
Computer Science 1 — CSci 1100
Lecture 4 — Python Strings

Reading

This material is drawn from Chapters 3 of Practical Programming and Chapter 8 of Think Python.

More Than Just Numbers

� Much of what we do today with computers revolves around text:

– Web pages
– Facebook
– Text message

These require working with strings.

� Strings are our third type, after integers and floats.

� We’ve already started to use strings in our output, for example,

def area_and_volume(radius, height):
print "For a cylinder with radius", radius, "and height", height
print "The surface area is ", area_cylinder(radius,height)
print "The volume is ", volume_cylinder(radius, height)

Topics for Today

� String basics

� String operations

� Input to and (formatted) output from Python programs

Strings — Definition

� A string is a sequence of 0 or more characters delimited by single quotes or double quotes.

'Rensselaer'
"Albany, NY"
'4 8 15 16 23 42'
''

� We can print strings:

>>> print "Hello, world!"
Hello, world!

� Strings may be assigned to variables:

>>> s = 'Hello'
>>> t = "Good-bye"
>>> print s
Hello
>>> t
'Good-bye'

� Notice that unlike integers and floats there is now a difference between asking Python for the value of
the variable and printing the variable!

Combining Single and Double Quotes in a String

� A string that starts with double quotes must end with double quotes, and therefore we can have single
quotes inside.

� A string that starts with single quotes must end with single quotes and therefore we can have double
quotes inside.

� To illustrate this, we will take a look at

>>> s = 'He said, "Hello, World!"'
>>> t = "Many single quotes here ''''''' and here ''' but still correct."

Multi-Line Strings

� Ordinarily, strings do not extend across multiple lines, causing an error if you try.

� But, starting and ending a string """ or ''' tells Python to allow the string to cross multiple lines.

– Any character other than ''' (or """, if that is how the string started) is allowed inside the
string.

� Example,

>>> s1 = """This
is a multi-line
string."""
>>> s1
'This\nis a multi-line\nstring.'
>>> print s1
This
is a multi-line
string.
>>>

� Notice the \n when we ask Python for the value of the string (instead of printing it). This is an escape
character, as we will discuss next.

Escape Characters

� Inserting a \ in the middle of a string tells Python that the next character will have special meaning
(if it is possible for it to have special meaning).

� Most importantly:

– \n — end the current line of text and start a new one

– \t — skip to the next “tab stop” in the text. This allows output in columns

– \' — do not interpret the ' as a string delimiter

– \" — do not interpret the " as a string delimiter

– \\ — put a true back-slash character into the string

� We’ll explore the following strings in class

f
>>> s0 = "*\t*\n**\t**\n***\t***\n"
>>> s1 = "I said, \"This is a valid string.\""

2

Exercise Set 1

1. Which of the following are valid strings? Fix the mistakes to make them all valid.

>>> s0 = "Sheldon Cooper's apartment is in Pasedena"

>>> s1 = 'This cheese shop's cheese is all gone"

>>> s2 = """We are
"The Knights of the Round Table"
"""

>>> s3 = "Toto, I said,\n"We aren't in Kansas, anymore!"

>>> s4 = 'Have you seen the "Incredibly Photogenic Guy"'s picture?'

>>> s5 = "Have you seen the 'Incredibly Photogenic Guy''s picture?"

2. What is the output?

>>> s = "Cats\tare\n\tgood\tsources\n\t\tof\tinternet\tmemes"
>>> print s

String Operations — Concatenation

� Concatenation: Two (or more) strings may be concatenated to form a new string, either with or
without the + operator. We’ll look at

>>> s0 = "Hello"
>>> s1 = "World"
>>> s0 + s1
>>> s0 + ' ' + s1
>>> 'Good' 'Morning' 'America!'
>>> 'Good ' 'Morning ' 'America!'

� Notice that

>>> s0 = "Hello"
>>> s1 = " World"
>>> s0 s1

is a syntax error but

>>> "Hello" " World"

is not. Can you think why?

String Operations — Replication

� You can replicate strings by multiplying them by an integer:

>>> s = 'Ha'
>>> print s * 10
HaHaHaHaHaHaHaHaHaHa

3

� What do you think multiplying a string by a negative integer or 0 does? Try it.

� Many expressions you might try to write involving strings and either ints or floats are illegal Python,
including the following:

>>> 8 * 'Hello'
>>> 'Hello' * 8.1
>>> '123' + 4

Think about why

String Operations — Functions

� You can compute the length of a string with len.

� You can convert an integer or float to a string with str.

� You can convert a string that is in the form of an integer to an integer using int

� You can convert a string that is in the form of a float to a float using, not surprisingly, float

� We will look at examples of all of these during lecture.

Exercise Set 2: String Operations

1. What is the output of the following:

>>> len('George')
>>> len(' Tom ')
>>> s = """Hi
mom!
"""
>>> len(s)

2. Which of the following are legal? For those that are, show what Python outputs.

>>> 'abc' + str(5)
>>> 'abc' * str(5)
>>> 'abc' + 5
>>> 'abc' * 5
>>> 'abc' + 5.0
>>> 'abc' + float(5.0)
>>> str(3.0) * 3

3. Write a line of code that prints 50 '*' characters.

4. Write a function that takes a string as an argument and prints the string underlined with = equal to
the length of the string. For example, we should have the following output:

underline('Tom')
print
underline('Super Bowl')

should output

4

Tom
===

Super Bowl
==========

Use the len function and string replication.

String Output

� We already know a bit about how to use print, but here are a few things to remember.

– A space is added between each value that is output in a print statement

– Each print statement starts a new line of output... unless the previous print statement ended
with a ,

� But, let’s look at some nicer ways to create output...

Formatted Output

� In the Lecture 3 Python program area_volume.py, the last few lines are

def area_and_volume(radius, height):
print "For a cylinder with radius", radius, "and height", height
print "The surface area is ", area_cylinder(radius,height)
print "The volume is ", volume_cylinder(radius, height)

area_and_volume(5,10)

� This produces the output

For a cylinder with radius 5 and height 10
The surface area is 471.2385
The volume is 785.3975

� Here is better formatting, without the insignificant values

def area_and_volume(radius, height):
print "For a cylinder with radius %d height %d" %(radius,height)
print "The surface area is %.2f" %area_cylinder(radius,height)
print "The volume is %.2.f" %volume_cylinder(radius, height)

area_and_volume(5,10)

which produces

For a cylinder with radius 5 height 10
The surface area is 471.24
The volume is 785.40

� We will discuss the significance of

– %d

– %.2f

– %(radius,height)

5

User Input

� Python programs can ask the user for input using the function call raw_input.

� This waits for the user to type a line of input, which Python reads as a string.

� This string can be converted to an integer or a float (as long as it is properly an int/float).

� Here is a toy example

print "Enter a number"
x = float(raw_input())
print "The square of %.1f is %.1f" %(x,x*x)

� We can also insert the string right into the raw_input function call:

x = float(raw_input("Enter a rwo number"))
print "The square of %.1f is %.1f" %(x,x*x)

� We will use this idea to modify our area and volume calculation so that the user of the program types
in the numbers.

– The result is more useful and feels more like a real program (albeit one run from the command
line).

– It will be posted on the course website.

Summary

� Strings represent character sequences — our third Python type

� String operations include addition (concatenate) and replication

� We can concatenate by ’+’ or by using formatted strings:

>>> 'a' + 'b'
>>> '%d eggs and %s spam' %(2,'no')

� Functions on strings may be used to determine length and to convert back and forth to integers and
floats.

� Escape sequences change the meaning of special Python characters or make certain characters have
special meaning.

� Some special characters of note: \n for new line, \t for tab. They all precede with \

� We can read input using raw_input()

6

