Computer Science 1 — CSci 1100
Lecture 4 — Python Strings

Reading
This material is drawn from Chapters 3 of Practical Programming and Chapter 8 of Think Python.

More Than Just Numbers
e Much of what we do today with computers revolves around text:

— Web pages
— Facebook

— Text message
These require working with strings.
e Strings are our third type, after integers and floats.
e We've already started to use strings in our output, for example,

def area_and_volume(radius, height):
print "For a cylinder with radius", radius, "and height", height
print "The surface area is ", area_cylinder(radius,height)
print "The volume is ", volume_cylinder(radius, height)

Topics for Today
e String basics

e String operations

e Input to and (formatted) output from Python programs

Strings — Definition
e A string is a sequence of 0 or more characters delimited by single quotes or double quotes.

'Rensselaer’
"Albany, NY"
'4 8 15 16 23 42!

e We can print strings:

>>> print "Hello, world!"
Hello, world!

e Strings may be assigned to variables:

>>> s 'Hello'
>>> t = "Good-bye"
>>> print s

Hello

>>> t

'Good-bye'

e Notice that unlike integers and floats there is now a difference between asking Python for the value of
the variable and printing the variable!



Combining Single and Double Quotes in a String

e A string that starts with double quotes must end with double quotes, and therefore we can have single
quotes inside.

e A string that starts with single quotes must end with single quotes and therefore we can have double
quotes inside.

e To illustrate this, we will take a look at

>>> s = 'He said, "Hello, World!"'
>>> t = "Many single quotes here ''''''' and here ''' Dbut still correct."

Multi-Line Strings

e Ordinarily, strings do not extend across multiple lines, causing an error if you try.

¢ But, starting and ending a string """ or ''"' tells Python to allow the string to cross multiple lines.
— Any character other than ''' (or """, if that is how the string started) is allowed inside the
string.
e Example,
>>> g1 = """This
is a multi-line
string. nmnn
>>> s1

'This\nis a multi-line\nstring.'
>>> print sl

This

is a multi-line

string.

>>>

e Notice the \n when we ask Python for the value of the string (instead of printing it). This is an escape
character, as we will discuss next.

Escape Characters

e Inserting a \ in the middle of a string tells Python that the next character will have special meaning
(if it is possible for it to have special meaning).

e Most importantly:

— \n — end the current line of text and start a new one

— \t — skip to the next “tab stop” in the text. This allows output in columns
— \' — do not interpret the ' as a string delimiter

— \" — do not interpret the " as a string delimiter

— \\ — put a true back-slash character into the string

o We’ll explore the following strings in class

f
>>> 50 = "k\tk\nkk\trk\nkkk\trkx\n"
>>> s1 = "I said, \"This is a valid string.\""



Exercise Set 1

1. Which of the following are valid strings? Fix the mistakes to make them all valid.

>>> s0 = "Sheldon Cooper's apartment is in Pasedena"
>>> s1 = 'This cheese shop's cheese is all gone"
>>> 52 = """We are

"The Knights of the Round Table"

>>> 83 = "Toto, I said,\n"We aren't in Kansas, anymore!"
>>> s4 = 'Have you seen the "Incredibly Photogenic Guy"'s picture?'
>>> sb = "Have you seen the 'Incredibly Photogenic Guy''s picture?"

2. What is the output?

>>> s = "Cats\tare\n\tgood\tsources\n\t\tof\tinternet\tmemes"
>>> print s
String Operations — Concatenation

e Concatenation: Two (or more) strings may be concatenated to form a new string, either with or
without the + operator. We’ll look at

>>> s0 = "Hello"
>>> s1 = "World"
>>> s0 + si

>>> s0 + ' ' + s1

>>> 'Good' 'Morning' 'America!'
>>> 'Good ' 'Morning ' 'America!'

e Notice that

>>> s0 = "Hello"
>>> s1 = " World"
>>> s0 sl1

is a syntax error but
>>> "Hello" " World"
is not. Can you think why?
String Operations — Replication
¢ You can replicate strings by multiplying them by an integer:

>>> s = 'Ha'
>>> print s * 10
HaHaHaHaHaHaHaHaHaHa



e What do you think multiplying a string by a negative integer or 0 does? Try it.

e Many expressions you might try to write involving strings and either ints or floats are illegal Python,
including the following:

>>> 8 * 'Hello'
>>> 'Hello' * 8.1
>>> '123' + 4

Think about why

String Operations — Functions

e You can compute the length of a string with len.

e You can convert an integer or float to a string with str.

e You can convert a string that is in the form of an integer to an integer using int

e You can convert a string that is in the form of a float to a float using, not surprisingly, float

e We will look at examples of all of these during lecture.

Exercise Set 2: String Operations

1. What is the output of the following;:

>>> len('George')
>>> len(' Tom ')
>>> S = nn llHi
mom !

>>> len(s)

2. Which of the following are legal? For those that are, show what Python outputs.

>>> 'abc' + str(5)

>>> 'abc' * str(5)

>>> 'abc' + 5

>>> 'abc' * 5

>>> 'abc' + 5.0

>>> 'abc' + float(5.0)

>>> str(3.0) * 3

3. Write a line of code that prints 50 '*' characters.

4. Write a function that takes a string as an argument and prints the string underlined with = equal to
the length of the string. For example, we should have the following output:

underline('Tom')
print

underline('Super Bowl')

should output



Tom

Super Bowl

Use the len function and string replication.

String Output
e We already know a bit about how to use print, but here are a few things to remember.

— A space is added between each value that is output in a print statement

— Each print statement starts a new line of output... unless the previous print statement ended
with a ,

e But, let’s look at some nicer ways to create output...

Formatted Output

¢ In the Lecture 3 Python program area_volume.py, the last few lines are

def area_and_volume(radius, height):
print "For a cylinder with radius", radius, "and height", height
print "The surface area is ", area_cylinder(radius,height)
print "The volume is ", volume_cylinder(radius, height)

area_and_volume(5,10)
e This produces the output

For a cylinder with radius 5 and height 10
The surface area is 471.2385
The volume is 785.3975

e Here is better formatting, without the insignificant values

def area_and_volume(radius, height):
print "For a cylinder with radius %d height %d" %(radius,height)
print "The surface area is %.2f" Yarea_cylinder(radius,height)
print "The volume is %.2.f" %volume_cylinder(radius, height)

area_and_volume(5,10)
which produces

For a cylinder with radius 5 height 10
The surface area is 471.24
The volume is 785.40

e We will discuss the significance of

— %d
— %h.2f
— %(radius,height)



User Input

Python programs can ask the user for input using the function call raw_input.
This waits for the user to type a line of input, which Python reads as a string.
This string can be converted to an integer or a float (as long as it is properly an int/float).

Here is a toy example

print "Enter a number"
x = float(raw_input())
print "The square of %.1f is %.1f" %(x,x*x)

We can also insert the string right into the raw_input function call:

x = float(raw_input("Enter a rwo number"))
print "The square of %.1f is %.1f" %(x,x*x)

We will use this idea to modify our area and volume calculation so that the user of the program types
in the numbers.

— The result is more useful and feels more like a real program (albeit one run from the command
line).

— It will be posted on the course website.

Summary

Strings represent character sequences — our third Python type
String operations include addition (concatenate) and replication
We can concatenate by '+’ or by using formatted strings:

>>> Ial + Ibl
>>> 'Yd eggs and s spam' %(2,'no')

Functions on strings may be used to determine length and to convert back and forth to integers and
floats.

Escape sequences change the meaning of special Python characters or make certain characters have
special meaning.

Some special characters of note: \n for new line, \t for tab. They all precede with \

We can read input using raw_input ()



