Operator Splitting of Three or More Operators

Sun Zheng , Lin Kaixiang , Deng Ruiyang

July 25, 2013

Outline

- Introduction.
- Review of Some Operator Splitting Methods for Two Operators.
- From n=2 to n=3.
- From n=3 to n=m.
- Numerical Experiments and Results.
- Another Attempt to Derive Operator Splitting Method for Three Operators.

Introduction

Operator Splitting:

To decompose two or more operators into simpler ones in the sense that they will be involved individually.

• Goal: To solve the following optimization problem:

$$\min_{\mathbf{x}} \sum_{i=1}^{n} f_i(\mathbf{x}), \quad n \ge 3$$

by operator splitting method. $\{f_i(\mathbf{x})\}_{i=1}^n$ are :

- 1. proper;
- convex;
- 3. not necessarily smooth.

We assume that all of the functions we analyze in this report are of this kind without further notification.

Review, n=2

To solve:

$$\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$$

• Forward-backward splitting method: if f is differentiable.

$$\mathbf{x}^{k+1} = \operatorname{prox}_{cg}(I - c\nabla f)\mathbf{x}^k$$

 Peaceman-Rachford splitting method: if neither of them are differentiable.

$$\mathbf{z}^{k+1} = \operatorname{refl}_{cg} \operatorname{refl}_{cf} \mathbf{z}^{k}$$

 $\mathbf{x}^{k+1} = \operatorname{prox}_{cf} \mathbf{z}^{k+1}$

Review, n=2

• Douglas-Rachford splitting method.

$$\mathbf{z}^{k+1} = \lambda \operatorname{refl}_{cg} \operatorname{refl}_{cf} \mathbf{z}^k + (1 - \lambda) \mathbf{z}^k$$

 $\mathbf{x}^{k+1} = \operatorname{prox}_{cf} \mathbf{z}^{k+1}$

It's a damping version of *Peaceman-Rachford splitting* method. Convergence is guaranteed if $0 < \lambda < 1$.

From n=2 to n=3: Motivations

- We want to reduce the problem to two splitting.
- Peaceman-Rachford splitting for $\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$

$$\begin{cases} \mathbf{z}^{k+1} = \operatorname{refl}_{cf}(2\mathbf{x}^k - \mathbf{z}^k) \\ \mathbf{x}^{k+1} = \operatorname{prox}_{cg}\mathbf{z}^{k+1} \end{cases}$$

The basic motivation:
 We drop one of the functions for the moment, and apply
 Peaceman -Rachford splitting to the remaining two functions in turns.

From n=2 to n=3

• By the above motivation, we have:

$$\begin{cases} \mathbf{z}_{1}^{k+1} = \operatorname{refl}_{cf}(2\mathbf{x}^{k} - \mathbf{z}_{3}^{k}) \\ \mathbf{x}^{k+\frac{1}{3}} = \operatorname{prox}_{cg}\mathbf{z}_{1}^{k+1} \end{cases}$$

$$\begin{cases} \mathbf{z}_{2}^{k+1} = \operatorname{refl}_{cg}(2\mathbf{x}^{k+\frac{1}{3}} - \mathbf{z}_{1}^{k+1}) \\ \mathbf{x}^{k+\frac{2}{3}} = \operatorname{prox}_{ch}\mathbf{z}_{2}^{k+1} \end{cases}$$

$$\begin{cases} \mathbf{z}_{3}^{k+1} = \operatorname{refl}_{ch}(2\mathbf{x}^{k+\frac{2}{3}} - \mathbf{z}_{2}^{k+1}) \\ \mathbf{x}^{k+1} = \operatorname{prox}_{cf}\mathbf{z}_{3}^{k+1} \end{cases}$$

Remarks: This is a Gauss-Seidel like method, which renews **x** as soon as it's updated. But the variables are coupled together. This routine inspires us for further derivation, but itself may not be convergent.

From n=2 to n=3

• We could also give a *Jacobi* version of the method:

$$\begin{aligned} \mathbf{z}_{1}^{k+1} &= \mathrm{refl}_{cf}(2\mathbf{x}^{k} - \mathbf{z}_{1}^{k}) \\ \mathbf{z}_{2}^{k+1} &= \mathrm{refl}_{cg}(2\mathbf{x}^{k} - \mathbf{z}_{2}^{k}) \\ \mathbf{z}_{3}^{k+1} &= \mathrm{refl}_{ch}(2\mathbf{x}^{k} - \mathbf{z}_{3}^{k}) \end{aligned}$$

We have introduced three auxiliary variables $\{\mathbf{z}_i\}_{i=1}^3$ for different functions, so it's not fair to just use some of them in renewing \mathbf{x} . Therefore, the following "weighted average" may be a good idea:

$$\mathbf{x}^{k+1} = w_1 \mathbf{z}_1 + w_2 \mathbf{z}_2 + w_3 \mathbf{z}_3$$

where $\sum_{i=1}^{3} w_i = 1$, $0 < w_i < 1$.

From n=2 to n=3

 Just like the Douglas-Rachford splitting, we could also give a damping version of the above algorithm:

$$\begin{aligned} \mathbf{z}_{1}^{k+1} &= \lambda (\operatorname{refl}_{cf}(2\mathbf{x}^{k} - \mathbf{z}_{1}^{k})) + (1 - \lambda)\mathbf{z}_{1}^{k} \\ \mathbf{z}_{2}^{k+1} &= \lambda (\operatorname{refl}_{cg}(2\mathbf{x}^{k} - \mathbf{z}_{2}^{k})) + (1 - \lambda)\mathbf{z}_{1}^{k} \\ \mathbf{z}_{3}^{k+1} &= \lambda (\operatorname{refl}_{ch}(2\mathbf{x}^{k} - \mathbf{z}_{3}^{k})) + (1 - \lambda)\mathbf{z}_{1}^{k} \\ \mathbf{x}^{k+1} &= w_{1}\mathbf{z}_{1} + w_{2}\mathbf{z}_{2} + w_{3}\mathbf{z}_{3} \end{aligned}$$

Remarks: The objective function is splitted into several parts, we attempt to operate on each sub-objective function, and then obtain the optimal by synthesizing and revising the solutions from the sub-problems. This algorithm is paralellizable.

From n=3 to m

 Based on the above algorithm, We could propose an algorithm for a more general case:

$$\min_{\mathbf{x}} \sum_{i=1}^m f_i(\mathbf{x})$$

Since

$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \sum_{i=1}^m f_i(\mathbf{x}) \Leftrightarrow \mathbf{0} \in \sum_{i=1}^m \partial f_i(\mathbf{x}^*),$$

we could derive more equivalent forms of this problem.

From n=3 to m: Equivalent Transformation

The above problem is equivalent to:

$$\exists \{\mathbf{y}_i\}_{i=1}^m, \text{s.t} \begin{cases} \mathbf{y}_i \in -\frac{\gamma}{w_i} \partial f_i(\mathbf{x}) & i = 1, ..., m \\ \sum_{i=1}^m w_i \mathbf{y}_i = \mathbf{0} \end{cases}$$
$$\Leftrightarrow \begin{cases} \mathbf{y}_i + \mathbf{x} \in -\frac{\gamma}{w_i} \partial f_i(\mathbf{x}) + \mathbf{x} & i = 1, ..., m \\ \sum_{i=1}^m w_i \mathbf{y}_i = \mathbf{0} \end{cases}$$

Let $\mathbf{z}_i = \mathbf{y}_i + \mathbf{x}$, then the above problem is equivalent to:

$$\begin{cases} w_i(\mathbf{x} - \mathbf{z}_i) \in \gamma \partial f_i(\mathbf{x}) & i = 1, ..., m \\ \sum_{i=1}^m w_i \mathbf{z}_i = \mathbf{x} \end{cases}$$

From n=3 to m: Equivalent Transformation

 Using the same trick as that in deriving Peaceman-Rachford splitting, we have:

$$w_{i}(\mathbf{x} - \mathbf{z}_{i}) \in \gamma \partial f_{i}(\mathbf{x})$$

$$\Leftrightarrow 2\mathbf{x} - \mathbf{z}_{i} \in (I + \frac{\gamma}{w_{i}} f_{i})\mathbf{x}$$

$$\Leftrightarrow \mathbf{x} = (I + \frac{\gamma}{w_{i}} \partial f_{i})^{-1} (2\mathbf{x} - \mathbf{z}_{i}) = \operatorname{prox}_{\frac{\gamma}{w_{i}} f_{i}} (2\mathbf{x} - \mathbf{z}_{i})$$

$$\Leftrightarrow 2\mathbf{x} - \mathbf{z}_{i} = 2\operatorname{prox}_{\frac{\gamma}{w_{i}} f_{i}} (2\mathbf{x} - \mathbf{z}_{i}) - \mathbf{z}_{i}$$

$$\Leftrightarrow \mathbf{z}_{i} = \operatorname{refl}_{\frac{\gamma}{w_{i}} f_{i}} (2\mathbf{x} - \mathbf{z}_{i})$$

• Therefore,

$$\mathbf{0} \in \sum_{i=1}^{m} \partial f_i(\mathbf{x}) \Leftrightarrow \begin{cases} \mathbf{z}_i = \operatorname{refl}_{\frac{\gamma}{w_i} f_i} (2\mathbf{x} - \mathbf{z}_i) \ i = 1, ..., m \\ \mathbf{x} = \sum_{i=1}^{m} w_i \mathbf{z}_i \end{cases}$$

From n=3 to m: Damping Algorithm

 We could also split z_i to allow damping strategies in the algorithm, that is:

$$\begin{cases} \mathbf{z}_i = \lambda_i \operatorname{refl}_{\frac{\gamma}{w_i} f_i} (2\mathbf{x} - \mathbf{z}_i) + (1 - \lambda_i) \mathbf{z}_i \ i = 1, ..., m \\ \mathbf{x} = \sum_{i=1}^m w_i \mathbf{z}_i \end{cases}$$

• The form above indicates that \mathbf{z}_i is the fixed point of the mapping $\lambda_i \operatorname{refl}_{\frac{\gamma}{w_i} f_i} (2\mathbf{x} - \bullet) + (1 - \lambda_i) \bullet$, which inspires us to design the iteration algorithm to find them:

$$\begin{cases} \mathbf{z}_i^{t+1} = \lambda_i^t \mathrm{refl}_{\frac{\gamma}{w_i} f_i} (2\mathbf{x}^t - \mathbf{z}_i^t) + (1 - \lambda_i^t) \mathbf{z}_i^t \ i = 1, ..., m \\ \mathbf{x}^{t+1} = \sum_{i=1}^m w_i \mathbf{z}_i^{t+1} \end{cases}$$

Abstract Descriptions

- For simplification, we denote $\lambda_i^t = \frac{1}{2}$.
- Since we have splitted the objective functions and introduced z_i to investigate the decreasing process on each subproblem, we attempt to describe the relationship between z_i and x.
 Therefore, we introduce the product space for illustration.

Abstract Descriptions

- $\mathbf{x}, \mathbf{z}_i \in \mathcal{H}, \ \mathcal{H}^n = \prod_{i=1}^n \mathcal{H}.$
- The inner product in \mathcal{H} is defined as: $\langle \mathbf{A}, \mathbf{B} \rangle_{\mathcal{H}^n} = \sum_{i=1}^n w_i \langle \mathbf{a}_i, \mathbf{b}_i \rangle_{\mathcal{H}},$ in which $\mathbf{A} = (\mathbf{a}_1, ..., \mathbf{a}_n), \ \mathbf{B} = (\mathbf{b}_1, ..., \mathbf{b}_n).$
- $S = \{(\mathbf{x}_1, ..., \mathbf{x}_n) : \mathbf{x}_1 = ... = \mathbf{x}_n \in \mathcal{H}\}$ is a subspace of \mathcal{H}^n , which is isomorphic to \mathcal{H} , Hence, S is the subspace for solution.
- The algorithm is equivalent to:

$$\begin{cases} \mathbf{Z}^{t+1} = \frac{1}{2}(\mathbf{refl}_{\mu\mathbf{F}}(2\mathbf{X}^t - \mathbf{Z}^t) + \mathbf{Z}^t) \\ \mathbf{X}^{t+1} = (\sum_{i=1}^n w_i \mathbf{z}_i^{t+1}, ..., \sum_{i=1}^n w_i \mathbf{z}_i^{t+1}) = \langle \mathbf{I}, \mathbf{Z}^{t+1} \rangle_{\mathcal{H}^n} \mathbf{I} \end{cases}$$
 in which, $\mathbf{refl}_{\mu\mathbf{F}} = (\mathrm{refl}_{\frac{\gamma}{w_i}f_i})_i$, $\mathbf{Z} = (\mathbf{z}_1, ..., \mathbf{z}_n)$, $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_n)$.

• $\mathbf{X}^t = \langle \mathbf{I}, \mathbf{Z}^t \rangle_{\mathcal{H}^n} \mathbf{I}$ is the projection onto \mathcal{S} . $2\mathbf{X}^t - \mathbf{Z}^t$ is the mirror image of \mathbf{Z}^t .

Abstract Descriptions

•

$$\begin{cases} \mathbf{Z}^{t+1} = \frac{1}{2}(\mathbf{refl}_{\mu\mathbf{F}}(2\mathbf{X}^t - \mathbf{Z}^t) + \mathbf{Z}^t) \\ \mathbf{X}^{t+1} = \langle \mathbf{I}, \mathbf{Z}^{t+1} \rangle_{\mathcal{H}^n}\mathbf{I} \end{cases}$$

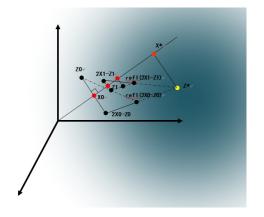


Figure: Algorithm

Convergence Discussion 1

Definition (α -average)

Let D be a nonempty subset of \mathcal{H} , let $T:D\to\mathcal{H}$ be nonexpansive, and let $\alpha\in(0,1)$. Then T is averaged with constant α , or α -averaged, if there exists a nonexpansive operator $R:D\to\mathcal{H}$ such that $T=(1-\alpha)\mathrm{Id}+\alpha R$.

Lemma

If $T:D\to \mathcal{H}$ is α -averaged with $\alpha\in(0,0.5]$, then T is firmly nonexpansive.

Reference: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Heinz H. Bauschke, Patrick L. Combettes.

Convergence Discussion 2

 By diminishing the variable X, the iteration could be written as:

$$\mathbf{Z}^{t+1} = rac{1}{2}(\mathbf{refl}_{\mu\mathbf{F}}R_{N_S} + I)\mathbf{Z}^t$$

where R_{N_s} is the mirror reflexion operator of \mathcal{S} . Since $\mathbf{refl}_{\mu\mathbf{F}}R_{N_S}$ is a nonexpansive operator, by definition, $\frac{1}{2}(\mathbf{refl}_{\mu\mathbf{F}}R_{N_S}+I)$ is $\frac{1}{2}-averaged$, and therefore a firmly non-expansive operator.

• Hence, the algorithm above is convergent.

Numerical Experiments

Solve

$$\min_{\mathbf{x}} \sum_{i=1}^{3} \|\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i}\|_{1}$$

Define $f_i(\mathbf{x}) = \|\mathbf{A}_i\mathbf{x} - \mathbf{b}_i\|_1, i = 1, 2, 3.$

- Relaxed-Douglas-Rachford Splitting Algorithm for ℓ_1 functions.
- Computing Prox
- Results

Relaxed-Douglas-Rachford Splitting for ℓ_1 functions

```
Require: \mathbf{A}, \mathbf{z}, \mathbf{b}, \lambda_N, c, \{\omega_i\}_{i=1}^m
Ensure: x
     while N < N_{max} do
          for all i \in 1, ..., m do
               \mathbf{z_i} \leftarrow \mathbf{z_i} + 2\lambda_N(Prox_{\{cf_i\}}(2\mathbf{x} - \mathbf{z_i}) - \mathbf{x})
          end for
         \mathbf{x} \leftarrow \sum_{i=1}^{m} \omega_i \mathbf{z}_i
          N \leftarrow N + 1
     end while
where \mathbf{z}_i, \mathbf{x} \in \mathbb{R}^{n \times 1}, \mathbf{z}_i denotes the i^{th} column of \mathbf{z}.
```

ADMM for computing Prox

We can see at once that the main computation comes from calculating *Prox*. Therefore, we use both *ADM* and *CVX* to compute *Prox* and compare their results.

$$Prox_{cf_i}(\mathbf{y}) = \operatorname{argmin}_{\mathbf{x}} f_i(\mathbf{x}) + \frac{1}{2c} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

$$\min \|\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i}\|_{1} + \frac{1}{2c}\|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

$$\Leftrightarrow \min \|\mathbf{z}\|_{1} + \frac{1}{2c}\|\mathbf{x} - \mathbf{y}\|_{2}^{2} \quad s.t.\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i} - \mathbf{z} = 0$$

The augmented Lagrangian is:

$$\mathcal{L}_{A}(\mathbf{x},\mathbf{z},\mu) = \|\mathbf{z}\|_{1} + \frac{1}{2c}\|\mathbf{x} - \mathbf{y}\|_{2}^{2} + \mu^{T}(\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i} - \mathbf{z}) + \frac{\beta}{2}\|\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i} - \mathbf{z}\|_{2}^{2}$$

ADMM for computing Prox

$$\mathbf{x}^{k+1} = \operatorname{argmin}_{\mathbf{x}} \left(\frac{1}{2c} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} + \mu^{\mathbf{k}^{T}} (\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i}) + \frac{\beta}{2} \|\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i} - \mathbf{z}^{k}\|_{2}^{2} \right)$$

$$\Rightarrow \mathbf{x}^{k+1} = (\frac{1}{c}\mathbf{I} + \beta \mathbf{A}_{i}^{T}\mathbf{A}_{i})^{-1} \left(\mathbf{A}_{i}^{T} (\beta \mathbf{b}_{i} + \beta \mathbf{z} - \mu^{\mathbf{k}}) + \frac{1}{c} \mathbf{y} \right)$$

$$\mathbf{z}^{k+1} = \operatorname{argmin}_{\mathbf{z}} \|\mathbf{z}\|_{1} - \mu^{\mathbf{k}^{T}} \mathbf{z} + \frac{\beta}{2} \|\mathbf{A}_{i}\mathbf{x}^{k+1} - \mathbf{b}_{i} - \mathbf{z}\|_{2}^{2}$$

$$= \operatorname{argmin}_{\mathbf{z}} \|\mathbf{z}\|_{1} + \frac{\beta}{2} \|\mathbf{z} - (\frac{1}{\beta}\mu^{\mathbf{k}} + \mathbf{A}_{i}\mathbf{x}^{k+1} - \mathbf{b}_{i})\|_{2}^{2}$$

$$\Rightarrow \mathbf{z} = \operatorname{shrink}(\frac{1}{\beta}\mu^{\mathbf{k}} + \mathbf{A}_{i}\mathbf{x}^{k+1} - \mathbf{b}_{i}, \frac{1}{\beta})$$

$$\mu^{\mathbf{k}+1} = \mu^{\mathbf{k}} + (\mathbf{A}_{i}\mathbf{x}^{k+1} - \mathbf{b}_{i} - \mathbf{z}^{k+1})$$

Results

- Results of signal
- Compare of ADM and CVX
- More results

Results of signals

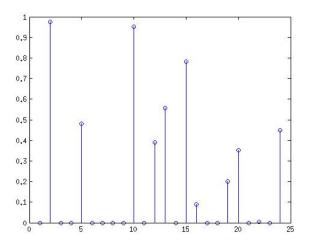


Figure: The Illustration of The Input Signal with ℓ_1 norm about 5.7

Results of signals

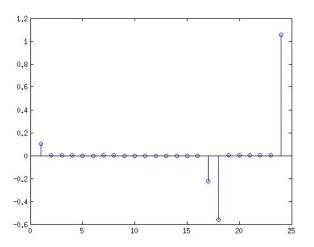


Figure: The Illustration of Signal We Got after the Alg., with ℓ_1 norm about 1.9.

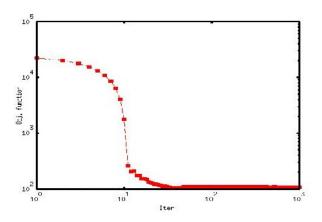


Figure: The illustration of ADM descending curve

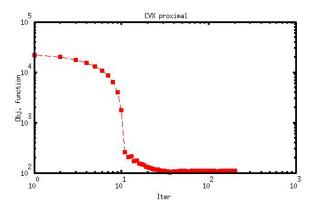


Figure: The illustration of CVX descending curve

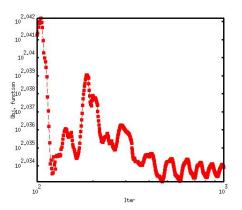


Figure: The illustration of ADM descending curve tail

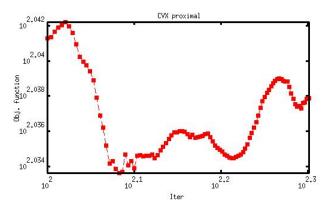


Figure: The illustration of CVX descending curve tail

More Results

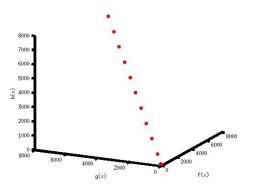


Figure: The illustration of ADM descending curve(respect to 3 functions)

More Results

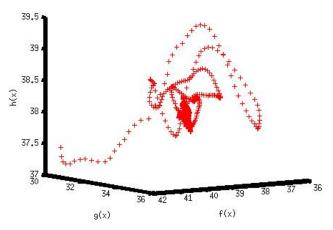


Figure: The illustration of ADM descending curve(respect to 3 functions tail)

Time complexity

- CVX takes 3 mins for 200 iteration
- ADM only takes 15s for 1000 iteration

From n=2 to n=3: Another Attempt

• Goal: $minimize_{\mathbf{x}}f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{x})$

$$\mathbf{x} = \text{minimize}_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{x})$$

 $\Leftrightarrow \mathbf{0} \in c(\partial f + \partial g + \partial h)\mathbf{x}$

We may firstly assume f and g are differentiable.

$$\Leftrightarrow (I - c\nabla f - c\nabla g)\mathbf{x} \in (I + c\partial h)\mathbf{x}$$

$$\Leftrightarrow \mathbf{x} = (I + c\partial h)^{-1}(I - c\nabla f - c\nabla g)\mathbf{x}$$

By Peaceman-Rachford spltting, we can introduce \mathbf{w} to simplify the problem:

$$\begin{cases} \mathbf{w} = \operatorname{refl}_{c(f+g)} \operatorname{refl}_{ch} \mathbf{w} = (2\operatorname{prox}_{c(f+g)} - I)(2\mathbf{x} - \mathbf{w}) \\ \mathbf{x} = \operatorname{prox}_{ch} \mathbf{w} \end{cases}$$

From n=2 to n=3: Another Attempt

• Strategy to compute $prox_{c(f+g)}(\mathbf{u})$. At the moment, we assume f is differentiable.

$$\operatorname{prox}_{c(f+g)}(\mathbf{u}) = \operatorname{argmin}_{\mathbf{z}} c(f(\mathbf{z}) + g(\mathbf{z})) + \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|^2$$

Equivalently, we should look for **z** that satisfies:

$$\mathbf{0} \in (c\nabla f + c\partial g)\mathbf{z} + \mathbf{z} - \mathbf{u}$$

We introduce a new variable \mathbf{v} , s.t. $\mathbf{v} = \mathbf{z} - \mathbf{u}$. Denote

$$f^{u}(\mathbf{v}) = f(\mathbf{u} + \mathbf{v})$$

$$g^{u}(\mathbf{v}) = g(\mathbf{u} + \mathbf{v})$$

$$\tilde{f}^{u}(\mathbf{v}) = f^{u}(\mathbf{v}) + \frac{1}{2c} ||\mathbf{v}||^{2}.$$

From n=2 to n=3: Another Attempt

Therefore,

$$\mathbf{0} \in (c\nabla f + c\partial g)\mathbf{z} + \mathbf{z} - \mathbf{u}$$

is equivalent to:

$$\mathbf{0}\in(c
abla ilde{f}^u+c\partial g^u)\mathbf{v}$$

Applying Peaceman-Rachford splitting again, introducing \mathbf{r} , we have a equivalent form:

$$\begin{cases} \mathbf{r} = \operatorname{refl}_{cg^u} \operatorname{refl}_{c\tilde{f}^u} \mathbf{r} \\ \mathbf{v} = \operatorname{prox}_{c\tilde{f}^u} \mathbf{r} \\ \mathbf{z} = \operatorname{prox}_{c(f+g)} (\mathbf{u}) = \mathbf{u} + \mathbf{v} \end{cases}$$

From n=2 to n=3: Another Attempt-Algorithm

• Therefore, we could decouple $prox_{c(f+g)}$. And here are the main formulas derived above:

$$\begin{cases} \mathbf{r} = \operatorname{refl}_{cg^u} \operatorname{refl}_{c\tilde{f}^u} \mathbf{r} \\ \mathbf{v} = \operatorname{prox}_{c\tilde{f}^u} \mathbf{r} \\ \mathbf{z} = \operatorname{prox}_{c(f+g)} (\mathbf{u}) = \mathbf{u} + \mathbf{v} \end{cases}$$

$$\begin{cases} \mathbf{w} = \operatorname{refl}_{c(f+g)} \operatorname{refl}_{ch} \mathbf{w} = (2\operatorname{prox}_{c(f+g)} - I)(2\mathbf{x} - \mathbf{w}) \\ \mathbf{x} = \operatorname{prox}_{ch} \mathbf{w} \end{cases}$$

From n=2 to n=3: Another Attempt-Algorithm

 By combining the formulas above, we derive the following iterative process:

$$\begin{cases} \mathbf{r}^{k+1} &= \operatorname{refl}_{cg^{2x^k - w^k}} \operatorname{refl}_{c\tilde{f}^{2x^k - w^k}} \mathbf{r}^k \\ \mathbf{v}^{k+1} &= \operatorname{prox}_{c\tilde{f}^{2x^k - w^k}} \mathbf{r}^{k+1} \end{cases}$$

$$\mathbf{w}^{k+1} = 2\mathbf{z} - (2\mathbf{x}^k - \mathbf{w}^k) = 2\mathbf{v}^{k+1} + 2\mathbf{x}^k - \mathbf{w}^k$$

 $\mathbf{x}^{k+1} = \text{prox}_{ch}(\mathbf{w}^{k+1})$

References

- Patric L Combettes, Jean-Christophe Pesquet A proximal decomposition method for solving convex variational inverse problems.
- Hugo Raguet, Jalal Fadili, Gabriel Peyre, Generalized Forward-Backward Splitting.
- Heinz H. Bauschke, Patrick L. Combettes, *Convex Analysis* and *Monotone Operator Theory in Hilbert Spaces*.