > (yr,x3)

> [Ix5h < (L= Iy sllee) T x5 = (v, x7))
Therefore,

> [Ix5lh < (1= llyslloe) T X = (v, 7)) = (1= [lyslloe) " dy(x*, %),
where

dy(x", %) = [x" L = %] = (y,x" = %)

is the Bregman distance induced by || - ||1.

Recall in the Condition, y € R(AT) so y = AT 3 for some vector 3.
> dy(x", %) < 2||B]|26.

Lemma

Under the above assumptions,

131l < 201 = [y llee) " 1Bll20.

~

™
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Stable recovery




Stable recovery
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Stable recovery

Stable recovery

Theorem
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Assumptions:

e % and y satisfy the Condition. % is the original signal. y = AT§.
e If |lys|loc approaches 1, the constant C' will blow up.

e /I should be corrected by \/|I].

e b=AXx+w, where |[w|2 <0

e x* js the solution to
min ||x]|1  s.t. ||[Ax —b|]2 < 4.

Conclusion:
[x" —x[l» < C9,

where

n 2|8l (1Al - (1) + 1)

C=2/|I|-r(I) =y,

Comment: a similar bound can be obtained for min A[|x[|1 + [|Ax — b||3 with

a condition on \.
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All the previous results (exact and stable recovery) generalize to the following
models:

min | ¥7x|; st. Ax=b
. 1
min A|| 7 x|, + 5HAX — b3

min |[U7x|)1 st [|[Ax—b|s <

Assume that A and W each has independent rows, the update conditions are

Condition
For a given %, the index sets I = supp(¥7 %) and J = I° satisfy
1. ker(¥7) Nnker(Ar) = {0}
2. there exists y such that Uy € R(AT), yr = sign(¥7%), and |yl < 1.



