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Preface

Game theory deals with situations in which your payoff depends not only on
your own choices but on the choices of others. How are you supposed to decide what
to do, since you cannot control what others will do?

In calculus you learn to maximize and minimize functions, for example to find
the cheapest way to build something. This field of mathematics is called optimiza-
tion. Game theory differs from optimization in that in optimization problems, your
payoff depends only on your own choices.

Like the field of optimization, game theory is defined by the problems it deals
with, not by the mathematical techniques that are used to deal with them. The
techniques are whatever works best.

Also, like the field of optimization, the problems of game theory come from
many different areas of study. It is nevertheless helpful to treat game theory as
a single mathematical field, since then techniques developed for problems in one
area, for example evolutionary biology, become available to another, for example
economics.

Game theory has three uses:

(1) Understand the world. For example, game theory helps explain why animals
sometimes fight over territory and sometimes don’t.

(2) Respond to the world. For example, game theory has been used to develop
strategies to win money at poker.

(3) Change the world. Often the world is the way it is because people are
responding to the rules of a game. Changing the game can change how
they act. For example, rules on using energy can be designed to encourage
conservation and innovation.

The idea behind the organization of this book is: learn an idea, then try to use
it in as many interesting ways as possible. Because of this organization, the most
important idea in game theory, the Nash equilibrium, does not make an appearance
until Chapter 3. Two ideas that are more basic—backward induction for games in
extensive form, and elimination of dominated strategies for games in normal form—
are treated first.
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Traditionally, game theory has been viewed as a way to find rational answers
to dilemmas. However, since the 1970s it has been applied to animal behavior,
and animals presumably do not make rational analyses. A more reasonable view of
animal behavior is that predominant strategies emerge over time as more successful
ones replace less successful ones. This point of view on game theory is now called
evolutionary game theory. Once one thinks of strategies as changing over time, the
mathematical field of differential equations becomes relevant. Because students do
not always have a good background in differential equations, we have included an
introduction to the area in Chapter 9.

This text grew out of Herb’s book [3], which is “a problem-centered intro-
duction to modeling strategic interaction.” Steve began using Herb’s book in 2005
to teach a game theory course in the North Carolina State University Mathemat-
ics Department. The course was aimed at upper division mathematics majors and
other interested students with some mathematical background (calculus including
some differential equations). Over the following years Steve produced a set of class
notes to supplement [3], which was superseded in 2009 by [4]. This text combines
material from those two books by Herb, and from his recent book [5], with Steve’s
notes, and adds some new material.

Examples and problems are the heart of the book. The text also includes proofs
of general results, written in a fairly typical mathematical style. Steve usually covers
just a few of these in his course, since the course is open to students with a limited
mathematical background. However, mathematics students who have had previous
proof-oriented courses should be able to handle them.

June 29, 2013
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CHAPTER 1

Backward induction

This chapter deals with interactions in which two or more opponents take
actions one after the other. If you are involved in such an interaction, you can try to
think ahead to how your opponent might respond to each of your possible actions,
bearing in mind that he is trying to achieve his own objectives, not yours. As we
shall see in Sections 1.12 and 1.13, this simple idea underlies work of two Nobel
Prize-winning economists. However, we shall also see that it may not be helpful to
carry this idea too far.

1.1. Tony’s Accident

When one of us (Steve) was a college student, his friend Tony caused a minor
traffic accident. We’ll let Steve tell the story:

The car of the victim, whom I’ll call Vic, was slightly scraped. Tony didn’t
want to tell his insurance company. The next morning, Tony and I went with Vic
to visit some body shops. The upshot was that the repair would cost $80.

Tony and I had lunch with a bottle of wine, and thought over the situation.
Vic’s car was far from new and had accumulated many scrapes. Repairing the few
that Tony had caused would improve the car’s appearance only a little. We figured
that if Tony sent Vic a check for $80, Vic would probably just pocket it.

Perhaps, we thought, Tony should ask to see a receipt showing that the repairs
had actually been performed before he sent Vic the $80.

A game theorist would represent this situation by the game tree in Figure 1.1.
For definiteness, we’ll assume that the value to Vic of repairing the damage is $20.

Explanation of the game tree:

(1) Tony goes first. He has a choice of two actions: send Vic a check for $80,
or demand a receipt proving that the work has been done.

(2) If Tony sends a check, the game ends. Tony is out $80; Vic will no doubt
keep the money, so he has gained $80. We represent these payoffs by the
ordered pair (−80, 80); the first number is Tony’s payoff, the second is Vic’s.

(3) If Tony demands a receipt, Vic has a choice of two actions: repair the car
and send Tony the receipt, or just forget the whole thing.
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Tony

Vic
(−80, 80)

send $80              demand receipt

repair                       don't repair

(−80, 20)                    (0, 0)

Figure 1.1. Tony’s Accident.

(4) If Vic repairs the car and sends Tony the receipt, the game ends. Tony
sends Vic a check for $80, so he is out $80; Vic uses the check to pay for
the repair, so his gain is $20, the value of the repair.

(5) If Vic decides to forget the whole thing, he and Tony each end up with a
gain of 0.

Assuming that we have correctly sized up the situation, we see that if Tony
demands a receipt, Vic will have to decide between two actions, one that gives him
a payoff of $20 and one that gives him a payoff of 0. Vic will presumably choose to
repair the car, which gives him a better payoff. Tony will then be out $80.

Our conclusion was that Tony was out $80 whatever he did. We did not like
this game.

When the bottle was nearly finished, we thought of a third course of action
that Tony could take: send Vic a check for $40, and tell Vic that he would send
the rest when Vic provided a receipt showing that the work had actually been done.
The game tree now became the one in Figure 1.2.

Tony

Vic
(−80, 80)

send $80             demand receipt                send $40

repair            don't repair

(−80, 20)                   (0, 0)  

Vic

repair                   don't repair

(−80, 20)                 (−40, 40)

Figure 1.2. Tony’s Accident: second game tree.

Most of the new game tree looks like the first one. However:

(1) If Tony takes his new action, sending Vic a check for $40 and asking for a
receipt, Vic will have a choice of two actions: repair the car, or don’t.
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(2) If Vic repairs the car, the game ends. Vic will send Tony a receipt, and
Tony will send Vic a second check for $40. Tony will be out $80. Vic will
use both checks to pay for the repair, so he will have a net gain of $20, the
value of the repair.

(3) If Vic does not repair the car, and just pockets the the $40, the game ends.
Tony is out $40, and Vic has gained $40.

Again assuming that we have correctly sized up the situation, we see that if
Tony sends Vic a check for $40 and asks for a receipt, Vic’s best course of action is
to keep the money and not make the repair. Thus Tony is out only $40.

Tony sent Vic a check for $40, told him he’d send the rest when he saw a
receipt, and never heard from Vic again.

1.2. Games in extensive form with complete information

Tony’s Accident is the kind of situation that is studied in game theory, because:

(1) It involves more than one individual.
(2) Each individual has several possible actions.
(3) Once each individual has chosen his actions, payoffs to all individuals are

determined.
(4) Each individual is trying to maximize his own payoff.

The key point is that the payoff to an individual depends not only on his own
choices, but on the choices of others as well.

We gave two models for Tony’s Accident, which differed in the sets of actions
available to Tony and Vic. Each model was a game in extensive form with complete
information.

A game in extensive form with complete information consists, to begin with,
of the following:

(1) A set P of players. In Figure 1.2, the players are Tony and Vic.
(2) A set N of nodes. In Figure 1.2, the nodes are the little black circles. There

are eight.
(3) A set B of actions or moves. In Figure 1.2, the moves are the lines. There

are seven. Each move connects two nodes, one its start and one its end. In
Figure 1.2, the start of a move is the node at the top of the move, and the
end of a move is the node at the bottom of the move.

A root node is a node that is not the end of any move. In Figure 1.2, the top
node is the only root node.

A terminal node is a node that is not the start of any move. In Figure 1.2
there are five terminal nodes.
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A path is sequence of moves such that the end node of any move in the sequence
is the start node of the next move in the sequence. A path is complete if it is not
part of any longer path. Paths are sometimes called histories, and complete paths
are called complete histories. If a complete path has finite length, it must start at a
root node and end at a terminal node.

A game in extensive form with complete information also has:

(4) A function from the set of nonterminal nodes to the set of players. This
function, called a labeling of the set of nonterminal nodes, tells us which
player chooses a move at that node. In Figure 1.2, there are three nonter-
minal nodes. One is labeled “Tony” and two are labeled “Vic.”

(5) For each player, a payoff function from the set of complete paths into the
real numbers. Usually the players are numbered from 1 to n, and the ith
player’s payoff function is denoted πi.

A game in extensive form with complete information is required to satisfy the
following conditions:

(a) There is exactly one root node.
(b) If c is any node other than the root node, there is exactly one path from

the root node to c.

One way of thinking of (b) is that if you know the node you are at, you know
exactly how you got there.

Here are two consequences of assumption (b):

1. Each node other than the root node is the end of exactly one move. (Proof:
Let c be a node that is not the root node. It is the end of at least one move because
there is a path from the root node to c. If c were the end of two moves m1 and m2,
then there would be two paths from the root node to c: one from the root node to
the start of m1, followed by m1; the other from the root node to the start of m2,
followed by m2. But this can’t happen because of assumption (b).)

2. Every complete path, not just those of finite length, starts at a root node.
(If c is any node other than the root node, there is exactly one path p from the root
node to c. If a path that contains c is complete, it must contain p.)

A finite horizon game is one in which there is a number K such that every
complete path has length at most K. In chapters 1 to 5 of these notes, we will only
discuss finite horizon games.

In a finite horizon game, the complete paths are in one-to-one correspondence
with the terminal nodes. Therefore, in a finite horizon game we can define a player’s
payoff function by assigning a number to each terminal node.
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In Figure 1.2, Tony is Player 1 and Vic is Player 2. Thus each terminal node
e has associated to it two numbers, Tony’s payoff π1(e) and Vic’s payoff π2(e). In
Figure 1.2 we have labeled each terminal node with the ordered pair of payoffs
(π1(e), π2(e)).

A game in extensive form with complete information is finite if the number of
nodes is finite. (It follows that the number of moves is finite. In fact, the number of
moves in a finite game is always one less than the number of nodes.) Such a game
is necessarily a finite horizon game.

Games in extensive form with complete information are good models of sit-
uations in which players act one after the other; players understand the situation
completely; and nothing depends on chance. In Tony’s Accident it was important
that Tony knew Vic’s payoffs, at least approximately, or he would not have been
able to choose what to do.

1.3. Strategies

In game theory, a player’s strategy is a plan for what action to take in every
situation that the player might encounter. For a game in extensive form with com-
plete information, the phrase “every situation that the player might encounter” is
interpreted to mean every node that is labeled with his name.

In Figure 1.2, only one node, the root, is labeled “Tony.” Tony has three
possible strategies, corresponding to the three actions he could choose at the start
of the game. We will call Tony’s strategies s1 (send $80), s2 (demand a receipt
before sending anything), and s3 (send $40).

In Figure 1.2, there are two nodes labeled “Vic.” Vic has four possible strate-
gies, which we label t1, . . . , t4:

Vic’s strategy If Tony demands receipt If Tony sends $40
t1 repair repair
t2 repair don’t repair
t3 don’t repair repair
t4 don’t repair don’t repair

In general, suppose there are k nodes labeled with a player’s name, and there
are n1 possible moves at the first node, n2 possible moves at the second node, . . . ,
and nk possible moves at the kth node. A strategy for that player consists of a
choice of one of his n1 moves at the first node, one of his n2 moves at the second
node, . . . , and one of his nk moves at the kth node. Thus the number of strategies
available to the player is the product n1n2 · · ·nk.

If we know each player’s strategy, then we know the complete path through the
game tree, so we know both players’ payoffs. With some abuse of notation, we will
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denote the payoffs to Players 1 and 2 when Player 1 uses the strategy si and Player 2
uses the strategy tj by π1(si, tj) and π2(si, tj). For example, (π1(s3, t2), π2(s3, t2)) =
(−40, 40). Of course, in Figure 1.2, this is the pair of payoffs associated with the
terminal node on the corresponding path through the game tree.

Recall that if you know the node you are at, you know how you got there.
Thus a strategy can be thought of as a plan for how to act after each course the
game might take (that ends at a node where it is your turn to act).

1.4. Backward induction

Game theorists often assume that players are rational. For a game in exten-
sive form with complete information, rationality is usually considered to imply the
following:

• Suppose a player has a choice that includes two moves m and m′, and m
yields a higher payoff to that player than m′. Then the player will not
choose m′.

Thus, if you assume that your opponent is rational in this sense, you must
assume that whatever you do, your opponent will respond by doing what is best for
him, not what you might want him to do. (Game theory discourages wishful think-
ing.) Your opponent’s response will affect your own payoff. You should therefore
take your opponent’s likely response into account in deciding on your own action.
This is exactly what Tony did when he decided to send Vic a check for $40.

The assumption of rationality motivates the following procedure for selecting
strategies for all players in a finite game in extensive form with complete information.
This procedure is called backward induction or pruning the game tree.

(1) Select a node c such that all the moves available at c have ends that are
terminal. (Since the game is finite, there must be such a node.)

(2) Suppose Player i is to choose at node c. Among all the moves available to
him at that node, find the move m whose end e gives the greatest payoff to
Player i. In the rest of this chapter, and until Chapter 6, we shall only deal
with situations in which this move is unique.

(3) Assume that at node c, Player i will choose the move m. Record this choice
as part of Player i’s strategy.

(4) Delete from the game tree all moves that start at c. The node c is now a
terminal node. Assign to it the payoffs that were previously assigned to the
node e.

(5) The game tree now has fewer nodes. If it has just one node, stop. If it has
more than one node, return to step 1.
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In step 2 we find the move that Player i presumably will make should the
course of the game arrive at node c. In step 3 we assume that Player i will in fact
make this move, and record this choice as part of Player i’s strategy. In step 4
we assign to node c the payoffs to all players that result from this choice, and we
“prune the game tree.” This helps us take this choice into account in finding the
moves players should presumably make at earlier nodes.

In Figure 1.2, there are two nodes for which all available moves have terminal
ends: the two where Vic is to choose. At the first of these nodes, Vic’s best move
is repair, which gives payoffs of (−80, 20). At the second, Vic’s best more is don’t
repair, which gives payoffs of (−40, 40). Thus after two steps of the backward
induction procedure, we have recorded the strategy t2 for Vic, and we arrive at the
pruned game tree of Figure 1.3.

Tony

(−80, 80)

send $80             demand receipt                send $40

(−80, 20)  (−40, 40)

Figure 1.3. Tony’s Accident: pruned game tree.

Now the node labeled “Tony” has all its ends terminal. Tony’s best move is to
send $40, which gives him a payoff of −40. Thus Tony’s strategy is s3. We delete all
moves that start at the node labeled “Tony,” and label that node with the payoffs
(−40, 40). That is now the only remaining node, so we stop.

Thus the backward induction procedure selects strategy s3 for Tony and strat-
egy t2 for Vic, and predicts that the game will end with the payoffs (−40, 40). This
is how the game ended in reality.

When you are doing problems using backward induction, you may find that
recording parts of strategies and then pruning and redrawing game trees is too slow.
Here is another way to do problems. First, find the nodes c such that all moves
available at c have ends that are terminal. At each of these nodes, cross out all the
moves that do not produce the greatest payoff for the player who chooses. If we do
this for the game pictured in Figure 1.2, we get Figure 1.4.

Now you can back up a step. In Figure 1.4 we now see that Tony’s three
possible moves will produce payoffs to him of −80, −80, and −40. Cross out the
two moves that produce payoffs of −80. We obtain Figure 1.5.

From Figure 1.5 we can read off each player’s strategy; for example, we can
see what Vic will do at each of the nodes where he chooses, should that node be
reached. We can also see how the game will play out if each player uses the strategy
we have found.
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Tony

Vic
(−80, 80)

send $80             demand receipt                send $40

repair            don't repair

(−80, 20)                   (0, 0)  

Vic

repair                   don't repair

(−80, 20)                 (−40, 40)

Figure 1.4. Tony’s Accident: start of backward induction.

Tony

Vic
(−80, 80)

send $80             demand receipt                send $40

repair            don't repair

(−80, 20)                   (0, 0)  

Vic

repair                   don't repair

(−80, 20)                 (−40, 40)

Figure 1.5. Tony’s Accident: completion of backward induction.

In more complicated examples, of course, this procedure will have to be con-
tinued for more steps.

The backward induction procedure can fail if, at any point, step 2 produces
two moves that give the same highest payoff to the player who is to choose. Figure
1.6 shows an example where backward induction fails.

1

2
(0, 0)

a              b

c                       d

(−1, 1)                       (1, 1)

Figure 1.6. Failure of backward induction.

At the node where Player 2 chooses, both available moves give him a payoff of 1.
Player 2 is indifferent between these moves. Hence Player 1 does not know which
move Player 2 will choose if Player 1 chooses b. Now Player 1 cannot choose between
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his moves a and b, since which is better for him depends on which choice Player 2
would make if he chose b.

We will return to this issue in Chapter 6.

1.5. Big Monkey and Little Monkey 1

Big Monkey and Little Monkey eat coconuts, which dangle from a branch of
the coconut palm. One of them (at least) must climb the tree and shake down the
fruit. Then both can eat it. The monkey that doesn’t climb will have a head start
eating the fruit.

If Big Monkey climbs the tree, he incurs an energy cost of 2 kilocalories (Kc).
If Little Monkey climbs the tree, he incurs a negligible energy cost (because he’s so
little).

A coconut can supply the monkeys with 10 Kc of energy. It will be divided
between the monkeys as follows:

Big Monkey eats Little Monkey eats
If Big Monkey climbs 6 Kc 4 Kc
If both monkeys climb 7 Kc 3 Kc
If Little Monkey climbs 9 Kc 1 Kc

Let’s assume that Big Monkey must decide what to do first. Payoffs are net
gains in kilocalories. The game tree is shown in Figure 1.7.

(4, 4)                       (5, 3)(0, 0)                       (9, 1)

Big Monkey

Little MonkeyLittle Monkey

wait                     climb wait                     climb

wait                            climb

Figure 1.7. Big Monkey and Little Monkey.

Backward induction produces the following strategies:

(1) Little Monkey: If Big Monkey waits, climb. If Big Monkey climbs, wait.
(2) Big Monkey: Wait.

Thus Big Monkey waits. Little Monkey, having no better option at this point, climbs
the tree and shakes down the fruit. He scampers quickly down, but to no avail: Big
Monkey has gobbled most of the fruit. Big Monkey has a net gain of 9 Kc, Little
Monkey 1 Kc.
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1.6. Threats, promises, commitments

The game of Big Monkey and Little Monkey has the following peculiarity.
Suppose Little Monkey adopts the strategy, no matter what Big Monkey does, wait.
If Big Monkey is convinced that this is in fact Little Monkey’s strategy, he sees that
his own payoff will be 0 if he waits and 4 if he climbs. His best option is therefore
to climb. The payoffs are 4 Kc to each monkey.

Little Monkey’s strategy of waiting no matter what Big Monkey does is not
“rational” in the sense of the last section, since it involves taking an inferior ac-
tion should Big Monkey wait. Nevertheless it produces a better outcome for Little
Monkey than his “rational” strategy.

A commitment by Little Monkey to wait if Big Monkey waits is called a threat.
If in fact Little Monkey waits after Big Monkey waits, Big Monkey’s payoff is reduced
from 9 to 0. Of course, Little Monkey’s payoff is also reduced, from 1 to 0. The
value of the threat, if it can be made believable, is that it should induce Big Monkey
not to wait, so that the threat will not have to be carried out.

The ordinary use of the word “threat” includes the idea that the threat, if
carried out, would be bad both for the opponent and for the individual making the
threat. Think, for example, of a parent threatening to punish a child, or a country
threatening to go to war. If an action would be bad for your opponent and good for
you, there is no need to threaten to do it; it is your normal course.

The difficulty with threats is how to make them believable, since if the time
comes to carry out the threat, the person making the threat will not want to do
it. Some sort of advance commitment is necessary to make the threat believable.
Perhaps Little Monkey should break his own leg and show up on crutches!

In this example the threat by Little Monkey works to his advantage. If Little
Monkey can somehow convince Big Monkey that he will wait if Big Monkey waits,
then from Big Monkey’s point of view, the game tree changes to the one shown in
Figure 1.8.

(0,0)

Big Monkey

Little MonkeyLittle Monkey

wait

wait                            climb

(4, 4)                       (5, 3)

wait                     climb

Figure 1.8. Big Monkey and Little Monkey after Little Monkey
commits to wait if Big Monkey waits.
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If Big Monkey uses backward induction on the new game tree, he will climb!

Closely related to threats are promises. In the game of Big Monkey and Little
Monkey, Little Monkey could make a promise at the node after Big Monkey climbs.
Little Monkey could promise to climb. This would increase Big Monkey’s payoff at
that node from 4 to 5, while decreasing Little Monkey’s payoff from 4 to 3. Here,
however, even if Big Monkey believes Little Monkey’s promise, it will not affect his
action in the larger game. He will still wait, getting a payoff of 9.

The ordinary use of the word “promise” includes the idea that it is both good
for the other person and bad for the person making the promise. If an action is also
good for you, then there is no need to promise to do it; it is your normal course.

Like threats, promises usually require some sort of advance commitment to
make them believable.

Let us consider threats and promises more generally. Consider a two-player
game in extensive form with complete information G. We first consider a node c
such that all moves that start at c have terminal ends. Suppose for simplicity that
Player 1 is to move at node c. Suppose Player 1’s “rational” choice at node c, the
one he would make if he were using backward induction, is a move m that gives
the two players payoffs (π1, π2). Now imagine that Player 1 commits himself to a
different move m′ at node c, which gives the two players payoffs (π′

1, π
′
2). If m was

the unique choice that gave Player 1 his best payoff, we necessarily have π′
1 < π1,

i.e., the new move gives Player 1 a lower payoff.

• If π′
2 < π2, i.e., if the choice m′ reduces Player 2’s payoff as well, Player 1’s

commitment to m′ at node c is a threat.
• If π′

2 > π2, i.e., if the choice m′ increases Player 2’s payoff, Player 1’s
commitment to m′ at node c is a promise.

Now consider any node c where, for simplicity, Player 1 is to move. Suppose
Player 1’s “rational” choice at node c, the one he would make if he were using
backward induction, is a move m. Suppose that if we use backward induction, when
we have reduced to a game in which the node c is terminal, the payoffs to the two
players at c are (π1, π2). Now imagine that Player 1 commits himself to a different
move m′ at node c. Remove from the game G all other moves that start at c, and
all parts of the tree that are no longer connected to the root node once these moves
are removed. Call the new game G′. Suppose that if we use backward induction in
G′, when we have reduced to a game in which the node c is terminal, the payoffs
to the two players at c are (π′

1, π
′
2). Under the uniqueness assumption we have been

using, we necessarily have π′
1 < π1.

• If π′
2 < π2, Player 1’s commitment to m′ at node c is a threat.

• If π′
2 > π2, Player 1’s commitment to m′ at node c is a promise.
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1.7. Ultimatum Game

Player 1 is given 100 one dollar bills. He must offer some of them (1 to 99) to
Player 2. If Player 2 accepts the offer, he keeps the bills he was offered, and Player
1 keeps the rest. If Player 2 rejects the offer, neither player gets to keep anything.

Let’s assume payoffs are dollars gained in the game. Then the game tree is
shown below.

Player 1

(1, 99)               (0, 0)(98, 1)               (0, 0)(99, 1)               (0, 0) (2, 98)               (0, 0)

Player 2 Player 2Player 2Player 2

99
98 2 1

a                  r a                  ra                  ra                  r

Figure 1.9. Ultimatum Game with dollar payoffs. Player 1 offers a
number of dollars to Player 2, then Player 2 accepts (a) or rejects (r)
the offer.

Backward induction shows:

• Whatever offer Player 1 makes, Player 2 should accept it, since a gain of
even one dollar is better than a gain of nothing.

• Therefore Player 1 should only offer one dollar. That way he gets to keep
99!

However, many experiments have shown that people do no not actually play the
Ultimatum Game in accord with this analysis; see the Wikipedia page for this game
(http://en.wikipedia.org/wiki/Ultimatum_game). Offers of less than about $40
are typically rejected.

A strategy by Player 2 to reject small offers is an implied threat (actually many
implied threats, one for each small offer that he would reject). If Player 1 believes
this threat—and experimentation has shown that he should—then he should make
a fairly large offer. As in the game of Big Monkey and Little Monkey, a threat to
make an “irrational” move, if it is believed, can result in a higher payoff than a
strategy of always making the “rational” move.

We should also recognize a difficulty in interpreting game theory experiments.
The experimenter can set up an experiment with monetary payoffs, but he cannot
ensure that those are the only payoffs that are important to the experimental subject.

In fact, experiments suggest that many people prefer that resources not be
divided in a grossly unequal manner, which they perceive as unfair; and that most
people are especially concerned when it is they themselves who get the short end of
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the stick. Thus Player 2 may, for example, feel unhappy about accepting an offer x
of less than $50, with the amount of unhappiness equivalent to 4(50−x) dollars (the
lower the offer, the greater the unhappiness). His payoff if he accepts an offer of x
dollars is then x if x > 50, and x − 4(50− x) = 5x− 200 if x ≤ 50. In this case he
should accept offers of greater than $40, reject offers below $40, and be indifferent
between accepting and rejecting offers of exactly $40.

Similarly, Player 1 may have payoffs not provided by the experimenter that
lead him to make relatively high offers. He may prefer in general that resources not
be divided in a grossly unequal manner, even at a monetary cost to himself. Or
he may try be the sort of person who does not take advantage of others, and may
experience a negative payoff when he does not live up to his ideals.

The take-home message is that the payoffs assigned to a player must reflect
what is actually important to the player.

We will have more to say about the Ultimatum Game in Sections 5.6 and
10.12.

1.8. Rosenthal’s Centipede Game

Like the Ultimatum Game, the Centipede Game is a game theory classic.

Mutt and Jeff start with $2 each. Mutt goes first.

On a player’s turn, he has two possible moves:

(1) Cooperate (c): The player does nothing. The game master rewards him
with $1.

(2) Defect (d): The player steals $2 from the other player.

The game ends when either (1) one of the players defects, or (2) both players have
at least $100.

Payoffs are dollars gained in the game. The game tree is shown in Figure 1.10.

A backward induction analysis begins at the only node both of whose moves
end in terminal nodes: Jeff’s node at which Mutt has accumulated $100 and Jeff
has accumulated $99. If Jeff cooperates, he receives $1 from the game master, and
the game ends with Jeff having $100. If he defects by stealing $2 from Mutt, the
game ends with Jeff having $101. Assuming Jeff is “rational,” he will defect.

In fact, the backward induction procedure yields the following strategy for
each player: whenever it is your turn, defect.

Hence Mutt steals $2 from Jeff at his first turn, and the game ends with Mutt
having $4 and Jeff having nothing.
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(2, 2)      M
c        d

(4, 0)
(3, 2)        J

c        d

(1, 4)
(3, 3)      M

c        d

(5, 1)
(4, 3)        J

c        d

(2, 5)

(99, 98)      J
c        d

(97, 100)
(99, 99)      M

c        d

(101, 97)
(100, 99)      J

c        d

(98, 101)

(4, 4)      M

(100, 100)

Figure 1.10. Rosenthal’s Centipede Game. Mutt is Player 1, Jeff is
Player 2. The amounts the players have accumulated when a node is
reached are shown to the left of the node.

This is a disconcerting conclusion. If you were given the opportunity to play
this game, don’t you think you could come away with more than $4?

In fact, in experiments, people typically do not defect on the first move. For
more information, consult the Wikipedia page for this game,
http://en.wikipedia.org/wiki/Centipede_game_(game_theory).

What’s wrong with our analysis? Here are a few possibilities:

1. The players care about aspects of the game other than money. For example,
a player may feel better about himself if he cooperates. Alternatively, a player may
want to seem cooperative, because this normally brings benefits. If a player wants
to be, or to seem, cooperative, we should take account of this desire in assigning his
payoffs..

2. The players use a rule of thumb instead of analyzing the game. People do
not typically make decisions on the basis of a complicated rational analysis. Instead
they follow rules of thumb, such as be cooperative and don’t steal. In fact, it may not
be rational to make most decisions on the basis of a complicated rational analysis,
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because (a) the cost in terms of time and effort of doing the analysis may be greater
than the advantage gained, and (b) if the analysis is complicated enough, you are
liable to make a mistake anyway.

3. The players use a strategy that is correct for a different, more common
situation. We do not typically encounter “games” that we know in advance have
exactly or at most n stages, where n is a large number. Instead, we typically
encounter games with an unknown number of stages. If the Centipede Game had an
unknown number of stages, there would be no place to start a backward induction.
In Chapter 6 we will study a class of such games for which it is rational to cooperate
as long as your opponent does. When we encounter the unusual situation of a game
with at most 196 stages, which is the case with the Centipede Game, perhaps we
use a strategy that is correct for the more common situation of a game with an
unknown number of stages.

However, the most interesting possibility is that the logical basis for believing
that rational players will use long backward inductions is suspect. We address this
issue in Section 1.15

1.9. Continuous games

In the games we have considered so far, when it is a player’s turn to move,
he has only a finite number of choices. In the remainder of this chapter, we will
consider some games in which each player may choose an action from an interval of
real numbers. For example, if a firm must choose the price to charge for an item,
we can imagine that the price could be any nonnegative real number. This allows
us to use the power of calculus to find which price produces the best payoff to the
firm.

More precisely, we will consider games with two players, Player 1 and Player
2. Player 1 goes first. The moves available to him are all real numbers s in some
interval I. Next it is Player 2’s turn. The moves available to him are all real numbers
t in some interval J . Player 2 observes Player 1’s move s and then chooses his move
t. The game is now over, and payoffs π1(s, t) and π2(s, t) are calculated.

Does such a game satisfy the definition that we gave in Section 1.2 of a game in
extensive form with complete information? Yes, it does. In the previous paragraph,
to describe the type of game we want to consider, we only described the moves, not
the nodes. However, the nodes are still there. There is a root node at which Player
1 must choose his move s. Each move s ends at a new node, at which Player 2 must
choose t. Each move t ends at a terminal node. The set of all complete paths is the
set of all pairs (s, t) with s in I and t in J . Since we described the game in terms of
moves, not nodes, it was easier to describe the payoff functions as assigning numbers
to complete paths, not as assigning numbers to terminal nodes. That is what we
did: π1(s, t) and π2(s, t) assign numbers to each complete path.
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Such a game is not finite, but it is a finite horizon game: the length of the
longest path is 2.

Let us find strategies for Players 1 and 2 using the idea of backward induction.
Backward induction as we described it in Section 1.4 cannot be used because the
game is not finite.

We begin with the last move, which is Player 2’s. Assuming he is rational,
he will observe Player 1’s move s and then choose t in J to maximize the function
π2(s, t) with s fixed. For fixed s, π2(s, t) is a function of one variable t. Suppose it
takes on its maximum value in J at a unique value of t. This number t is Player
2’s best response to Player 1’s move s. Normally the best response t will depend on
s, so we write t = b(s). The function t = b(s) gives a strategy for Player 2, i.e., it
gives Player 2 a choice of action for every possible choice s in I that Player 1 might
make.

Player 1 should choose s taking into account Player 2’s strategy. If Player 1
assumes that Player 2 is rational and hence will use his best-response strategy, then
Player 1 should choose s in I to maximize the function π1(s, b(s)). This is again of
function of one variable.

1.10. Stackelberg’s model of duopoly

In a duopoly, a certain good is produced by just two firms, which we label 1
and 2. In In Stackelberg’s model of duopoly (Wikipedia article:
http://en.wikipedia.org/wiki/Stackelberg_duopoly), each firm tries to max-
imize its own profit by choosing an appropriate level of production. Firm 1 chooses
its level of production first; then Firm 2 observes this choice and chooses its own
level of production. Would you rather be Firm 1 or Firm 2?

Let s be the quantity produced by Firm 1 and let t be the quantity produced
by Firm 2. Then the total quantity of the good that is produced is q = s + t. The
market price p of the good depends on q: p = φ(q). At this price, everything that
is produced can be sold.

Suppose Firm 1’s cost to produce the quantity s of the good is c1(s), and Firm
2’s cost to produce the quantity t of the good is c2(t). We denote the profits of the
two firms by π1 and π2. Now profit is revenue minus cost, and revenue is price times
quantity sold. Since the price depends on q = s + t, each firm’s profit depends in
part on how much is produced by the other firm. More precisely,

π1(s, t) = φ(s+ t)s− c1(s), π2(s, t) = φ(s+ t)t− c2(t).

1.10.1. First model. Let us begin by making the following assumptions:
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(1) Price falls linearly with total production. In other words, there are positive
numbers α and β such that the formula for the price is

p = α− β(s+ t).

(2) Each firm has the same unit cost of production c > 0. Thus c1(s) = cs and
c2(t) = ct.

(3) α > c. In other words, the price of the good when very little is produced
is greater than the unit cost of production. If this assumption is violated,
the good will not be produced.

(4) Firm 1 chooses its level of production s first. Then Firm 2 observes s and
chooses t.

(5) The production levels s and t can be any real numbers.

We ask the question, what will be the production level and profit of each firm?

The payoffs in this game are the profits:

π1(s, t) = φ(s+ t)s− cs = (α− β(s+ t)− c)s = (α− βt− c)s− βs2,

π2(s, t) = φ(s+ t)t− ct = (α− β(s+ t)− c)t = (α− βs− c)t− βt2.

Since Firm 1 chooses s first, we begin our analysis by finding Firm 2’s best
response t = b(s). To do this we must find where the function π2(s, t), with s fixed,
has its maximum. Since π2(s, t) with s fixed has a graph that is just an upside down
parabola, we can do this by taking the derivative with respect to t and setting it
equal to 0:

∂π2

∂t
= α− βs− c− 2βt = 0.

If we solve this equation for t, we will have Firm 2’s best-response function

t = b(s) =
α− βs− c

2β
.

Finally we must maximize π1(s, b(s)), the payoff that Firm 1 can expect from
each choice s assuming that Firm 2 uses its best-response strategy. We have

π1(s, b(s)) = π1(s,
α− βs− c

2β
) = (α− β(s+

α− βs− c

2β
)− c)s =

α− c

2
s− β

2
s2.

Again this function has a graph that is an upside down parabola, so we can find
where it is maximum by taking the derivative and setting it equal to 0:

d

ds
π1(s, b(s)) =

α− c

2
− βs = 0 ⇒ s =

α− c

2β
.

We see from this calculation that π1(s, b(s)) is maximum at s∗ = α−c
2β

. Given this

choice of production level for Firm 1, Firm 2 chooses the production level

t∗ = b(s∗) =
α− c

4β
.

19



Since we assumed α > c, the production levels s∗ and t∗ are positive. This is
reassuring. The price is

p∗ = α− β(s∗ + t∗) = α− β(
α− c

2β
+

α− c

4β
) =

1

4
α +

3

4
c = c+

1

4
(α− c).

Since α > c, this price is greater than the cost of production c, which is also
reassuring.

The profits are

π1(s
∗, t∗) =

(α− c)2

8β
, π2(s

∗, t∗) =
(α− c)2

16β
.

Firm 1 has twice the level of production and twice the profit of Firm 2. In this
model, it is better to be the firm that chooses its price first.

1.10.2. Second model. The model in the previous subsection has a discon-
certing aspect: the levels of production s and t, and the price p, are all allowed to
be negative. We will now complicate the model to deal with this objection.

We replace assumption (1) with the following:

(1) Price falls linearly with total production until it reaches 0; for higher total
production, the price remains 0. In other words, there are positive numbers
α and β such that the formula for the price is

p =

{

α− β(s+ t) if s+ t < α
β
,

0 if s+ t ≥ α
β
.

Assumptions (2), (3), and (4) remain unchanged. We replace assumption (5) with:

(5) The production levels s and t must be nonnegative.

We again ask the question, what will be the production level and profit of each
firm?

The payoff is again the profit, but the formulas are different:

π1(s, t) = φ(s+ t)s− cs =

{

(α− β(s+ t)− c)s if 0 ≤ s+ t < α
β
,

−cs if s+ t ≥ α
β
,

π2(s, t) = φ(s+ t)t− ct =

{

(α− β(s+ t)− c)t if 0 ≤ s+ t < α
β
,

−ct if s+ t ≥ α
β
.

The possible values of s and t are now 0 ≤ s < ∞ and 0 ≤ t < ∞.

We again begin our analysis by finding Firm 2’s best response t = b(s).

Unit cost of production is c. If Firm 1 produces so much that all by itself it
drives the price down to c or lower, there is no way for Firm 2 to make a positive
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profit. In this case Firm 2’s best response is to produce nothing: that way its profit
is 0, which is better than losing money.

Firm 1 drives the price p down to c when its level of production s satisfies the
equation

c = α− βs.

The solution of this equation is s = α−c
β
. We conclude that if s ≥ α−c

β
, Firm 2’s best

response is 0.

On the other hand, if Firm 1 produces s < α−c
β
, it leaves the price above c,

and gives Firm 2 an opportunity to make a positive profit. In this case Firm 2’s
profit is given by

π2(s, t) =

{

(α− β(s+ t)− c)t = (α− βs− c)t− βt2 if 0 ≤ t < α−βs

β
,

−ct if t ≥ α−βs

β
.

See Figure 1.11.

α−βs−c

β
α
β

α−βs

β
α−βs−c

2β

t

Figure 1.11. Graph of π2(s, t) for fixed s < α−c
β
.

From the figure, the function π2(s, t) with s fixed is maximum where ∂π2

∂t
(s, t) =

0, which occurs at t = α−βs−c

2β
.
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Thus Firm 2’s best-response function is:

b(s) =

{

α−βs−c

2β
if 0 ≤ s < α−c

β
,

0 if s ≥ α−c
β
.

We now turn to calculating π1(s, b(s)), the payoff that Firm 1 can expect from
each choice s assuming that Firm 2 uses its best-response strategy.

Notice that for 0 ≤ s < α−c
β
, we have

s+ b(s) = s+
α− βs− c

2β
=

α + βs− c

2β
<

α + β
(

α−c
β

)

− c

2β
=

α− c

β
<

α

β
.

Therefore, for 0 ≤ s < α−c
β
,

π1(s, b(s)) = π1(s,
α− βs− c

2β
) = (α− β(s+

α− βs− c

2β
)− c)s =

α− c

2
s− β

2
s2.

Firm 1 will not choose an s ≥ α−c
β
, since, as we have seen, that would force the price

down to c or lower. Therefore we will not bother to calculate π1(s, b(s)) for s ≥ α−c
β
.

The function π1(s, b(s)) on the interval 0 ≤ s ≤ α−c
β

is maximum at s∗ = α−c
2β

,

where the derivative of α−c
2
s − β

2
s2 is 0, just as in our first model. The value of

t∗ = b(s∗) is also the same, as are the price and profits.

1.11. Economics and calculus background

In this section we give some background that will be useful for the next two
examples, as well as later in the course.

1.11.1. Utility functions. A salary increase from $20,000 to $30,000 and a
salary increase from $220,000 to $230,000 are not equivalent in their effect on your
happiness. This is true even if you don’t have to pay taxes!

Let s be your salary and u(s) the “utility” of your salary to you. Two com-
monly assumed properties of u(s) are:

(1) u′(s) > 0 for all s (“strictly increasing utility function”). In other words,
more is better!

(2) u′′(s) < 0 (“strictly concave utility function”). In other words, u′(s) de-
creases as s increases.
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1.11.2. Discount factor. Happiness now is different from happiness in the
future.

Suppose your boss proposes to you a salary of s this year and t next year. The
total utility to you today of this offer is U(s, t) = u(s)+δu(t), where δ is a “discount
factor.” Typically, 0 < δ < 1. The closer δ is to 1, the more important the future is
to you.

Which would you prefer, a salary of s this year and s next year, or a salary of
s− a this year and s+ a next year? Assume 0 < a < s, u′ > 0, and u′′ < 0. Then

U(s, s)− U(s− a, s+ a) = u(s) + δu(s)− (u(s− a) + δu(s+ a))

= u(s)− u(s− a)− δ(u(s+ a)− u(s))

=

∫ s

s−a

u′(t) dt− δ

∫ s+a

s

u′(t) dt > 0.

Hence you prefer s each year.

Do you see why the last line is positive? Part of the reason is that u′(s)

decreases as s increases, so
∫ s

s−a
u′(t) dt >

∫ s+a

s
u′(t) dt.

1.11.3. Maximum value of a function. Suppose f is a continuous function
on an interval a ≤ x ≤ b. From calculus we know:

(1) f attains a maximum value somewhere on the interval.
(2) The maximum value of f occurs at a point where f ′ = 0, or at a point

where f ′ does not exist, or at an endpoint of the interval.
(3) If f ′(a) > 0, the maximum does not occur at a.
(4) If f ′(b) < 0, the maximum does not occur at b.

Suppose that f ′′ < 0 everywhere in the interval a ≤ x ≤ b. Then we know a
few additional things:

(1) f attains attains its maximum value at unique point c in [a, b].
(2) Suppose f ′(x0) > 0 at some point x0 < b. Then x0 < c. See Figure 1.12.
(3) Suppose f ′(x1) < 0 at some point x1 > a. Then c < x1.

1.12. The Samaritan’s Dilemma

There is someone you want to help should she need it. However, you are
worried that the very fact that you are willing to help may lead her to do less for
herself than she otherwise would. This is the Samaritan’s Dilemma.

The Samaritan’s Dilemma is an example of moral hazard. Moral hazard is
“the prospect that a party insulated from risk may behave differently from the way
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  a   b  c  x0   a     c=b  x0

Figure 1.12. Two functions on [a, b] with negative second deriva-
tive everywhere and positive first derivative at a point x0 < b. Such
functions always attain their maximum at a point c to the right of x0.

it would behave if it were fully exposed to the risk.” There is a Wikipedia article on
moral hazard: http://en.wikipedia.org/wiki/Moral_hazard.

Here is an example of the Samaritan’s Dilemma analyzed by James Buchanan
(Nobel Prize in Economics, 1986; Wikipedia article
http://en.wikipedia.org/wiki/James_M._Buchanan).

A young woman plans to go to college next year. This year she is working and
saving for college. If she needs additional help, her father will give her some of the
money he earns this year.

Notation and assumptions regarding income and savings:

(1) Father’s income this year is z > 0, which is known. Of this he will give
0 ≤ t ≤ z to his daughter next year.

(2) Daughter’s income this year is y > 0, which is also known. Of this she saves
0 ≤ s ≤ y to spend on college next year.

(3) Daughter chooses the amount s of her income to save for college. Father
then observes s and chooses the amount t to give to his daughter.

The important point is (3): after Daughter is done saving, Father will choose
an amount to give to her. Thus the daughter, who goes first in this game, can use
backward induction to figure out how much to save. In other words, she can take
into account that different savings rates will result in different levels of support from
Father.

Utility functions:

(1) Daughter’s utility function π1(s, t), which is her payoff in this game, is the
sum of
(a) her first-year utility v1, a function of the amount she has to spend in

the first year, which is y − s; and
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(b) her second-year utility v2, a function of the amount she has to spend
in the second year, which is s+ t. Second-year utility is multiplied by
a discount factor δ > 0.

Thus we have

π1(s, t) = v1(y − s) + δv2(s+ t).

(2) Father’s utility function π2(s, t), which is his payoff in this game, is the sum
of
(a) his personal utility u, a function of the amount he has to spend in the

first year, which is z − t; and
(b) his daughter’s utility π1, multiplied by a “coefficient of altruism” α > 0.
Thus we have

π2(s, t) = u(z − t) + απ1(s, t) = u(z − t) + α(v1(y − s) + δv2(s+ t)).

Notice that a component of Father’s utility is Daughter’s utility. The Samaritan’s
Dilemma arises when the welfare of someone else is important to us.

We assume:

(A1) The functions v1, v2, and u have positive first derivative and negative second
derivative.

Let’s first gather some facts that we will use in our analysis

(1) Formulas we will need for partial derivatives:

∂π1

∂s
(s, t) = −v′1(y − s) + δv′2(s+ t),

∂π2

∂t
(s, t) = −u′(z − t) + αδv′2(s+ t).

(2) Formulas we will need for second partial derivatives:

∂2π1

∂s2
(s, t) = v′′1 (y − s) + δv′′2 (s+ t),

∂2π2

∂s∂t
(s, t) = αδv′′2(s+ t),

∂2π2

∂t2
(s, t) = u′′(z − t) + αδv′′2(s+ t).

All three of these are negative everywhere.

To figure out Daughter’s savings rate using backward induction, we must first
maximize π2(s, t) with s fixed and 0 ≤ t ≤ z. Let’s keep things simple by arranging
that for s fixed, π2(s, t) will attain its maximum at some t strictly between 0 and z.
In other words, no matter how much Daughter saves, Father will give her some of his
income but not all. This is guaranteed to happen if ∂π2

∂t
(s, 0) > 0 and ∂π2

∂t
(s, z) < 0.
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The first condition prevents Father from giving Daughter nothing. The second
prevents him from giving Daughter everything.

For 0 ≤ s ≤ y, we have

∂π2

∂t
(s, 0) = −u′(z) + αδv′2(s) ≥ −u′(z) + αδv′2(y)

and
∂π2

∂t
(s, z) = −u′(0) + αδv′2(s+ z) ≤ −u′(0) + αδv′2(z).

We therefore make two more assumptions:

(A2) αδv′2(y) > u′(z). This assumption is reasonable. We expect Daughter’s in-
come y to be much less than Father’s income z. Since, as we have discussed,
each dollar of added income is less important when income is higher, we
expect v′2(y) to be much greater than u′(z). If the product αδ is not too
small (meaning that Father cares quite a bit about Daughter, and Daughter
cares quite a bit about the future), we get our assumption.

(A3) u′(0) > αδv′2(z). This assumption is reasonable because u′(0) should be
large and v′2(z) should be small.

With these assumptions, we have

∂π2

∂t
(s, 0) > 0 and

∂π2

∂t
(s, z) < 0 for all 0 ≤ s ≤ y.

Since ∂2π2

∂t2
is always negative, there is a single value of t where π2(s, t), s fixed,

attains its maximum value; moreover, 0 < t < z, so, ∂π2

∂t
(s, t) = 0 at this value of t.

We denote this value of t by t = b(s). This is Father’s best-response strategy, the
amount Father will give to Daughter if the amount Daughter saves is s.

Daughter now chooses her saving rate s = s∗ to maximize the function π1(s, b(s)),
which we shall denote V (s):

V (s) = π1(s, b(s)) = v1(y − s) + δv2(s+ b(s)).

Father then contributes t∗ = b(s∗).

Here is the punchline: suppose it turns out that 0 < s∗ < y, i.e., Daughter
saves some of her income but not all. (This is the usual case.) Then, had Father
simply committed himself in advance to providing t∗ in support to his daughter no
matter how much she saved, Daughter would have chosen a savings rate s♯ greater
than s∗. Both Daughter and Father would have ended up with higher utility.

To see this we note:

(1) We have

(1.1)
∂π1

∂s
(s∗, t∗) = −v′1(y − s∗) + δv′2(s

∗ + t∗).
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Suppose we can show that this expression is positive. Then, since ∂2π1

∂s2
(s, t∗)

is always negative, we have that π1(s, t
∗) is maximum at a value s = s♯

greater than s∗. (See Subsection 1.11.3.)
(2) We of course have π1(s

♯, t∗) > π1(s
∗, t∗), so Daughter’s utility is higher.

Since Daugher’s utility is higher, we see from the formula for π2 that
π2(s

♯, t∗) > π2(s
∗, t∗), so Father’s utility is also higher.

However, it is not obvious that (1.1) is positive. To see that it is, we proceed
as follows.

(1) In order to maximize V (s), we calculate

V ′(s) = −v′1(y − s) + δv′2(s+ b(s))(1 + b′(s)).

(2) If V (s) is maximum at s = s∗ with 0 < s∗ < y, we must have V ′(s∗) = 0,
i.e.,

(1.2) 0 = −v′1(y − s∗) + δv′2(s
∗ + t∗)(1 + b′(s∗)).

(3) Subtracting (1.2) from (1.1), we obtain

(1.3)
∂π1

∂s
(s∗, t∗) = −δv′2(s

∗ + t∗)b′(s∗).

(4) We expect that b′(s) < 0; this simply says that if Daughter saves more,
Father will contribute less. To check this, we note that

∂π2

∂t
(s, b(s)) = 0 for all s.

Differentiating both sides of this equation with respect to s, we get

∂2π2

∂s∂t
(s, b(s)) +

∂2π2

∂t2
(s, b(s))b′(s) = 0.

Since ∂2π2

∂s∂t
and ∂2π2

∂t2
are always negative, we must have b′(s) < 0.

(5) From (1.3), since v′2 is always positive and b′(s) is always negative, we see
that ∂π1

∂s
(s∗, t∗) is positive.

This problem has implications for government social policy. It suggests that
social programs be made available to everyone rather than on an if-needed basis.

Let’s look more closely at this conclusion.

When Father promises Daughter a certain fixed amount of help, one can imag-
ine two possible effects: (1) now that she knows she will get this help, Daughter will
save less; (2) now that more saving will not result in less contribution from Father
(remember, b′(s) < 0), Daughter will save more. All we have shown is that if the
promised contribution is t∗, it is actually (2) that will occur. Too great a promised
contribution might result in (1) instead.
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In addition, our conclusion required that the coefficient of altruism α not be
too small. That makes sense for a father and daughter. Whether it is correct for
rich people (who do most of the paying for social programs) and poor people (who
get most of the benefits) is less certain.

1.13. The Rotten Kid Theorem

A rotten son manages a family business. The amount of effort the son puts
into the business affects both his income and his mother’s. The son, being rotten,
cares only about his own income, not his mother’s. To make matters worse, Mother
dearly loves her son. If the son’s income is low, Mother will give part of her own
income to her son so that he will not suffer. In this situation, can the son be expected
to do what is best for the family?

We shall give the analysis of Gary Becker (Nobel Prize in Economics, 1992;
Wikipedia article http://en.wikipedia.org/wiki/Gary_Becker).

We denote the son’s annual income by y and the mother’s by z. The amount
of effort that the son devotes to the family business is denoted by a. His choice of a
will affect both his income and his mother’s, so we regard both y and z as functions
of a: y = y(a) and z = z(a).

After mother observes a, and hence observes her own income z(a) and her
son’s income y(a), she chooses an amount t, 0 ≤ t ≤ z(a), to give to her son.

The mother and son have personal utility functions u and v respectively. Each
is a function of the amount they have to spend.

The son chooses his effort a to maximize his own utility v, without regard for
his mother’s utility u. Mother, however, chooses the amount t to transfer to her son
to maximize u(z − t) + αv(y + t), where α is her coefficient of altruism. Thus the
payoff functions for this game are

π1(a, t) = v(y(a) + t),

π2(a, t) = u(z(a)− t) + αv(y(a) + t).

Since the son chooses first, he can use backward induction to decide how much
effort to put into the family business. In other words, he can take into account that
even if he doesn’t put in much effort, and so doesn’t produce much income for either
himself or his mother, his mother will help him out.

Assumptions:

(1) The functions u and v have positive first derivative and negative second
derivative.

(2) The son’s level of effort is chosen from an interval I = [a1, a2].
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(3) For all a in I, αv′(y(a)) > u′(z(a)). This assumption expresses two ideas:
(1) Mother dearly loves her son, so α is not small; and (2) no matter how
little or how much the son works, Mother’s income z(a) is much larger
than son’s income y(a). (Recall that the derivative of a utility function gets
smaller as the income gets larger.) This makes sense if the income generated
by the family business is small compared to Mother’s overall income

(4) For all a in I, u′(0) > αv′(y(a) + z(a)). This assumption is reasonable
because u′(0) should be large and v′(y(a) + z(a)) should be small.

(5) Let T (a) = y(a) + z(a) denote total family income. Then T ′(a) = 0 at a
unique point a♯, a1 < a♯ < a2, and T (a) attains its maximum value at this
point. This assumption expresses the idea that if the son works too hard,
he will do more harm than good. As they say in the software industry, if
you stay at work too late, you’re just adding bugs.

To find the son’s level of effort using backward induction, we must first maxi-
mize π2(a, t) with a fixed and 0 ≤ t ≤ z(a). We calculate

∂π2

∂t
(a, t) = −u′(z(a)− t) + αv′(y(a) + t),

∂π2

∂t
(a, 0) = −u′(z(a)) + αv′(y(a)) > 0,

∂π2

∂t
(a, z(a)) = −u′(0) + αv′(y(a) + z(a)) < 0,

∂2π2

∂t2
(a, t) = u′′(z(a)− t) + αv′′(y(a) + t) < 0.

Then there is a single value of t where π2(a, t), a fixed, attains its maximum; more-
over, 0 < t < z(a), so ∂π2

∂t
(a, t) = 0. (See Subsection 1.11.3.) We denote this value

of t by t = b(a). This is Mother’s strategy, the amount Mother will give to her son
if his level of effort in the family business is a.

The son now chooses his level of effort a = a∗ to maximize the function
π1(a, b(a)), which we shall denote V (a):

V (a) = π1(a, b(a)) = v(y(a) + b(a)).

Mother then contributes t∗ = b(a∗).

So what? Here is Becker’s point.

Suppose a1 < a∗ < a2 (the usual case). Then V ′(a∗) = 0, i.e.,

v′(y(a∗) + b(a∗))(y′(a∗) + b′(a∗)) = 0.

Since v′ is positive everywhere, we have

(1.4) y′(a∗) + b′(a∗) = 0.

29



Now −u′(z(a)− b(a)) + αv′(y(a) + b(a)) = 0 for all a. Differentiating this equation
with respect to a, we find that, for all a,

−u′′(z(a)− b(a))(z′(a)− b′(a)) + αv′′(y(a) + b(a))(y′(a) + b′(a)) = 0.

In particular, for a = a∗,

−u′′(z(a∗)− b(a∗))(z′(a∗)− b′(a∗)) + αv′′(y(a∗) + b(a∗))(y′(a∗) + b′(a∗)) = 0.

This equation and (1.4) imply that

z′(a∗)− b′(a∗) = 0.

Adding this equation to (1.4), we obtain

y′(a∗) + z′(a∗) = 0.

Therefore T ′(a∗) = 0. But then, by our last assumption, a∗ = a♯, the level of effort
that maximizes total family income.

Thus, if the son had not been rotten, and instead had been trying to maximize
total family income y(a) + z(a), he would have chosen the same level of effort a∗.

1.14. Backward induction for finite horizon games

Backward induction as we defined it in Section 1.4 does not apply to any game
that is not finite. However, a variant of backward induction can be used on any
finite horizon game of complete information. It is actually this variant that we have
been using since Section 1.9.

Let us describe this variant of backward induction in general. The idea is that,
in a game that is not finite, we cannot remove nodes one-by-one, because we will
never finish. Instead we must remove big collections of nodes at each step.

(1) Let k ≥ 1 be the length of the longest path in the game. (This number
is finite since we are dealing with a finite horizon game.) Consider the
collection C of all nodes c such that every move that starts at c is the last
move in a path of length k. Each such move has an end that is terminal.

(2) For each node c in C, identify the player i(c) who is to choose at node c.
Among all the moves available to him at that node, find the move m(c)
whose end gives the greatest payoff to Player i(c). We assume that this
move is unique.

(3) Assume that at each node c in C, Player i(c) will choose the move m(c).
Record this choice as part of Player i(c)’s strategy.

(4) Delete from the game tree all moves that start at all of the nodes in C. The
nodes c in C are now terminal nodes. Assign to them the payoffs that were
previously assigned to the nodes m(c).

(5) In the new game tree, the length of the longest path is now k − 1. If
k − 1 = 0, stop. Otherwise, return to step 1.
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1.15. Critique of backward induction

The basic insight of backward induction is that you should think ahead to
how your opponent, acting in his own interest, is liable to react to what you do,
and act accordingly to maximize your chance of success. This idea clearly makes
sense even in situations that are not as completely defined as the games we analyze.
For example, the mixed martial arts trainer Greg Jackson has analyzed countless
fight videos and used them to make game trees showing what moves lead to what
responses. From these game trees he can figure out which moves in various situations
will increase the likelihood of a win. As another example, consider the game of chess.
Because of the rule that a draw results when a position is repeated three times, the
game tree for chess is finite. Unfortunately it has 10123 nodes and hence is far too
big for a computer to analyze. (The number of atoms in the observable universe is
estimated to be around 1080.) Thus computer chess programs cannot use backward
induction from the terminal nodes. Instead they investigate paths through the
game tree from a given position to a given depth, and assign values to the end nodes
based on estimates of the probability of winning from that position. They then use
backward induction from those nodes.

Despite successes like these, it is not clear that backward induction is always
a good guide to choosing a move.

Let’s first consider Tony’s Accident. To justify using backward induction at
all, Tony has to assume that Vic will always choose his own best move in response
to Tony’s move. In addition, Tony should know Vic’s payoffs, or at least he should
know the order in which Vic values the different outcomes, so that he will know
which of Vic’s available moves Vic will choose in response to Tony’s move. If Tony
does not know the order in which Vic values the outcomes, he can still use backward
induction based on his belief about Vic’s order. This is what Tony did. The success
of the procedure then depends on the correctness of Tony’s beliefs about Vic.

Next let’s consider the Samaritan’s Dilemma. To justify the use of backward
induction, Father has to assume that Daughter will choose her own best move in
response to Father’s move; and that he knows Daughter’s payoffs, or at least the
order in which she values the outcomes, so that he can figure out Daughter’s best
response to each of his moves. In this more complicated game, however, Father’s
assumption that Daughter will choose her own best response to Father’s move is
harder to justify. To justify it, Father needs to assume both that daughter is able
to figure out her best response, and that she is willing to do so. Recall from our
discussion of the Centipede Game that it may not even be rational for Daughter to
use a complicated rational analysis to figure out what to do.

Finally, let’s consider the Centipede Game. Would a rational player in the
Centipede Game (Section 1.8) really defect at his first opportunity, as is required
by backward induction? We shall examine this question under the assumption that
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the payoffs in the Centipede Game are exactly as given in Figure 1.10, that both
players know these payoffs, and that both players are rational. The assumption
that players know the payoffs and are rational motivates backward induction. The
issue now is whether the assumption that players know the payoffs and are rational
requires them to use the moves recommended by backward induction.

By a rational player we mean one whose preferences are consistent enough to
be represented by a payoff function, who attempts to discern the facts about the
world, who forms beliefs about the world consistent with the facts he has discerned,
and who acts on the basis of his beliefs to best achieve his preferred outcomes.

With this “definition” of a rational player in mind, let us consider the first few
steps of backward induction in the Centipede Game.

1. If the node labeled (100, 99) in Figure 1.10 is reached, Jeff will see that if
he defects, his payoff is 101, and if he cooperates, his payoff is 100. Since Jeff is
rational, he defects.

2. If the node labeled (99, 99) in Figure 1.10 is reached, Mutt will see that if
he defects, his payoff is 101. If he cooperates, the node labeled (100, 99) is reached.
If Mutt believes that Jeff is rational, then he sees that Jeff will defect at that node,
leaving Mutt with a payoff of only 98. Since Mutt is rational, he defects.

3. If the node labeled (99, 98) in Figure 1.10 is reached, Jeff will see that if he
defects, his payoff is 100. If he cooperates, the node labeled (99, 99) is reached. If
Jeff believes that Mutt believes that Jeff is rational, and if Jeff believes that Mutt is
rational, then Jeff concludes that Mutt will act as described in step 2. This would
leave Jeff with a payoff of 97. Since Jeff is rational, he defects.

4. You probably see that this is getting complicated fast, but let’s do one more
step. If the node labeled (98, 98) (not shown in Figure 1.10) is reached, Mutt will
see that if he defects, his payoff is 100. If he cooperates, the node labeled (99, 98)
is reached. If Mutt believes that Jeff believes that Mutt believes that Jeff is rational,
and if Mutt believes that Jeff believes that Mutt is rational, and if Mutt believes that
Jeff is rational, then Mutt concludes that Jeff will act as described in step 2. This
would leave Mutt with a payoff of 97. Since Mutt is rational, he defects.

You can see that by the time we get back to the root node in Figure 1.10, at
step 196 in this process, Mutt must hold many complicated beliefs in order to justify
using backward induction to choose his move! (At the kth step in this process, the
player who chooses must hold k−1 separate beliefs about the other player, the most
complicated of which requires k − 1 uses of word “believes” to state.) The question
is whether a rational player, “who attempts to discern the facts about the world,
who forms beliefs about the world consistent with the facts he has discerned,” is
required to hold such complicated beliefs.
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Now suppose that Mutt decides, for whatever reason, to cooperate at his first
turn. Then Jeff can conclude that Mutt did not hold the complicated beliefs that
would induce him to defect at his first turn. If Jeff believes that at Mutt’s second
turn, he will hold the (slightly less complicated) beliefs that would induce him to
defect then, then Jeff should defect at his own first turn. Clearly rationality does
not require Jeff to believe this. Thus a rational Jeff may well decide to cooperate at
his first turn.

In this way, rational players may well cooperate through many stages of the
Centipede Game. More generally, rationality does not require players to follow the
strategy dictated by a long backward induction.

Backward induction is required by an assumption called Common Knowledge
of Rationality (CKR): the players are rational; the players believe that the other
players are rational; the players believe that the other players believe that the other
players are rational; and so on, for as many steps as are required by the game under
discussion. In any particular situation, the CKR assumption may hold, but the
assumption that players are rational does not by itself imply CKR.

We shall return to the question of players’ beliefs in Section 8.2.

1.16. Problems

1.16.1. Congress vs. the President. Congress is working on a homeland
security spending bill. Congress wants the bill to include $10 million for each mem-
ber’s district for “important projects.” The President wants the bill to include $100
million to upgrade his airplane, Air Force One, to the latest model, Air Force One
Extreme. The President can sign or veto any bill that Congress passes.

Congress’s payoffs are 1 if it passes a bill (voters like to see Congress take
action), 2 if the President signs a bill that contains money for important projects,
and −1 if the President signs a bill that contains money for Air Force One Extreme.
Payoffs are added; for example, if the President signs a bill that contains money for
both, Congress’s total payoff is 1 + 2 + (−1) = 2.

The President’s payoffs are −1 if he signs a bill that contains money for im-
portant projects, and 2 if he signs a bill that contains money for Air Force One
Extreme. His payoffs are also added.

The game tree in Figure 1.13 illustrates the situation. In the tree, C = Con-
gress, P = President; n = no bill passed, i = important projects passed, a = Air
Force One Extreme passed, b = both passed; s = President signs the bill, v = Pres-
ident vetoes the bill. The first payoff is Congress’s, the second is the President’s.

(1) Use backward induction to predict what will happen.
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Figure 1.13. Congress vs. the President.

(2) Suppose the Constitution were changed so that the President could veto
parts of bills he doesn’t like but still sign the rest. Draw the new tree and
use backward induction to predict what will happen. (The only change
in the game is that if Congress passes a bill containing both important
projects and Air Force One Extreme, the President will have four choices:
sign, veto, sign important projects but veto Air Force One Extreme, sign
Air Force One Extreme but veto important projects.)

1.16.2. Battle of the Chain Stores. Sub Station has the only sub restaurant
in Town A and the only sub restaurant in Town B. The sub market in each town
yields a profit of $100K per year. Rival Sub Machine is considering opening a
restaurant in Town A in year 1. If it does, the two stores will split the profit from
the sub market there. However, Sub Machine will have to pay setup costs for its
new store. These costs are $25K in a store’s first year.

Sub Station fears that if Sub Machine is able to make a profit in Town A, it
will open a store in Town B the following year. Sub Station is considering a price
war: if Sub Machine opens a store in either town, it will lower prices in that town,
forcing Sub Machine to do the same, to the point where profits from the sub market
in that town drop to 0.

The game tree in Figure 1.14 is one way to represent the situation. It takes
into account net profits from Towns A and B in years 1 and 2, and it assumes that
if Sub Machine loses money in A it will not open a store in B.

The entry (100K, 250K) in the game tree comes about as follows. If there are
no price wars, Sub Machine makes net profits of $25K in Town A in year 1, $50K in
Town A in year 2, and $25K in Town B in year 2, for a total of $100K. Sub Station
makes profits of $50K in Town A in year 1, $50K in Town A in year 2, $100K in
Town B in year 1, and $50K in Town B in year 2, for a total of $250K.

(1) Explain the entry (50K, 200K) in the game tree.
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SM

(−25Κ, 200Κ)

SS

SM

(0, 400Κ)

open store in Adon't open store in A

price war in A no price war in A

open store in Bdon't open store in B

(75K, 300Κ)
price war in B no price war in B

(50Κ, 200Κ) (100Κ, 250Κ)

SS

Figure 1.14. SM is Sub Machine, SS is Sub Station. Sub Machine’s
profits are first, Sub Station’s profits are second.

(2) Use backward induction to figure out what Sub Machine and Sub Station
should do.

(3) How might Sub Station try to obtain a better outcome by using a threat?

1.16.3. Kidnapping. A criminal kidnaps a child and demands a ransom r > 0.
The value to the parents of the child’s return is v > 0. If the kidnapper frees the
child, he incurs a cost f > 0. If he kills the child, he incurs a cost k > 0. These costs
include the feelings of the kidnapper in each case, the likelihood of being caught in
each case, the severity of punishment in each case, and whatever else is relevant.
We assume v > r. The parents choose first whether to pay the ransom or not, then
the kidnapper decides whether to free the child or kill the child. The game tree is
shown in Figure 1.15.

(v, −f)                      (0, −k)(v−r, r−f)                  (−r, r−k)

Parents

KidnapperKidnapper

free                     kill free                     kill

pay                            don’t pay

Figure 1.15. Kidnapping. The parents are Player 1, the kidnapper
is Player 2.
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(1) Explain the payoffs.
(2) Suppose k > f . Use backward induction to show that the parents should

not pay the ransom.
(3) Suppose f > k. Use backward induction to show that the parents should

not pay the ransom.
(4) Suppose k > f . Find a threat the kidnapper can make to try to get the

parents to pay the ransom.
(5) Suppose f > k. Find a promise the kidnapper can make to try to get the

parents to pay the ransom.
(6) Suppose f > k, and the parents will incur a guilt cost g if they don’t pay

the ransom and the child is killed. How large must g be to get the parents
to pay the ransom?

1.16.4. The White House Tapes. On March 1, 1974, a grand jury indicted
seven former aides to U.S. President Richard Nixon for attempting to cover up
White House involvement in a burglary of Democratic National Committee at the
Watergate complex in Washington. On April 18, the judge in the case, John Sirica,
issued a subpoena for tapes of President Nixon’s conversations with the defendants.
The President’s attorney, James St. Clair, attempted to delay responding to the
subpoena. The prosecutor, Leon Jaworski, then used an unusual procedure to appeal
directly to the Supreme Court and request that the Court order the President to
supply the tapes. The Court heard oral arguments on July 8, and the justices met
on July 9 to decide the case.

One justice, William Rehnquist, withdrew from the case, probably because
he had worked in President Nixon’s Justice Department. Of the remaining eight
justices, six quickly agreed to uphold the prosecutor’s request. Two justices, Warren
Burger and Harry Blackmun, were reluctant to uphold the prosecutor’s request,
because they thought his direct appeal to the Supreme Court was improper.

Also on July 9, President Nixon’s attorney said that the President had “not
yet decided” whether he would supply the tapes if the Supreme Court ordered him
to. This statement was probably intended to pressure the Court into backing down
from the confrontation. At minimum, it was probably intended to encourage some
justices to vote against upholding the prosecutor’s request. If the vote was split,
the President could argue that it was not sufficiently definitive for a matter of this
magnitude. Jaworski believed that in the event of a split vote, the President would
“go on television and tell the people that the presidency should not be impaired by
a divided Court.”

We will model this situation as a two-player game. Player 1 is Justices Burger
and Blackmun, whom we assume will vote together; we therefore treat them as one
player. Player 2 is President Nixon.
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First, Justices Burger and Blackmun decide how to vote. If they vote to uphold
the prosecutor’s request, the result is an 8-0 Supreme Court decision in favor of the
prosecutor. If they vote to reject the prosecutor’s request, the result is a 6-2 Supreme
Court decision in favor of the prosecutor.

After the Supreme Court has rendered its decision, President Nixon decides
whether to comply by supplying the tapes, or to defy the decision.

President Nixon’s preferences are as follows:

• Best outcome (payoff 4): 6-2 decision, President defies the decision.
• Second-best outcome (payoff 3): 6-2 decision, President supplies the tapes.
• Third-best outcome (payoff 2): 8-0 decision, President supplies the tapes.
• Worst outcome (payoff 1): 8-0 decision, President defies the decision.

Explanation: The President’s best outcome is a divided decision that he can defy
while claiming the decision is not really definitive. His worst outcome is an 8-0
decision that he then defies; this would probably result in immediate impeachment.
As for the two intermediate outcomes, the President is better off with the weaker
vote, which should give him some wiggle room.

Justices Burger and Blackmun’s preferences are as follows:

• Best outcome (payoff 4): 6-2 decision, President supplies the tapes.
• Second-best outcome (payoff 3): 8-0 decision, President supplies the tapes.
• Third-best outcome (payoff 2): 8-0 decision, President defies the decision.
• Worst outcome (payoff 1): 6-2 decision, President defies the decision.

Explanation: In their best outcome, Burger and Blackmun get to vote their honest
legal opinion that the prosecutor’s direct appeal to the Court was wrong, but a
Constitutional crisis is averted because the President complies anyway. In their
second-best outcome, they vote dishonestly, but they succeed in averting a major
Constitutional crisis. In their third-best outcome, the crisis occurs, but because of
the strong 8-0 vote, it will probably quickly end. In the worst outcome, the crisis
occurs, and because of the weak vote, it may drag out. In addition, in the last
outcome, the President may succeed in establishing the principle that a 6-2 Court
decision need not be followed, which no member of the Court wants.

(1) Draw a game tree and use backward induction to predict what happened.
(2) Can you think of a plausible way that President Nixon might have gotten

a better outcome?

(What actually happened: the Court ruled 8-0 in favor of the prosecutor on
July 24. On July 30, President Nixon surrendered the tapes. In early August, a
previously unknown tape recorded a few days after the break-in was released. It
documented President Nixon and his aide Robert Haldeman formulating a plan to
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block investigations by having the CIA claim to the FBI (falsely) that national
security was involved. On August 9, President Nixon resigned.)

1.16.5. Three Pirates. Three pirates must divide 100 gold doubloons. The
doubloons cannot be cut into pieces.

Pirate A is the strongest, followed by Pirate B, followed by Pirate C.

Because of ancient pirate tradition, the coins are divided in the following man-
ner. First Pirate A proposes a division of the coins. The three pirates then vote on
whether to accept the proposed division. If the proposal gets a majority vote, it is
accepted, and the game is over. If the proposal fails to get a majority vote, Pirate
A is executed.

It is then Pirate B’s turn to propose a division of the coins between the two
remaining pirates. The same rules apply, with one exception: if the vote is a tie
(which can happen this time because the number of pirates is now even), Pirate B,
being the strongest remaining pirate, gets an additional vote to break the tie.

Use backward induction to figure out what Pirate A should propose. You
don’t have to draw a game tree if you don’t want to, but you do have to explain
your thinking so that your instructor can follow it.

1.16.6. The Grocery Store and the Gas Station 1. In a certain town,
there are two stores, a grocery store and a gas station. The grocery store charges
p1 dollars per pound for food, and the gas station charges p2 dollars per gallon for
gas. The grocery store sells q1 pounds of food per week, and the gas station sells q2
gallons of gas per week. The quantities q1 and q2 are related to the prices p1 and p2
as follows:

q1 = 10− 2p1 − p2,

q2 = 10− p1 − 2p2.

Thus, if the price of food or gas rises, less of both is sold.

Let π1 be the revenue of the grocery store and π2 the revenue of the gas station.
Both depend on the two stores’ choices of p1 and p2:

π1(p1, p2) = q1p1 = (10− 2p1 − p2)p1 = 10p1 − 2p21 − p1p2,

π2(p1, p2) = q2p2 = (10− p1 − 2p2)p2 = 10p2 − p1p2 − 2p22.

We interpret this as a game with two players, the grocery store (Player 1) and
the gas station (Player 2). The payoff to each player is its revenue.

We shall allow p1 and p2 to be any real numbers, even negative numbers, and
even numbers that produce negative values for q1 and q2.
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Suppose the grocery store chooses its price p1 first, and then the gas station,
knowing p1, chooses its price p2. If the grocery store uses backward induction to
choose p1, what price will it choose? What will be the corresponding p2, and what
will be the revenue of each store?

Partial answer to help keep you on the right track: p1 = 21
7
.

1.16.7. The Grocery Store and the Gas Station 2. We will now change
the problem a little. First we change the formulas for q1 and q2 to the following more
reasonable formulas, which say that when the prices get too high, the quantities sold
become 0, not negative numbers:

q1 =

{

10− 2p1 − p2 if 2p1 + p2 < 10

0 if 2p1 + p2 ≥ 10

q2 =

{

10− p1 − 2p2 if p1 + 2p2 < 10

0 if p1 + 2p2 ≥ 10

Next we make some reasonable restrictions on the prices. First we assume

p1 ≥ 0 and p2 ≥ 0.

Next we note that if p1 ≥ 0 and p2 > 5, then q2 becomes 0. The gas station wouldn’t
want this, so we assume

p2 ≤ 5.

Finally we note that if p2 ≥ 0 and p1 > 5, then q1 becomes 0. The grocery store
wouldn’t want this, so we assume

p1 ≤ 5.

The formulas for π1 and π2 are now a little different, because the formulas
for q1 and q2 have changed. The payoffs are now only defined for 0 ≤ p1 ≤ 5 and
0 ≤ p2 ≤ 5, and are given by :

π1(p1, p2) = q1p1 =

{

10p1 − 2p21 − p1p2 if 2p1 + p2 < 10,

0 if 2p1 + p2 ≥ 10.

π2(p1, p2) = q2p2 =

{

10p2 − p1p2 − 2p22 if p1 + 2p2 < 10,

0 if p1 + 2p2 ≥ 10.

We still assume that the grocery store chooses its price p1 first, and then the
gas station, knowing p1, chooses its price p2.

(1) Explain the formulas above for the payoffs.
(2) For a fixed p1 between 0 and 5, graph the function π2(p1, p2), which is a

function of p2 defined for 0 ≤ p2 ≤ 5. Answer: should be partly an upside
down parabola and partly a horizontal line. Make sure you give a formula
for the point at which the graph changes from one to the other.
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(3) By referring to the graph you just drew and using calculus, find the gas
station’s best-response function p2 = b(p1), which should be defined for
0 ≤ p1 ≤ 5. Answer: b(p1) = (10− p1)/4.

(4) You are now ready to find p1 by backward induction. From your formula
for π1 you should be able to see that

π1(p1, b(p1)) =

{

(10− 2p1 − b(p1))p1 if 2p1 + b(p1) < 10,

0 if 2p1 + b(p1) ≥ 10,

Use the formula for b(p1) from part (c) to show that 2p1 + b(p1) < 10 if
0 ≤ p1 < 42

7
, and 2p1 + b(p1) ≥ 10 if 42

7
≤ p1 ≤ 5.

(5) Graph the function π1(p1, b(p1)), 0 ≤ p1 ≤ 5. (Again, it is partly an upside
down parabola and partly a horizontal line.)

(6) By referring to the graph you just drew and using calculus, find where
π1(p1, b(p1)) is maximum.

1.16.8. Continuous Ultimatum Game with Inequality Aversion. Play-
ers 1 and 2 must divide some Good Stuff. Player 1 offers Player 2 a fraction y,
0 ≤ y ≤ 1, of the Good Stuff. If Player 2 accepts the offer, he gets the fraction y of
Good Stuff, and Player 1 gets the remaining fraction x = 1 − y. If Player 2 rejects
the offer, both players get nothing.

In this game, Player 1 has an interval of possible strategies. We can describe
this interval as 0 ≤ x ≤ 1, where x is the fraction Player 1 keeps, or as 0 ≤ y ≤ 1,
where y is the fraction Player 1 offers to Player 2. On the other hand, Player 2’s
strategy is a plan, for each y that he might be offered, whether to accept or reject.
The players’ payoffs are given by utility functions, which we now describe.

Both players are inequality averse: they don’t like an unequal division. How-
ever, each player feels that an inequality favoring the other player is worse than
inequality favoring himself. Their utility functions are as follows:

u1(x, y) = x−
{

α1(y − x) if y ≥ x,

β1(x− y) if y < x,

u2(x, y) = y −
{

α2(x− y) if x ≥ y,

β2(y − x) if x < y,

with 0 < β1 < α1 and 0 < β2 < α2. Thus Player 1’s utility is the fraction x of Good
Stuff that he gets, minus a correction for inequality. The correction is proportional
to the difference between the two allocations. If Player 2 gets more (y > x), the
difference is multiplied by the bigger number α1; if Player 2 gets less (y < x), the
difference is multiplied by the smaller number β1. Player 2’s utility function is
similar.

If Player 1’s offer is rejected, both players receive 0 utility.
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We assume that Player 2 will accept offers that make his utility positive or
zero. Player 1 wants to make an offer that (a) Player 2 will accept, and (b) that
leaves Player 1 with the largest possible utility.

Since y = 1− x and x = 1− y, we simplify the utility functions as follows:

u1(x) = x−
{

α1(1− 2x) if x ≤ 1
2
,

β1(2x− 1) if x > 1
2
,

u2(y) = y −
{

α2(1− 2y) if y ≤ 1
2
,

β2(2y − 1) if y > 1
2
.

(1) Graph Player 1’s utility function on the interval 0 ≤ x ≤ 1 assuming β1 >
1
2
.

The graph consists of two line segments that meet at the point (1
2
, 1
2
). Your

graph should clearly indicate the points with x-coordinates 0 and 1.
(2) Explain very briefly: If β1 > 1

2
, then Player 1 offers Player 2 half of the

Good Stuff, and Player 2 accepts.
(3) Graph Player 1’s utility function on the interval 0 ≤ x ≤ 1 assuming β1 <

1
2
.

(4) Graph Player 2’s utility function on the interval 0 ≤ y ≤ 1 assuming β2 < 1.
Use your graph to explain the following statement: When β2 ≤ 1, Player 2
will accept any offer y ≥ y∗ with y∗ = α2

1+2α2

.

(5) If β1 <
1
2
and β2 ≤ 1, what fraction of the Good Stuff should Player 1 offer

to Player 2?
(6) If β1 <

1
2
and β2 > 1, what fraction of the Good Stuff should Player 1 offer

to Player 2?
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CHAPTER 2

Eliminating dominated strategies

In this chapter we introduce games in which the players make their choices
simultaneously. The well-known Prisoner’s Dilemma, which models situations in
which cooperation is especially difficult, is a game of this type. We discuss the sim-
plest idea for dealing with these games, which is not to use a strategy when another
is available that always gives a better result. Using this idea one can understand
why the second-price auction, which is essentially how items are sold on e-Bay, works
so well. In the Prisoner’s Dilemma, however, this idea leads to an uncooperative,
suboptimal outcome.

2.1. Prisoner’s Dilemma

Two corporate executives are accused of preparing false financial statements.
The prosecutor has enough evidence to send both to jail for one year. However, if
one confesses and tells the prosecutors what he knows, the prosecutor will be able
to send the other to jail for 10 years. In exchange for the help, the prosecutor will
let the executive who confesses go free.

If both confess, both will go to jail for 6 years.

The executives are held in separate cells and cannot communicate. Each must
decide individually whether to talk or refuse.

Since each executive decides what to do without knowing what the other has
decided, it is not natural or helpful to draw a game tree. Nevertheless, we can still
identify the key elements of a game: players, strategies, and payoffs.

The players are the two executives. Each has the same two strategies: talk or
refuse. The payoffs to each player are the number of years in jail (preceded by a
minus sign, since we want higher payoffs to be more desirable). The payoff to each
executive depends on the strategy choices of both executives.

In this two-player game, we can indicate how the strategies determine the
payoffs by a matrix.
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Executive 2
refuse talk

Executive 1 refuse (−1,−1) (−10, 0)
talk (0,−10) (−6,−6)

The rows of the matrix represent Player 1’s strategies. The columns represent
Player 2’s strategies. Each entry of the matrix is an ordered pair of numbers that
gives the payoffs to the two players if the corresponding strategies are used. Player
1’s payoff is given first.

Notice:

(1) if Player 2 refuses to talk, Player 1 gets a better payoff by talking than by
refusing. (Look at the two ordered pairs in the first column of the matrix,
and compare their first entries: 0 is better than −1.)

(2) If Player 2 talks, Player 1 still gets a better payoff by talking than by
refusing. (Look at the two ordered pairs in the second column of the matrix,
and compare their first entries: −6 is better than −10.)

Thus, no matter what Player 2 does, Player 1 gets a better payoff by talking than
by refusing. Player 1’s strategy of talking strictly dominates his strategy of refusing:
it gives a better payoff to Player 1 no matter what Player 2 does.

Of course, Player 2’s situation is identical: his strategy of talking gives him a
better payoff no matter what Player 1 does. (In each row of the matrix, compare
the second entries in the two ordered pairs. The second entry is better.)

Thus we expect both executives to talk.

Unfortunately for them, the result is that they both go to jail for 6 years. Had
they both refused to talk, they would have gone to jail for only one year.

Prosecutors like playing this game. Defendants don’t like it much. Hence there
have been attempts over the years by defendants’ attorneys and friends to change
the game.

For example, if the Mafia were involved with the financial manipulations that
are under investigation, it might have told the two executives in advance: “If you
talk, something bad could happen to your child.” Suppose each executive believes
this warning and considers something bad happening to his child to be equivalent
to 6 years in prison. The payoffs in the game are changed as follows:

Executive 2
refuse talk

Executive 1 refuse (−1,−1) (−10,−6)
talk (−6,−10) (−12,−12)
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Now, for both executives, the strategy of refusing to talk strictly dominates
the strategy of talking. Thus we expect both executives to refuse to talk, so both
go to jail for only one year.

The Mafia’s threat sounds cruel. In this instance, however, it helped the two
executives achieve a better outcome for themselves than they could achieve on their
own.

Prosecutors don’t like the second version of the game. One mechanism they
have of returning to the first version is to offer “witness protection” to prisoners
who talk. In a witness protection program, the witness and his family are given new
identities in a new town. If the prisoner believes that the Mafia is thereby prevented
from carrying out its threat, the payoffs return to something close to those of the
original game.

Another way to change the game of Prisoner’s Dilemma is by additional re-
wards. For example, the Mafia might work hard to create a culture in which prisoners
who don’t talk are honored by their friends, and their families are taken care of. If
the two executives buy into this system, and consider the rewards of not talking to
be worth 5 years in prison, the payoffs become the following:

Executive 2
refuse talk

Executive 1 refuse (4, 4) (−5,−0)
talk (0,−5) (−6,−6)

Once again refusing to talk strictly dominates talking.

The punishments or rewards that can change the dominant strategy in the
Prisoner’s Dilemma from talking to refusing to talk may be completely internal. A
prisoner may simply feel badly about himself if he selfishly betrays his fellow prisoner,
or may feel good about himself if he doesn’t. If these feelings are important, we have
to take them into account when we assign his payoffs.

The Prisoner’s Dilemma is the best-known and most-studied model in game
theory. It models many common situations in which cooperation is advantageous
but difficult to achieve. We illustrate this point in Sections 2.4 and 2.5, where we
discuss the Israeli-Palestian conflict and the problem of global warming. You may
also want to look at the Wikipedia page on the Prisoner’s Dilemma
(http://en.wikipedia.org/wiki/Prisoners_dilemma).

2.2. Games in normal form

A game in normal form consists of:

(1) A finite set P of players. We will usually take P = {1, . . . , n}.
(2) For each player i, a set Si of available strategies.
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Let S = S1 × · · · × Sn. An element of S is an n-tuple (s1, . . . , sn) where each si is
a strategy chosen from the set Si. Such an n-tuple (s1, . . . , sn) is called a strategy
profile. It represents a choice of strategy by each of the n players.

(3) For each player i, a payoff function πi : S → R.

In the Prisoner’s Dilemma, P = {1, 2}, S1 = {talk, refuse}, S2 = {talk, refuse},
and S is a set of four ordered pairs, namely (talk, talk), (talk, refuse), (refuse, talk),
and (refuse, refuse). As to the payoff functions, we have, for example, π1(refuse, talk)
= −10 and π2(refuse, talk) = 0.

If there are two players, player 1 hasm strategies, and player 2 has n strategies,
then a game in normal form can be represented by an m×n matrix of ordered pairs
of numbers, as in the previous section. We will refer to such a game as an m × n
game.

2.3. Dominated strategies

For a game in normal form, let si and s′i be two of player i’s strategies.

• We say that si strictly dominates s′i if, for every choice of strategies by the
other players, the payoff to player i from using si is greater than the payoff
to player i from using s′i.

• We say that si weakly dominates s′i if, for every choice of strategies by the
other players, the payoff to player i from using si is at least as great as the
payoff to player i from using s′i; and, for some choice of strategies by the
other players, the payoff to player i from using si is greater than the payoff
to player i from using s′i.

As mentioned in Section 1.4, game theorists often assume that players are
rational. For a game in normal form, rationality is often taken to imply the following:

• Suppose one of player i’s strategies si weakly dominates another of his
strategies s′i. Then player i will not use the strategy s′i.

This is the assumption we used to analyze the Prisoner’s Dilemma. Actually,
in that case, we only needed to eliminate strictly dominated strategies.

A prisoner’s dilemma occurs when (1) each player has a strategy that strictly
dominates all his other strategies, but (2) each player has another strategy such that,
if all players were to use this alternative, all players would receive higher payoffs than
those they receive when they all use their dominant strategies.
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2.4. Israelis and Palestinians

Henry Kissinger was National Security Advisor and later Secretary of State
during the administrations of Richard Nixon of Gerald Ford. Previously he was
a professor of international relations at Harvard. In his view, the most important
contribution of the game theory point of view in international relations was that it
forced you to make a very explicit model of the situation you wanted to understand.

Let’s look at the Israeli-Palestinian conflict with this opinion of Kissinger’s in
mind.

In a war between Israel and the neighboring Arab countries in 1967, the Israeli
army occupied both Gaza and the West Bank, as well as other territories. The West
Bank especially was seen by many Israelis as being a natural part of the state of
Israel for both religious reasons (the Jewish heartland in Biblical times was in what
is now the West Bank) and military reasons. Considerable Jewish settlement took
place in the West Bank, and to a lesser extent in Gaza, after 1968, with the goal of
retaining at least part of these territories in an eventual resolution of the conflict.

In 2000, negotiations between Israeli Prime Minister Ehud Barak and Pales-
tinian leader Yasser Arafat, with the mediation of U.S. President Bill Clinton, per-
haps came close to resolving the conflict. Barak offered to remove most of the Israeli
settlements and allow establishment of a Palestinian state. Arafat rejected the offer.
The level of conflict between the two sides increased greatly. In 2005 the Israelis
abandoned their settlements in Gaza and ended their occupation of that region.

During the first decade of the 21st century, discussion of this conflict often
focused on two issues: control of the West Bank and terrorism. Most proposals for
resolving the conflict envisioned a trade-off in which the Israelis would end their
occupation of the West Bank and the Palestinians would stop terrorism, the means
by which they carried on their conflict with Israel.

In a simple model of the conflict, the Israelis had two possible strategies: end
the occupation or continue to occupy the West Bank. The Palestinians also had two
possible strategies: end terrorism or continue terrorism. What were the payoffs?

The Israelis certainly valued both keeping the West Bank and an end to Pales-
tinian terrorism. The Palestinians certainly valued ending the Israeli occupation of
the West Bank. We will assume that the Palestinians also valued retaining their
freedom to continue terrorism. The reason is that for the Palestinians, giving up
terrorism essentially meant giving up hope of regaining the pre-1967 territory of
Israel, which was the home of many Palestinians, and which many Palestinians feel
is rightfully their territory.

Let’s consider two ways to assign payoffs that are consistent with this assump-
tion.
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1. At the time of the negotiations between Barak and Arafat, Barak apparently
considered an end to terrorism to be of greater value than continued occupation of
the West Bank, since he was willing to give up the latter in exchange for the former.
Therefore we will assign the Israelis 2 points if terrorism ends, and −1 point if they
end the occupation of the West Bank.

Arafat apparently considered retaining the freedom to engage in terrorism to
be of greater value than ending the Israeli occupation of the West Bank, since he
was not willing to give up the former to achieve the latter. Therefore we assign the
Palestinians −2 points if they end terrorism, and 1 point if the Israelis end their
occupation of the West Bank. We get the following game in normal form.

Palestinians
end terrorism continue terrorism

Israelis end occupation (1,−1) (−1, 1)
continue occupation (2,−2) (0, 0)

The payoff matrix shows that for the Israelis, continuing the occupation strictly
dominates ending it, and for the Palestinians, continuing terrorism strictly domi-
nates ending it. These strategies yield the actual outcome of the negotiations.

This game is not a prisoner’s dilemma. In a prisoner’s dilemma, each player
has a dominant strategy, but the use of the dominated strategies by each player
would result in a higher payoff to both. Here, if each player uses his dominated
strategy, the Israeli outcome improves, but the Palestinian outcome is worse.

2. The previous assignment of payoffs was appropriate for Israeli “moderates”
and Palestinian ”radicals.” We will now assign payoffs on the assumption that both
sides are “moderate.” The Israeli payoffs are unchanged. The Palestinians are now
assumed to value ending the occupation of the West Bank above keeping the freedom
to engage in terrorism. We therefore assign the Palestinians −1 point if they end
terrorism, and 2 points if the Israelis end their occupation of the West Bank. We
get the following game in normal form.

Palestinians
end terrorism continue terrorism

Israelis end occupation (1, 1) (−1, 2)
continue occupation (2,−1) (0, 0)

For the Israelis, continuing the occupation still strictly dominates ending it,
and for the Palestinians, continuing terrorism still strictly dominates ending it. This
indicates that even “moderate” governments on both sides would have difficulty
resolving the conflict.

The game is now a prisoner’s dilemma: if both sides use their dominated
strategies, there will be a better outcome for both, namely an end to both the
Israeli occupation of the West Bank and to Palestinian terrorism. As in the original
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Prisoner’s Dilemma, this outcome is not easy to achieve. As in the original Prisoner’s
Dilemma, one solution is for an outside player to change the payoffs by supplying
punishments or rewards, as the Mafia could there. In the context of the Israeli-
Palestinian conflict, the most plausible such outside player is the United States.

Of course, once one considers whether the United States wants to become
involved, one has a three-player game. If one considers subgroups within the Israelis
and Palestinians (for example, Israeli extremists, or the radical Palestinian group
Hamas), the game becomes even more complicated.

The Israeli-Palestinian situation illustrates the dilemma of cooperation. Both
the Israelis and the Palestinians are asked to help the other at a cost to themselves.
To generalize this situation, let us suppose that Player 1 can confer a benefit b > 0
on Player 2 at a cost of a > 0 to himself. Similarly, Player 2 can confer a benefit
d > 0 on Player 1 at a cost of c > 0 to himself. We get the following game in normal
form:

Player 2
help don’t help

Player 1 help (d− a, b− c) (−a, b)
don’t help (d,−c) (0, 0)

For both players, don’t help strictly dominated help. However, if d > a and
b > c, i.e., if for both players, the benefit from getting help is greater than the cost
of helping, then we have a prisoner’s dilemma: if both players help, both will be
better off.

2.5. Global Warming

Ten countries are considering fighting global warming. Each country must
choose to spend an amount xi to reduce its carbon emissions, where 0 ≤ xi ≤ 1.
The total benefits produced by these expenditures equal twice the total expenditures:
2(x1 + · · ·+ x10). Each country receives 1

10
of the benefits.

This game has ten players, the ten countries. The set of strategies available
to country i is just the closed interval 0 ≤ xi ≤ 1. A strategy profile is therefore a
10-tuple (x1, . . . , x10), where 0 ≤ xi ≤ 1 for each i. The ith country’s payoff function
is its benefits minus its expenditures:

πi(x1, . . . , x10) =
1

10
· 2(x1 + · · ·+ x10)− xi =

1

5
(x1 + · · ·+ x10)− xi.

We will show that for each country, the strategy xi = 0 (spend nothing to fight
global warming) strictly dominates all its other strategies.

We will just show this for country 1, since the arguments for the other countries
are the same. Let x1 > 0 be a different strategy for country 1. Let x2, . . . , xn be
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any strategies for the other countries. Then

π1(0, x2, . . . , x10)− π1(x1, x2, . . . , x10) =

(
1

5
(0+x2+ · · ·+x10)− 0)− (

1

5
(x1+x2+ · · ·+x10)−x1) = −1

5
x1+x1 =

4

5
x1 > 0.

Thus we expect each country to spend nothing to fight global warming, and
each country to get a payoff of 0.

If all countries could somehow agree to spend 1 each to fight global warming,
each country’s payoff would be 1

5
(1 + · · · + 1) − 1 = 2 − 1 = 1, and each country

would be better off. In fact, each country would receive benefits of 2 in return for
expenditures of 1, an excellent deal.

Nevertheless, each country would be constantly tempted to cheat. A reduction
in country i’s expenditures by yi dollars reduces total benefits to all countries by 2yi
dollars, but only reduces benefits to country i by 1

5
yi dollars.

This example suggests that the problem of global warming is a type of pris-
oner’s dilemma.

Of course, one can try to change the game by changing the payoffs with punish-
ments or rewards. For example, one might try to raise the environmental conscious-
ness of people around the world by a publicity campaign. Then perhaps governments
that fight global warming would get the approval of their own people and the ap-
proval of others around the world, which they might see as a reward. In addition,
governmental leaders might get subjective rewards by doing what they feel is the
right thing.

Games such as the one described in this section are called public goods games.
In a public goods game, when a player cooperates, he adds more to the total payoffs
of all players than his cost of cooperating, but his cost of cooperating is greater
than his individual share of the payoffs. Public goods games are one type of social
dilemma. In a social dilemma, all players gain when all cooperate, but each has an
incentive to defect, which will give him a gain at the expense of the others.

2.6. Hagar’s Battles

There are ten villages with values a1 < a2 < · · · < a10. There are two players.
Player 1 has n1 soldiers, and Player 2 has n2 soldiers, with 0 < n1 < 10 and
0 < n2 < 10. Each player independently decides which villages to send his soldiers
to. A player is not allowed to send more than one soldier to a village.

A player wins a village if he sends a soldier there but his opponent does not.
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A player’s score is the sum of the values of the villages he wins, minus the sum
of the values of the villages his opponent wins. Each player wants to maximize his
score (not just achieve a higher score than his opponent).

Where should you send your soldiers?

Since each player decides where to send his soldiers without knowledge of the
other player’s decision, we will model this game as a game in normal form. To do
that, we must describe precisely the players, the strategies, and the payoff functions.

• Players. There are two.
• Strategies. The villages are numbered from 1 to 10. A strategy for player
i is just a set of ni numbers between 1 and 10. The numbers represent the
ni different villages to which he sends his soldiers. Thus if Si is the set of
all of player i’s strategies, an element si of Si is simply a set of ni numbers
between 1 and 10.

• Payoff functions. A player’s payoff in this game is his score minus his
opponent’s score.

A neat way to analyze this game is to find a nice formula for the payoff function.
Lets look at an example. Suppose n1 = n2 = 3, s1 = {6, 8, 10}, and s2 = {7, 9, 10}.
Player 1 wins villages 6 and 8, and Player 2 wins villages 7 and 9. Thus Player 1’s
payoff is (a6 + a8)− (a7 + a9), and Player 2’s payoff is (a7 + a9)− (a6 + a8). Since
a6 < a7 and a8 < a9, Player 2 wins.

We could also calculate Player i’s payoff by adding the values of all the villages
to which he sends his soldiers, and subtracting the values of all the villages to which
his opponent sends his soldiers. Then we would have

• Player 1’s payoff = (a6 + a8 + a10)− (a7 + a9 + a10) = (a6 + a8)− (a7 + a9).
• Player 2’s payoff = (a7 + a9 + a10)− (a6 + a8 + a10) = (a7 + a9)− (a6 + a8).

Clearly this always works. Thus we have the following formulas for the payoff
functions.

π1(s1, s2) =
∑

j∈s1
aj −

∑

j∈s2
aj,

π2(s1, s2) =
∑

j∈s2
aj −

∑

j∈s1
aj.

We claim that for each player, the strategy of sending his ni soldiers to the ni

villages of highest values strictly dominates all his other strategies.

We will just show that for Player 1, the strategy of sending his n1 soldiers
to the n1 villages of highest values strictly dominates all his other strategies. The
argument for Player 2 is the same.
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Let s1 be the set of the n1 highest numbers between 1 and 10. (For example,
if n1 = 3, s1 = {8, 9, 10}). Let s′1 a different strategy for Player 1, i.e., a different
set of n1 numbers between 1 and 10. Let s2 be any strategy for Player 2, i.e., any
set of n2 numbers between 1 and 10. We must show that

π1(s1, s2) > π1(s
′
1, s2).

We have

π1(s1, s2) =
∑

j∈s1

aj −
∑

j∈s2

aj,

π1(s
′
1, s2) =

∑

j∈s′
1

aj −
∑

j∈s2
aj.

Therefore

π1(s1, s2)− π1(s
′
1, s2) =

∑

j∈s1
aj −

∑

j∈s′
1

aj .

This is clearly positive: the sum of the n1 biggest numbers between 1 and 10 is
greater than the sum of some other n1 numbers between 1 and 10.

2.7. Second-price auctions

An item is to be sold at auction. Each bidder submits a sealed bid. All the
bids are opened. The object is sold to the highest bidder, but the price is the bid of
the second-highest bidder.

(If two or more bidders submit equal highest bids, that is the price, and one
of those bidders is chosen by chance to buy the object. However, we will ignore this
possibility in our analysis.)

If you are a bidder at such an auction, how much should you bid?

Clearly the outcome of the auction depends not only on what you do, but on
what the other bidders do. Thus we can think of the auction as a game. Since the
bidders bid independently, without knowledge of the other bids, we will try to model
this auction as a game in normal form. We must describe precisely the players, the
strategies, and the payoff functions.

• Players. We’ll suppose there are n bidders.
• Strategies. The ith player’s strategy is simply his bid, which we will denote
bi. At this point we must decide whether to allow just integer bids, arbitrary
real number bids, or something else. Let’s try allowing the bids bi to be
any nonnegative real number. The ith player’s set of available bids is then
Si = [0,∞). Thus each player has an infinite number of possible strategies,
indeed an interval. The definition of a game in normal form allows this.
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• Payoff functions. A reasonable idea for the payoff function is that the payoff
to player i is 0 unless he wins the auction, in which case the payoff to player
i is the value of the object to player i minus the price he has to pay for it.
Thus the payoff to player i depends on
(1) the value of the object to player i, which we will denote vi;
(2) the bid of player i, bi; and
(3) the highest bid of the other players, which we denote hi = max{bj :

j 6= i}.
The formula is

πi(b1, . . . , bn) =

{

0 if bi < hi,

vi − hi if hi < bi.

(Recall that we are ignoring the possibility that two bidders submit equal
highest bids, i.e., we ignore the possibility that bi = hi.)

We claim that for Player i, the strategy vi weakly dominates every other strat-
egy. In other words, you should bid exactly what the object is worth to you. (This
is the great thing about second-price auctions.)

To show this, we will just show that for Player 1, the strategy v1 weakly
dominates every other strategy. The argument for any other player is the same.

Let b1 6= v1 be another possible bid by Player 1. We must show two things:

(1) If b2, . . . , bn are any bids by the other players, then

π1(v1, b2, . . . , bn) ≥ π1(b1, b2, . . . , bn).

(2) There are some bids b2, . . . , bn by the other players such that

π1(v1, b2, . . . , bn) > π1(b1, b2, . . . , bn).

To show (1) and (2), let h1 = max(b2, . . . , bn). As already mentioned, we do
not want to consider the possibility that the top two bids are equal, so we assume
v1 6= h1 and b1 6= h1. When Player 1 bids v1, the outcome of the auction depends
on whether v1 < h1 or h1 < v1; similarly, when Player 1 bids b1, the outcome of the
auction depends on whether b1 < h1 or h1 < b1. This gives four possibilities to look
at. We show them in a table.

Relation of v1 to h1 Relation of b1 to h1 π1(v1, b2, . . . , bn) π1(b1, b2, . . . , bn)
v1 < h1 b1 < h1 0 0
v1 < h1 h1 < b1 0 v1 − h1 < 0
h1 < v1 b1 < h1 v1 − h1 > 0 0
h1 < v1 h1 < b1 v1 − h1 > 0 v1 − h1 > 0

In every case, π1(v1, b2, . . . , bn) ≥ π1(b1, b2, . . . , bn). This shows (1). The second and
third lines of the table show that π1(v1, b2, . . . , bn) > π1(b1, b2, . . . , bn) is possible,
which shows (2).
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There is a Wikipedia page about second-price auctions:
http://en.wikipedia.org/wiki/Sealed_second-price_auction.

2.8. Iterated elimination of dominated strategies

With games in extensive form, the assumption of rationality led to the idea
of not choosing a move if one that yielded a higher payoff was available. This
notion inspired the idea of repeatedly eliminating such moves, thereby repeatedly
simplifying the game, a procedure we called backward induction.

With games in normal form, the assumption of rationality leads to the idea of
not using a dominated strategy. If we remove a dominated strategy from a game in
normal form, we obtain a game in normal form with one less strategy. If the smaller
game has a dominated strategy, it can then be removed. This procedure, known
as iterated elimination of dominated strategies, can be repeated until no dominated
strategies remain. The result is a smaller game to analyze.

If the smaller game includes only one strategy s∗i for player i, s∗i is called
a dominant strategy for player i. If the smaller game includes only one strategy
s∗i for every player, the strategy profile (s∗1, . . . , s

∗
n) is called a dominant strategy

equilibrium.

Iterated elimination of strictly dominated strategies produces the same reduced
game in whatever order it is done. However, we shall see that iterated elimination
of weakly dominated strategies can produce different reduced games when done in
different orders.

2.9. The Battle of the Bismarck Sea

The following description of the Battle of the Bismarck Sea is drastically sim-
plified. For a fuller story, see the Wikipedia page
(http://en.wikipedia.org/wiki/Battle_of_the_Bismarck_Sea).

In 1943, during the Second World War, a Japanese admiral was ordered to
reinforce a base on the island of New Guinea. The supply convoy could take either
a rainy northern route or a sunny southern route. The Americans knew the day the
convoy would sail and wanted to bomb it. They only had enough reconnaissance
aircraft to search one route per day. The northern route was too rainy for bombing
one day in three, although it could still be searched by the reconnaissance aircraft.
Sailing time was three days.

The Japanese admiral, who was aware that the Americans knew when the
convoy would sail, had to decide which route to take. The Americans had to decide
which route to search on that day.
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The payoff to the Americans is the number of days they are able to bomb the
convoy. The payoff to the Japanese is minus this number.

The payoff matrix is shown below.

Japanese
sail north sail south

Americans search north (11
3
,−11

3
) (11

2
,−11

2
)

search south (1,−1) (21
2
,−21

2
)

Explanation:

• If the Americans search the correct route, they will on average spend a day
finding the Japanese and have two days to bomb. However, if the route
is the northern one, it will rain one-third of the time, leaving 11

3
days to

bomb.
• If the Americans search the wrong route, at the end of the first day they
will not have found the Japanese, and will know they searched the wrong
route. On day 2 they will search the other route, and on average find the
Japanese after 1/2 day. (There is less territory to search since the Japanese
have made a day’s progress at the end of the first day.) The Americans will
have 11

2
days to bomb. However, if the Japanese took the northern route,

it will rain one-third of the time, leaving one day to bomb.

Neither of the American strategies dominates the other. For the Japanese,
however, sailing north strictly dominates sailing south. We therefore eliminate the
Japanese strategy sail south. The resulting game has two American strategies but
only one Japanese strategy. In this smaller game, the American strategy search
north dominates search south. We therefore eliminate search south. What remains
is sail north for the Japanese, and search north for the Americans. This is in fact
what happened.

2.10. Normal form of a game in extensive form with complete
information

Recall that for a game in extensive form, a player’s strategy is a plan for what
action to take in every situation that the player might encounter. We can convert
a game in extensive form to one in normal form by simply listing the possible
strategies for each of the n players, then associating to each strategy profile the
resulting payoffs.

For example, consider the game of Big Monkey and Little Monkey described in
Section 1.5. Big Monkey has two strategies, wait (w) and climb (c). Little Monkey
has four strategies:

• ww: if Big Monkey waits, wait; if Big monkey climbs, wait.
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• wc: if Big Monkey waits, wait; if Big monkey climbs, climb.
• cw: if Big Monkey waits, climb; if Big monkey climbs, wait.
• cc: if Big Monkey waits, climb; if Big monkey climbs, climb.

The normal form of this game has the following payoff matrix.

Little Monkey
s ww wc cw cc
Big Monkey w (0, 0) (0, 0) (9, 1) (9, 1)

c (4, 4) (5, 3) (4, 4) (5, 3)

2.11. Big Monkey and Little Monkey 2

The matrix in the previous section is bigger than those we have looked at
previously (2×4 instead of 2×2). To find dominated strategies for Player 1 in such
a game, it is helpful to remember:

(1) Player 1’s strategy s1 strictly dominates his strategy s′1 if and only if, when
you compare the ordered pairs in the s1 row to those in the s′1 row, the
first entry of each pair in the s1 row is greater than the first entry of the
corresponding pair in the s′1 row (i.e., the pair in the same column).

(2) Player 1’s strategy s1 weakly dominates his strategy s′1 if and only if, when
you compare the ordered pairs in the s1 row to those in the s′1 row, the first
entry of each pair in the s1 row is greater than or equal to the first entry
of the corresponding pair in the s′1 row (i.e., the pair in the same column);
and for at least one ordered pair in the s1 row, the first entry is greater
than the first entry of the corresponding pair in the s′1 row.

In our matrix, neither of Player 1’s strategies strictly or weakly dominates the other:
4 > 0 and 5 > 0, but 9 > 4 and 9 > 5.

To find dominated strategies for Player 2:

(1) Player 2’s strategy s2 strictly dominates his strategy s′2 if and only if, when
you compare the ordered pairs in the s2 column to those in the s′2 column,
the second entry of each pair in the s2 column is greater than the second
entry of the corresponding pair in the s′2 column (i.e., the pair in the same
row).

(2) Player 2’s strategy s2 weakly dominates his strategy s′2 if and only if, when
you compare the ordered pairs in the s2 column to those in the s′2 column,
the second entry of each pair in the s2 column is greater than or equal to
the second entry of the corresponding pair in the s′2 column (i.e., the pair
in the same row); and for at least one ordered pair in the s2 column, the
second entry is greater than the second entry of the corresponding pair in
the s′2 column.
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In our matrix, ww weakly dominates wc (0 = 0 and 4 > 3); cw weakly dominates ww
(1 > 0 and 4 = 4); cw strictly dominates wc (1 > 0 and 4 > 3); cc weakly dominates
wc (1 > 0 and 3 = 3); and cw weakly dominates cc (1 = 1 and 4 > 3). However,
when we compare ww and cc, we see that neither strictly or weakly dominates the
other.

In the game of Big Monkey and Little Monkey with Big Monkey going first, it-
erated elimination of weakly dominated strategies produces different reduced games
when done in different orders.

Here is one way of doing iterated elimination of weakly dominated strategies
in the game.

(1) Eliminate Little Monkey’s strategy ww because it is weakly dominated by
cw, and eliminate Little Monkey’s strategy wc because it is weakly domi-
nated by cc.

(2) Eliminate Little Monkey’s strategy cc because in the reduced 2× 2 game it
is weakly dominated by cw.

(3) Eliminate Big Monkey’s strategy c because in the reduced 2× 1 game it is
dominated by w.

(4) What remains is the 1 × 1 game in which Big Monkey’s strategy is w and
Little Monkey’s strategy is cw. Thus each is a dominant strategy, and
(w, cw) is a dominant strategy equilibrium.

These are the strategies we found for Big Monkey and Little Monkey by backward
induction.

However, here is another way of doing iterated elimination of weakly dominated
strategies in this game.

(1) As before, begin by eliminating Little Monkey’s strategy ww because it is
weakly dominated by cw, and eliminate Little Monkey’s strategy wc because
it is weakly dominated by cc.

(2) Eliminate Big Monkey’s strategy c because in the reduced 2× 2 game it is
dominated by w.

(3) We are left with a 2×1 game in which no more strategies can be eliminated.
The remaining strategy profiles are (w, cw) (found before) and (w, cc). This
way of doing iterated elimination shows that w is a dominant strategy for
Big Monkey, but does not show that cw is a dominant strategy for Player
2.
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2.12. Backward induction and iterated elimination of dominated
strategies

For a game in extensive form, each way of going through the backward induc-
tion procedure is equivalent to a corresponding way of performing iterated elimina-
tion of weakly dominated strategies in the normal form of the same game.

We will now show that in the game of Big Monkey and Little Monkey with Big
Monkey going first, one way of doing backward induction corresponds to the first
way of doing iterated elimination of weakly dominated strategies that was described
in the previous section.

(1) Suppose you begin backward induction by noting that if Big Monkey waits,
Little Monkey should climb, and reduce the game tree accordingly. In
iterated elimination of weakly dominated strategies, this corresponds to
eliminating Little Monkey’s strategy ww because it is weakly dominated
by cw, and eliminating Little Monkey’s strategy wc because it is weakly
dominated by cc. The payoff matrix of the reduced game has two rows and
just two columns (cw and cc).

(2) The second step in backward induction is to note that if Big Monkey climbs,
Little Monkey should wait, and reduce the game tree accordingly. In iter-
ated elimination of weakly dominated strategies, this corresponds to elim-
inating Little Monkey’s strategy cc in the 2 × 2 game because it is weakly
dominated by cw. The payoff matrix of the reduced game has two rows and
just the cw column.

(3) The last step in backward induction is to use the reduced game tree to decide
that Big Monkey should wait. In iterated elimination of weakly dominated
strategies, this corresponds to eliminating Big Monkey’s strategy c because,
in the reduced game with only the cw column, it is dominated by w.

We will now describe the correspondence between backward induction and
iterated elimination of weakly dominated strategies for games in extensive form
with two players. The general situation just requires more notation.

Consider a game in extensive form with two players.

• Player 1 moves at nodes ci, 1 ≤ i ≤ p. At each node ci he has available a
set Mi of moves.

• Player 2 moves at nodes dj, 1 ≤ j ≤ q. At each node dj he has available a
set Nj of moves.

• A strategy for Player 1 is an assignment to each of his nodes of one of
the moves available at that node. Thus Player 1’s strategy set is M =
M1×· · ·×Mp, and a strategy for Player 1 is an ordered p-tuple (m1, . . . , mp)
with each mi ∈ Mi.
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• Similarly, Player 2’s strategy set is N = N1×· · ·×Nq. A strategy for Player
2 is an ordered q-tuple (n1, . . . , nq) with each nj ∈ Nj .

• The normal form of the game associates to each pair (m,n) ∈ M×N payoffs
π1(m,n) and π2(m,n). To determine these payoffs, the game in extensive
form is played with the strategies m and n. It ends in a uniquely defined
terminal node, whose payoffs are then used.

We consider a backward induction in the extensive form of the game. Assume
the players’ nodes are numbered so that in the backward induction, each player’s
nodes are reached in the order last to first.

1. Without loss of generality, suppose the first node treated in the backward
induction is Player 1’s node cp. Each move in Mp ends in a terminal vertex. Let
m∗

p be the move in Mp that gives the greatest payoff to Player 1. We assume m∗
p is

unique.

Backward induction records the fact that at node cp, Player 1 will choose m∗
p;

deletes from the game tree all moves that start at cp; and assigns to the now terminal
node cp the payoffs previously assigned to the end of m∗

p.

The corresponding step in iterated elimination of weakly dominated strategies
is to remove all of Player 1’s strategies (m1, . . . , mp−1, mp) withmp 6= m∗

p. The reason
is that each such strategy is weakly dominated by (m1, . . . , mp−1, m

∗
p). Against any

strategy of Player 2, the latter gives a better payoff if play reaches node cp, and the
same payoff if it does not.

2. Assume now that backward induction has reached Player 1’s nodes ck+1, . . . , cp
and Player 2’s nodes dl+1, . . . , dq. Without loss of generality, suppose the next node
treated is Player 1’s node ck. At this point in the backward induction, each move
in Mk ends in a terminal vertex. Let m∗

k be the move in Mk that gives the greatest
payoff to Player 1. We assume m∗

k is unique.

Backward induction records the fact that at node ck, Player 1 will choose m∗
k;

deletes from the game tree all moves that start at ck; and assigns to the now terminal
node ck the payoffs previously assigned to the end of m∗

k.

At the corresponding step in iterated elimination of weakly dominated strate-
gies, the remaining strategies of Player 1 are those of the form (m1, . . . , mk, m

∗
k+1, . . . ,

m∗
p), and the remaining strategies of Player 2 are those of the form (n1, . . . , nl, n

∗
l+1

, . . . , n∗
q). We now remove all of Player 1’s strategies (m1, . . . , mk−1, mk, m

∗
k+1, . . . , m

∗
p)

with mk 6= m∗
k. The reason is that each such strategy is weakly dominated by

(m1, . . . , mk−1, m
∗
k, m

∗
k+1, . . . , m

∗
p). Against any of Player 2’s remaining strategies,

the latter gives a better payoff if play reaches node ck, and the same payoff if it does
not.

59



3. Backward induction or iterated elimination of weakly dominated strategies
eventually produces unique strategies (m∗

1, . . . , m
∗
p) for Player 1 and (n∗

1, . . . , n
∗
q) for

Player 2.

2.13. Critique of elimination of dominated strategies

We saw with the Ultimatum Game in Section 1.7 that long backward induc-
tions can lead to strange conclusions, and we explained in Section 1.15 that rational
players need not follow the recommendation of a long backward induction. Iterating
elimination of dominated strategies many times is subject to the same remarks: it
can lead to strange conclusions, and rational players need not follow where it leads.
Problems 2.14.6 and 2.14.7 at the end of this chapter illustrate these remarks.

2.14. Problems

2.14.1. The tragedy of the commons. There are n herders who share a
common pasture. The pasture can support mn cattle without degrading. The ith
herder has a choice of two strategies:

• The responsible strategy: graze m cattle.
• The irresponsible strategy: graze m+ 1 cattle.

Each cow that is grazed brings a profit p > 0 to its herder. However, each herder
who grazes m+ 1 cattle imposes a cost c > 0 on the community of herders because
of the degradation of the pasture. The cost is shared equally by the n herders.

Assume c
n
< p < c. Thus the cost of grazing an extra cow is greater than the

profit from the cow, but each herder’s share of the cost is less than the profit.

(1) Show that for each herder, grazing m+ 1 cattle strictly dominates grazing
m cattle.

(2) Which of the following gives a higher payoff to each herder? (i) Every herder
grazes m+ 1 cattle. (ii) Every herder grazes m cattle. Give the payoffs in
each case.

2.14.2. Another auction. A Ming vase is sold at auction. The auction works
like this. Every bidder raises her hand. The auctioneer than calls out 1 dollar. Every
bidder who is not willing to pay this price lowers her hand. If no hands remain up,
the auction is over, and the vase is not sold to anyone. If exactly one buyer still has
her hand up, the vase is sold to her for 1 dollar. If more than one buyer still has her
hand up, the auctioneer calls out 2 dollars.

The auction continues in this manner. Once a bidder lowers her hand, she
cannot raise it again. All the bidders decide simultaneously whether to lower their
hands.
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Notice that the auction ends when either (1) the auctioneer calls out k dollars
and all hands are lowered but one, or (2) the auctioneer calls out k dollars and all
hands are lowered. In the first case, the vase is sold to the remaining bidder for k
dollars. In the second case, the vase is not sold to anyone.

There are n bidders, n ≥ 2. The value of the vase to bidder i is vi dollars; vi
is a nonnegative integer (0, 1, 2, . . . ). The payoff to bidder i is 0 if bidder i does
not win the vase, and is vi minus the price if bidder i does win the vase.

A strategy for bidder i is simply the highest bid she is willing to make, which
we assume is a nonnegative integer.

(1) Suppose bidder i’s strategy is bi, and the highest bid any other bidder is
willing to make is hi. Explain the following sentence: Bidder i’s payoff πi

is determined by the two numbers bi and hi, and

πi(bi, hi) =

{

0 if bi ≤ hi,

vi − (hi + 1) if hi < bi.

(2) Show that bidder i’s strategies vi − 1 and vi weakly dominate all her other
strategies bi with bi < vi − 1. To show this, pick a strategy bi < vi − 1
for bidder i. Let hi be the highest bid any other bidder is willing to make.
Compare πi(vi − 1, hi) and πi(vi, hi) to πi(bi, hi). You will have to consider
separately the three cases hi < bi, bi ≤ hi < vi − 1, and vi − 1 ≤ hi.

(3) Show that bidder i’s strategies vi − 1 and vi weakly dominate all her other
strategies bi with bi > vi. To show this, pick a strategy bi > vi for bidder
i. Let hi be the highest bid any other bidder is willing to make. Compare
πi(vi−1, hi) and πi(vi, hi) to πi(bi, hi). You will have to consider separately
the four cases hi < vi − 1, hi = vi − 1, vi ≤ hi < bi, and bi ≤ hi.

(4) We conclude that bidder i’s strategies vi − 1 and vi weakly dominate all
other strategies of bidder i. Does either of bidder i’s strategies vi − 1 and
vi weakly dominate the other? Explain.

2.14.3. Practice on iterated elimination of dominated strategies. Use
iterated elimination of dominated strategies to reduce the following games to smaller
games in which iterated elimination of dominated strategies can no longer be used.
State the order in which you eliminate strategies. If you find a dominant strategy
equilibrium, say what it is. (You eliminate rows by comparing first entries in the two
rows, and you eliminate columns by comparing second entries in the two columns.)

(1) In this problem, use iterated elimination of strictly dominated strategies.

t1 t2 t3
s1 (73, 25) (57, 42) (66, 32)
s2 (80, 26) (35, 12) (32, 54)
s3 (28, 27) (63, 31) (54, 29)
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(2) In this problem, use iterated elimination of weakly dominated strategies.

t1 t2 t3 t4 t5
s1 (63,−1) (28,−1) (−2, 0) (−2, 45) (−3, 19)
s2 (32, 1) (2, 2) (2, 5) (33, 0) (2, 3)
s3 (54, 1) (95,−1) (0, 2) (4,−1) (0, 4)
s4 (1,−33) (−3, 43) (−1, 39) (1,−12) (−1, 17)
s5 (−22, 0) (1,−13) (−1, 88) (−2,−57) (−3, 72)

2.14.4. War Between Two Cities. Cities A and I are at war. They are
connected by a network of roads, each of which takes one day to travel; see Figure
2.1. City I sends out an army with many siege guns and four days supplies, and at
the same time city A sends out a lightly armed force to stop city I’s army. If city
I’s army arrives at city A after four days, it will use its siege guns to destroy city
A’s walls and win the war.

A b c

d e f

hg I

Figure 2.1. Cities and roads.

Each night for three nights, city I’s army arrives at a road junction where it
spends the night. If city A’s force manages to arrive at the same junction on the
same night, it will be able to attack city I’s sleeping army and win the war.

Each country’s strategy is a sequence of three road junctions where its army
arrives on three successive nights. City I’s army must stay at b or d on the third
night. We will assume that city A’s army must move every day.

(1) List city I’s strategies. (There are six.)
(2) Explain why every strategy of city A that includes a visit to A is weakly

dominated by a strategy that never visits A. (Hint: the strategy bAd is
weakly dominated by the strategy bed: they do equally well on the first
and third nights, but the second strategy will sometimes win on the second
night, while the first strategy never will.)

(3) Explain why every strategy of city A that includes a visit to f or h is weakly
dominated by a strategy that never visits f or h.
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(4) List the remaining strategies for city A after these weakly dominated strate-
gies have been eliminated. (There are six.)

(5) Let city I be Player 1 and let city A be Player 2. Construct a 6 × 6
payoff matrix that represents this game when each player is limited to its
remaining six strategies. Use payoffs 1 to the winner and −1 to the loser.

(6) By eliminating weakly dominated strategies, reduce you game to a 2 × 4
one.

2.14.5. Football. On a play in a football game, the offense has two strategies,
run and pass. The defense has three strategies, counter run, counter pass, and blitz.
Payoff to the offense is yards gained; payoff to the defense is minus this number.
Statistics indicate that the payoffs are given by the following matrix.

Defense
counter run counter pass blitz

Offense run (3,−3) (6,−6) (15,−15)
pass (10,−10) (7,−7) (9,−9)

Use iterated elimination of strictly dominated strategies to find a dominant strategy
equilibrium.

2.14.6. The Traveler’s Dilemma. Two salesmen make identical trips in their
cars. They both cross five bridges. Some of the bridges have one dollar tolls. Their
boss knows that two of the bridges have one dollar tolls, but he doesn’t know whether
the others have one dollar tolls or are free. He asks each salesman to separately report
his bridge expenses, which will be an integer between 2 and 5. As an incentive to
report accurately, the boss makes the following rule. If both salesmen report the
same amount, both will be reimbursed that amount. However, if they report different
amounts, the boss will assume the lower amount is correct. He will reimburse the
salesman who reported the lower amount that amount plus a $2 reward for honesty,
and he will reimburse the other salesman that amount minus a $2 penalty for trying
to cheat. The payoffs are therefore given by the following table.

Salesman 2
2 3 4 5

2 (2, 2) (4, 0) (4, 0) (4, 0)
Salesman 1 3 (0, 4) (3, 3) (5, 1) (5, 1)

4 (0, 4) (1, 5) (4, 4) (6, 2)
5 (0, 4) (1, 5) (2, 6) (5, 5)

Use iterated elimination of weakly dominated strategies to find a dominant strategy
equilibrium.
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2.14.7. Trying to Be Below Average. n players each independently choose
an integer between 0 and 100. Let k denote the average of the chosen numbers.
The player whose chosen number is closest to 2

3
k wins a prize. If several players are

closest to the chosen number, they share the prize equally.

(1) Explain the following statement: for each player, the choice 67 weakly
dominates all choices greater than 67. Hint: what is the greatest 2

3
k can

possibly be?
(2) Eliminate all choices greater than 67 for all player. Justify the following

statement: in the reduced game, for each player the choice 45 weakly dom-
inates all choices greater than 45.

(3) Proceeding in this manner, reduce the game to one in which each player
has just two strategies, 0 and 1. Can the game be reduced further?
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CHAPTER 3

Nash equilibria

In this chapter we continue to look at games in normal form. We define the
Nash equilibrium, which is a strategy profile at which no player, acting alone, can
make a change that improves his outcome. Remarkably, this concept in its modern
generality only dates back to around 1950, when John Nash developed it during
his graduate work in mathematics at Princeton. The earliest version of the Nash
equilibrium occurs in Cournot’s 1838 work on oligopoly, which we discuss in Section
3.10. Nash equilbria are strategy profiles at which a game can get stuck. They may
be good outcomes for all, some, or none of the players.

3.1. Big Monkey and Little Monkey 3 and the definition of Nash
equilibria

There are many games in normal form that cannot be analyzed by elimination
of dominated strategies. For example, in the encounter between Big Monkey and
Little Monkey (see Section 1.5), suppose Big Monkey and Little Monkey decide
simultaneously whether to wait or climb. Then we get the following payoff matrix.

Little Monkey
wait climb

Big Monkey wait (0, 0) (9, 1)
climb (4, 4) (5, 3)

There are no dominated strategies.

Consider a game in normal form with n players, strategy sets S1, . . . , Sn, and
payoff functions π1, . . . , πn. A Nash equilibrium is a strategy profile (s∗1, . . . , s

∗
n) with

the following property: if any single player, say the ith, changes his strategy, his
own payoff will not increase.

In other words, (s∗1, . . . , s
∗
n) is a Nash equilibrium provided

• For every s1 ∈ S1, π1(s
∗
1, s

∗
2, . . . , s

∗
n) ≥ π1(s1, s

∗
2, . . . , s

∗
n).

• For every s2 ∈ S2, π2(s
∗
1, s

∗
2, s

∗
3, . . . , s

∗
n) ≥ π2(s

∗
1, s2, s

∗
3, . . . , s

∗
n).

...
• For every sn ∈ Sn, πn(s

∗
1, . . . , s

∗
n−1, s

∗
n) ≥ πn(s

∗
1, . . . , s

∗
n−1, sn).
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A strict Nash equilibrium is a strategy profile (s∗1, . . . , s
∗
n) with the property:

if any single player, say the ith, changes his strategy, his own payoff will decrease.

In other words, (s∗1, . . . , s
∗
n) is a strict Nash equilibrium provided

• For every s1 6= s∗1 in S1, π1(s
∗
1, s

∗
2, . . . , s

∗
n) > π1(s1, s

∗
2, . . . , s

∗
n).

• For every s2 6= s∗2 in S2, π2(s
∗
1, s

∗
2, s

∗
3, . . . , s

∗
n) > π2(s

∗
1, s2, s

∗
3, . . . , s

∗
n).

...
• For every sn 6= s∗n in Sn, πn(s

∗
1, . . . , s

∗
n−1, s

∗
n) > πn(s

∗
1, . . . , s

∗
n−1, sn).

In the game of Big Monkey and Little Monkey described above, there are two
strict Nash equilibria, (wait, climb) and (climb, wait):

• The strategy profile (wait, climb) is a Nash equilibrium. It produces the
payoffs (9, 1). If Big Monkey changes to climb, his payoff decreases from 9
to 5. If Little Monkey changes to wait, his payoff decreases from 1 to 0.

• The strategy profile (climb, wait) is also a Nash equilibrium. It produces
the payoffs (4, 4). If Big Monkey changes to wait, his payoff decreases from
4 to 0. If Little Monkey changes to climb, his payoff decreases from 4 to 3.

Big Monkey prefers the first of these Nash equilibria, Little Monkey the second.

Note that in this game, the strategy profiles (wait, wait) and (climb, climb)
are not Nash equilibria. In fact, for these strategy profiles, either monkey could
improve his payoff by changing his strategy.

Game theorists often use the following notation when discussing Nash equi-
libria. Let s = (s1, . . . , sn) denote a strategy profile. Suppose in s we replace the
ith player’s strategy si by another of his strategies, say s′i. The resulting strategy
profile is then denoted (s′i, s−i).

In this notation, a strategy profile s∗ = (s∗1, . . . , s
∗
n) is a Nash equilibrium if,

for each i = 1, . . . , n, πi(s
∗) ≥ πi(si, s

∗
−i) for every si ∈ Si. The strategy profile s∗

is a strict Nash equilibrium if, for each i = 1, . . . , n, πi(s
∗) > πi(si, s

∗
−i) for every

si 6= s∗i in Si.

The notion of Nash equilibrium is the most important idea in game theory.

We will consider three ways of finding Nash equilibria:

• Inspection (Sections 3.2–3.4).
• Iterated elimination of dominated strategies (Sections 3.5–3.6).
• Using best response (Sections 3.7–3.10).
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3.2. Finding Nash equilibria by inspection: important examples

One way to find Nash equilibria is by inspection. This is how we found the
Nash equilibria in the game of Big Monkey and Little Monkey in the previous section.
Here are four important examples.

3.2.1. Prisoner’s Dilemma. Recall the Prisoner’s Dilemma from Section 2.1:

Executive 2
talk refuse

Executive 1 talk (−6,−6) (0,−10)
refuse (−10, 0) (−1,−1)

Let’s inspect all four strategy profiles

• The strategy profile (talk,talk) is a strict Nash equilibrium. If either ex-
ecutive alone changes his strategy to refuse, his payoff falls from −6 to
−10.

• The strategy profile (refuse, refuse) is not a Nash equilibrium. If either
executive alone changes his strategy to talk, his payoff increases from −1
to 0.

• The strategy profile (talk, refuse) is not a Nash equilibrium. If executive 2
changes his strategy to talk, his payoff increases from −10 to −6.

• The strategy profile (refuse, talk) is not a Nash equilibrium. If executive 1
changes his strategy to talk, his payoff increases from −10 to −6.

The Prisoner’s Dilemma illustrates an important fact about Nash equilibria:
they are not necessarily good for the players! Instead they are strategy profiles
where a game can get stuck, for better or worse.

3.2.2. Stag hunt. Two hunters on horseback are pursuing a stag. If both work
together, they will succeed. However, the hunters notice that they are passing some
hare. If either hunter leaves the pursuit of the stag to pursue a hare, he will succeed,
but the stag will escape.

Let’s model this situation as a 2-player game in which the players decide their
moves simultaneously. The players are the hunters. The possible strategies for each
are pursue the stag and pursue a hare. Let’s suppose that the payoff for catching a
hare is 1 to the hunter who caught it, and the payoff for catching the stag is 2 to
each hunter. The payoff matrix is

Hunter 2
stag hare

Hunter 1 stag (2, 2) (0, 1)
hare (1, 0) (1, 1)

67



There are no dominated strategies. If we inspect all four strategy profiles, we find
that there are two strict Nash equilibria, (stag, stag) and (hare, hare). Both hunters
prefer (stag, stag) to (hare, hare).

Like the Prisoner’s Dilemma, Stag Hunt represents a type of cooperation
dilemma that is common in human affairs. Without cooperating, each hunter can
decide individually to pursue a hare, thus guaranteeing himself a payoff of 1. If
both players do this, we have a noncooperative Nash equilibrium. A better Nash
equilibrium exists in which both players cooperate to pursue the stag. However, if
the players are in the noncooperative equilibrium, it may be difficult to get to the
cooperative equilibrium. The reason is that if one player on his own switches to the
strategy of pursuing the stag, his payoff becomes worse.

Stag Hunt differs from the Prisoner’s Dilemma in that, if both players manage
to cooperate by pursuing the stag together, they have arrived at a Nash equilibrium,
which means that neither will be tempted to cheat.

The problem of how to deal with a depressed economy resembles a Stag Hunt
game. In a depressed economy, companies don’t hire workers because they lack cus-
tomers, and they lack customers because other companies don’t hire workers. This
is a low-payoff equilibrium. A better equilibrium is one in which lots of companies
hire lots of workers, who are then needed because the other companies’ workers
become customers. However, it is not easy to get from the first equilibrium to the
second. The first companies to hire more workers will find that the new workers are
not needed and depress profits.

The solution to this problem proposed by John Maynard Keynes in the 1930s
is that in a depressed economy, the government should spend more, for example
on infrastructure projects. The additional spending will cause some companies to
hire more workers, who will become customers for other companies, which will in
turn hire more workers. Once the economy has been jolted into the high-payoff
equilibrium it can maintain itself there.

Stag Hunt problems, while difficult to solve, are easier to solve than Prisoner’s
Dilemmas. Thus our economic problems should be easier to solve than the problem
of global warming; compare Section 2.5.

The Wikipedia page for Stag Hunt is
http://en.wikipedia.org/wiki/Stag_hunt. Games like Stag Hunt, in which
there are several Nash equilibria, one of which is best for all players, are some-
times called pure coordination games. The players should somehow coordinate their
actions so that they are in the best of the Nash equilibria. For more information,
see the Wikipedia page http://en.wikipedia.org/wiki/Coordination_game.

3.2.3. Chicken. The game of Chicken was (supposedly) played by American
teenagers in the 1950’s. A variant of the game (not the version we will describe) is
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shown in the James Dean movie “Rebel without a Cause.” In Chicken, two teenagers
drive their cars toward each other at high speed. Each has two strategies: drive
straight or swerve. The payoffs are as follows.

Teenager 2
straight swerve

Teenager 1 straight (−2,−2) (1,−1)
swerve (−1, 1) (0, 0)

If one teen drives straight and one swerves, the one who drives straight gains in
reputation, and the other loses face. However, if both drive straight, there is a
crash, and both are injured. There are two Nash equilibria: (straight, swerve) and
(swerve, straight). Each gives a payoff of 1 to one player and -1 to the other. Thus
each player prefers the equilibrium that gives the payoff 1 to himself.

The version of Big Monkey and Little Monkey discussed in Section 3.1 is a
Chicken-type game.

One way to win Chicken-type games is to cultivate a reputation for being crazy,
and hence willing to pursue the drive straight strategy even though it may lead to dis-
aster. For a scary example of how President Richard Nixon and his National Security
Advisor Henry Kissinger used this idea during negotiations to end the Vietnam war,
see http://www.wired.com/politics/security/magazine/16-03/ff_nuclearwar.

3.2.4. Battle of the Sexes. Alice and Bob want to meet this evening. There
are two events they could meet at: a Justin Bieber concert and a pro wrestling
match. Unfortunately their cell phones are dead. Alice prefers the concert and Bob
prefers the wrestling match. However, they both prefer meeting to missing each
other. The payoffs are given in the following table

Bob
concert wrestling

Alice concert (2, 1) (0, 0)
wrestling (0, 0) (1, 2)

As in Chicken, there are two Nash equilibria, one preferred by one player, one by
the other. Here, however, the players are trying to cooperate rather than compete.
If you were Alice, which event would you go to?

3.3. Water Pollution 1

Three firms use water from a lake. When a firm returns the water to the lake,
it can purify it or fail to purify it (and thereby pollute the lake).
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The cost of purifying the used water before returning it to the lake is 1. If two
or more firms fail to purify the water before returning it to the lake, all three firms
incur a cost of 3 to treat the water before they can use it.

The payoffs are therefore as follows:

• If all three firms purify: −1 to each firm.
• If two firms purify and one pollutes: −1 to each firm that purifies, 0 to the
polluter.

• If one firm purifies and two pollute: −4 to the firm that purifies, −3 to each
polluter.

• If all three firms pollute: −3 to each firm.

We inspect these possibilities to see if any are Nash equilibria.

• Suppose all three firms purify. If one switches to polluting, its payoff in-
creases from −1 to 0. This is not a Nash equilibrium.

• Suppose two firms purify and one pollutes. If a purifier switches to pollut-
ing, its payoff decreases from −1 to −3. If the polluter switches to purifying,
its payoff decreases from 0 to −1. Thus there are three Nash equilibria in
which two firms purify and one pollutes.

• Suppose one firm purifies and two pollute. If the purifier switches to pol-
luting, its payoff increases from −4 to −3. This is not a Nash equilibrium.

• Suppose all three firms pollute. If one switches to purifying, its payoff
decreases from −3 to −4. This is a Nash equilibrium.

We see here an example of the free rider problem (Wikipedia page:
http://en.wikipedia.org/wiki/Free_rider_problem). Each firm wants to be
the one that gets the advantage of the other firms’ efforts without making any effort
itself.

The free rider problem arises in negotiating treaties to deal with climate
change. For example, the U.S. objected to the 1997 Kyoto protocol because it
did not require action by developing countries such as China and India (Wikipedia
page: http://en.wikipedia.org/wiki/Kyoto_treaty).

The free rider problem also arose in connection with the Troubled Asset Re-
lief Program (TARP), under which the U.S. Treasury invested several hundred bil-
lion dollars in U.S. banks during the financial crisis of late 2008 and early 2009.
(Wikipedia page:
http://en.wikipedia.org/wiki/Troubled_Asset_Relief_Program.) You may re-
member that some banks wanted to pay back this investment very quickly. What
could be wrong with this?
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• The situation was that the banks had made many loans to people and
corporations who appeared unable to repay them. If too many of these
loans were not repaid, the banks would be rendered bankrupt.

• The banks therefore needed to conserve what cash they had, so they were
unwilling to make new loans.

• If the banks were unwilling to lend, the economy would slow, making it
even less likely that that the problem loans would be repaid.

• The government therefore invested in (“injected capital into”) the banks.
The banks now had more money, so they would, the government hoped,
lend more. Then the economy would pick up, some of the problem loans
would be repaid, and the banks would be okay.

• Unfortunately for the banks, the government’s investment was accompanied
by annoying requirements, such as limitations on executive pay.

• If a few banks were allowed to repay the government’s investment, they
could avoid the annoying requirements, but still benefit from the economic
boost and loan repayments due to the other banks’ increased lending. The
banks that repaid the government would become free riders.

3.4. Tobacco Market

At a certain warehouse, the price of tobacco per pound in dollars, p, is related
to the supply of tobacco in pounds, q, by the formula

(3.1) p = 10− q

100, 000
.

Thus the more tobacco that farmers bring to the warehouse, the lower the price.
However, a price support program ensures that the price never falls below $.25 per
pound. In other words, if the supply is so high that the price would be below $.25
per pound, the price is set at p = .25, and a government agency purchases whatever
cannot be sold at that price.

One day three farmers are the only ones bringing their tobacco to this ware-
house. Each has harvested 600,000 pounds and can bring as much of his harvest as
he wants. Whatever is not brought must be discarded.

There are three players, the farmers. The ith farmer’s strategy is simply the
amount of tobacco he brings to the warehouse, and hence is a number qi, 0 ≤ qi ≤
600, 000. The payoff to Farmer i is πi(q1, q2, q3) = pqi, where

p =

{

10− q1+q2+q3
100,000

if q1 + q2 + q3 ≤ 975, 000,

.25 if q1 + q2 + q3 > 975, 000.

(The importance of 975,000 is that if q = 975, 000, the formula (3.1) gives p = .25.)
We will find the Nash equilibria by inspecting all strategy profiles (q1, q2, q3), 0 ≤
qi ≤ 600, 000.
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1. Suppose some qi=0. Then Farmer i’s payoff is 0, which he could increase
by bringing some of his tobacco to market. This is not a Nash equilibrium.

2. Suppose q1 + q2 + q3 ≥ 975, 000. The price is then $.25, and will stay the
same if any farmer brings more of his tobacco to market. Thus if any qi is less than
600,000, that farmer could increase his own payoff by bringing more of his tobacco
to market. Hence the only possible Nash equilibrium with q1 + q2 + q3 ≥ 975, 000
is (600,000, 600,000, 600,000). It really is one: if any farmer alone brings less to
market, the price will not rise, so his payoff will certainly decrease. The payoff to
each farmer at this Nash equilibrium is πi = .25× 600, 000 = 150, 000.

3. Suppose q1+q2+q3 < 975, 000 and 0 < qi < 600, 000 for all i. In this region
the payoff functions πi are given by

πi(q1, q2, q3) = (10− q1 + q2 + q3
100, 000

)qi.

Suppose (q1, q2, q3) is a Nash equilibrium in this region. Let us consider first Farmer
1. The maximum value of π1(q1, q2, q3), with q2 and q3 fixed at their Nash equilibrium
values, must occur at the Nash equilibrium. Since q1 is not an endpoint of the interval
0 ≤ q1 ≤ 600, 000, we must have ∂π1

∂q1
= 0 at the Nash equilibrium. By considering

Farmers 2 and 3, we get the additional equations ∂π2

∂q2
= 0 and ∂π3

∂q3
= 0. This is a

system of three equations in the three unknowns (q1, q2, q3). If you solve it you will
find the only possible Nash equilibrium in the region under consideration.

Our system of equations is

10− q1 + q2 + q3
100, 000

− q1
100, 000

= 0,

10− q1 + q2 + q3
100, 000

− q2
100, 000

= 0,

10− q1 + q2 + q3
100, 000

− q3
100, 000

= 0.

It is a linear system. You can solve it with a calculator, or you can write it in
a standard form and use row operations to reduce to row-echelon form. Here is
another way: The three equations imply that q1 = q2 = q3. Then the first equation
implies that

10− 3q1
100, 000

− q1
100, 000

= 0,

so q1 = 250, 000. Hence the only possible Nash equilibrium in this region is (250,000,
250,000, 250,000).

To check whether this really is a Nash equilibrium, let us consider Farmer
1. (The others are similar). For (q2, q3) = (250,000, 250,000), Farmer 1’s payoff
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function is

π1(q1, 250,000, 250,000) =

{

(10− q1+500,000
100,000

)q1 if 0 ≤ q1 ≤ 475, 000,

.25q1 if 475, 000 < q1 ≤ 600, 000.

The quadratic function (10 − q1+500,000
100,000

)q1, 0 ≤ q1 ≤ 475, 000, is maximum at the

point we have found, q1 = 250, 000, where π1 = 2.50×250, 000 = 625, 000. Moreover,
for 475, 000 < q1 ≤ 600, 000, π1 = .25q1 is at most 150, 000. Therefore Farmer 1
cannot improve his payoff by changing q1. The same is true for Farmers 2 and 3, so
(250,000, 250,000, 250,000) is indeed a Nash equilibrium.

4. There is one case we have not yet considered: q1 + q2 + q3 < 975, 000,
0 < qi < 600, 000 for two i, and qi = 600, 000 for one i. It turns out that there are
no Nash equilibria in this case. The analysis is left as homework.

In conclusion, there are two Nash equilibria, (600,000, 600,000, 600,000) and
(250,000, 250,000, 250,000). The second is preferred to the first by all three farmers.
Therefore Tobacco Market is a pure coordination game, like Stag Hunt (Subsection
3.2.2). If the farmers can agree among themselves to each bring 250,000 pounds
of tobacco to market and discard 350,000 pounds, none will have an incentive to
cheat. On the other hand, the tobacco buyers would prefer that they each bring
600,000 pounds to market. If all farmers do that, none can improve his own payoff
be bringing less. Thus, as with Stag Hunt, if the farmers are in the equilibrium in
which they each bring all their tobacco to market, it may be difficult for them to
get to the other equilibrium.

3.5. Finding Nash equilibria by iterated elimination of dominated
strategies

The relation between iterated elimination of dominated strategies, which we
discussed in Chapter 2, and Nash equilibria is summarized in the following theorems.

Theorem 3.1. Suppose we do iterated elimination of weakly dominated strategies
on a game G in normal form. Let H be the reduced game that results. Then:

(1) Each Nash equilibrium of H is also a Nash equilibrium of G.
(2) In particular, if H has only one strategy s∗i for each player, then the strategy

profile (s∗1, . . . , s
∗
n) is a Nash equilibrium of G.

The last conclusion of Theorem 3.1 just says that every dominant strategy
equilibrium is a Nash equilibrium.

When one does iterated elimination of strictly dominated strategies, one can
say more.

Theorem 3.2. Suppose we do iterated elimination of strictly dominated strategies
on a game G in normal form. Then:
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(1) Any order yields the same reduced game H.
(2) Each strategy that is eliminated is not part of any Nash equilibrium of G.
(3) Each Nash equilibrium of H is also a Nash equilibrium of G.
(4) If H has only one strategy s∗i for each player, (s∗1, . . . , s

∗
n) is a strict Nash

equilibrium. Moreover, there are no other Nash equilibria.

Theorem 3.2 justifies using iterated elimination of strictly dominated strategies
to reduce the size of the game to be analyzed. It says in part that we do not miss
any Nash equilibria by doing the reduction.

On the other hand, we certainly can miss Nash equilibria by using iterated
elimination of weakly dominated strategies to reduce the size of the game. This is
the second problem with iterated elimination of weakly dominated strategies that
we have identified; the first was that the resulting smaller game can depend on the
order in which the elimination is done.

We shall prove statements (2), (3), and (4) of Theorem 3.2, and we shall
indicate how our proof of statement (3) of Theorem 3.2 can be modified to give a
proof of statement (1) of Theorem 3.1. Of course, statement (2) of Theorem 3.1
follows from statement (1) of Theorem 3.1.

Proof. We consider iterated elimination of strictly dominated strategies on a
game G in normal form.

To prove statement (2) of Theorem 3.2, we will prove by induction the state-
ment: The kth strategy that is eliminated is not part of any Nash equilibrium.

k = 1: Let si, a strategy of Player i, be the first strategy that is eliminated.
It was eliminated because the ith player has a strategy ti that strictly dominates
it. Suppose si is part of a strategy profile. Replacing si by ti, and leaving all other
players’ strategies the same, increases the payoff to Player i. Therefore this strategy
profile is not a Nash equilibrium.

Assume the statement is true for k = 1, . . . , l. Let si, a strategy of Player i,
be the l + 1st strategy that is eliminated. It was eliminated because the ith player
has a strategy ti that strictly dominates it, assuming no player uses any previously
eliminated strategy. Suppose si is part of a strategy profile. If any of the previously
eliminated strategies is used in this strategy profile, then by assumption it is not
a Nash equilibrium. If none of the previously eliminated strategies is used, then
replacing si by ti, and leaving all other players’ strategies the same, increases the
payoff to Player i. Therefore this strategy profile is not a Nash equilibrium.

This completes the proof of statement (2) of Theorem 3.2.

To prove statement (3) of Theorem 3.2, let (s∗1, s
∗
2, . . . , s

∗
n) be a Nash equilib-

rium of H , and let S1 be Player 1’s strategy set for G. We must show that for every
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s1 6= s∗1 in S1,

(3.2) π1(s
∗
1, s

∗
2, . . . , s

∗
n) ≥ π1(s1, s

∗
2, . . . , s

∗
n).

(Of course, we must also prove an analogous statement for the other players, but
the argument would be the same.)

If s1 is a strategy of Player 1 that remains in the reduced game H , then of
course (3.2) follows from the fact that (s∗1, s

∗
2, . . . , s

∗
n) is a Nash equilibrium of H .

To complete the proof we will show that if s1 is any strategy of Player 1 that was
eliminated in the course of iterated elimination of strictly dominated strategies, then

(3.3) π1(s
∗
1, s

∗
2, . . . , s

∗
n) > π1(s1, s

∗
2, . . . , s

∗
n).

Note the strict inequality.

In fact, we will prove by reverse induction the statement: If s1 is the kth
strategy of Player 1 to be eliminated, then (3.3) holds.

Let s1 be the last strategy of Player 1 to be eliminated. It was eliminated be-
cause one of the remaining strategy of Player 1, say t1, when used against any
remaining strategies s2, . . . , sn of the other players, satisfied π1(t1, s2, . . . , sn) >
π1(s1, s2, . . . , sn). In particular, since s∗2, . . . , s

∗
n were among the remaining strate-

gies, we get

(3.4) π1(t1, s
∗
2, . . . , s

∗
n) > π1(s1, s

∗
2, . . . , s

∗
n).

Since (s∗1, s
∗
2, . . . , s

∗
n) is a Nash equilibrium of H and t1 is a strategy available to

Player 1 in H (it was never eliminated),

(3.5) π1(s
∗
1, s

∗
2, . . . , s

∗
n) ≥ π1(t1, s

∗
2, . . . , s

∗
n).

Combining (3.5) and (3.4), we get (3.3).

Assume the statement is true for all k ≥ l. Let s1 be the (ℓ − 1)st strategy
of Player 1 to be eliminated. It was eliminated because one of the other remaining
strategies of Player 1, say t1, when used against any remaining strategies s2, . . . , sn
of the other players, satisfied π1(t1, s2, . . . , sn) > π1(s1, s2, . . . , sn). In particular,
since s∗2, . . . , s

∗
n were among the remaining strategies, we get (3.4). If t1, is never

eliminated, then it is still available to Player 1 in H , so we have (3.5). Combining
(3.5) and (3.4), we again get (3.3). If t1 is one of the strategies of Player 1 that is
eliminated after s1, then, by the induction hypothesis,

(3.6) π1(s
∗
1, s

∗
2, . . . , s

∗
n) > π1(t1, s

∗
2, . . . , s

∗
n).

Combining (3.6) and (3.4), we get (3.3).

This completes the proof of statement (3) of Theorem 3.2.

To prove statement (4) of Theorem 3.2, we must show that if H has only one
strategy s∗i for each player, then for every s1 6= s∗1 in S1,

(3.7) π1(s
∗
1, s

∗
2, . . . , s

∗
n) > π1(s1, s

∗
2, . . . , s

∗
n).
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In this case, every s1 6= s∗1 in S1 is eliminated in the course of iterated elimination of
strictly dominated strategies, so the proof we gave of statement (3) actually yields
the conclusion.

The proof of statement (1) of Theorem 3.1 is essentially the same as the proof
of statement (3) of Theorem 3.2, except that no inequalities are strict. �

3.6. Big Monkey and Little Monkey 4: threats, promises, and
commitments revisited

Let us consider again the game of Big Monkey and Little Monkey (Sec. 1.5)
with Big Monkey going first. The normal form of this game is repeated below.

Little Monkey
ww wc cw cc

Big Monkey w (0, 0) (0, 0) (9, 1) (9, 1)
c (4, 4) (5, 3) (4, 4) (5, 3)

We have seen two ways of doing iterated elimination of weakly dominated
strategies for this game.

One, which corresponds to a way of doing backward induction in the extensive
form of the game, led to the 1 × 1 reduced game consisting of the strategy profile
(w, cw). This strategy profile is therefore a dominant strategy equilibrium, and
hence a Nash equilibrium. However, since it was found by iterated elimination of
weakly dominated strategies, it is not guaranteed to be the only Nash equilibrium.

The second way we did iterated elimination of weakly dominated strategies led
to a 2 × 1 reduced game. Both remaining strategy profiles (w, cw) (found before)
and (w, cc) are Nash equilibria.

One can check that (c, ww) is also a Nash equilibrium. It cannot be found by
doing iterated elimination of weakly dominated strategies.

Both of the Nash equilibria (w, cc) and (c, ww) use strategies that were elimi-
nated in one way of doing iterated elimination of weakly dominated strategies, but
they are strategies that we have seen before in Section 1.6. In the Nash equilibrium
(c, ww), Little Monkey’s strategy ww includes the threat that if Big Monkey waits,
he will wait also. In the Nash equilibrium (w, cc), Little Monkey’s strategy cc in-
cludes the promise to climb if Big Monkey climbs. You may recall that the threat
changed the outcome of the game but the promise did not.

Why do we find Nash equilibria when we look at the normal form of the game
that we did not find when we used backward induction?

The reason is that when we look at the normal form of the game, we assume
that Big Monkey and Little Monkey choose their strategies once and for all at the
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start of the game. The fact that Little Monkey’s strategy might include a move
that, should the time comes to make it, would not be profitable, is not relevant.

Consider again the strategy profile (c, ww), in which Little Monkey makes the
threat to wait if Big Monkey waits. A little thought reveals that this is certainly a
Nash equilibrium. If Little Monkey commits himself in advance to waiting no matter
what, then Big Monkey can do no better than to climb. On the other hand, if Big
Monkey climbs, Little Monkey can do no better than to wait, which he will indeed
do if he adopts the strategy ww.

This analysis is relevant provided Little Monkey can really commit himself in
advance to using the strategy ww, so that the normal form of the game becomes
appropriate.

3.7. Finding Nash equilibria using best response

Consider a game in normal form with n players, strategy sets S1, . . . , Sn, and
payoff functions π1, . . . , πn. Let s2, . . . , sn be fixed strategies for players 2, . . . , n.
Suppose s∗1 is a strategy for Player 1 with the property that

(3.8) π1(s
∗
1, s2, . . . , sn) ≥ π1(s1, s2, . . . , sn) for all s1 ∈ S1.

Then s∗1 is a best response of Player 1 to the strategy choices s2, . . . , sn of the other
players. Of course, Player 1 may have more than one such best response.

For each choice s2, . . . , sn of strategies by the other players, let B1(s2, . . . , sn)
denote the set of best responses by Player 1. In other words,

s∗1 ∈ B1(s2, . . . , sn) if and only if π1(s
∗
1, s2, . . . , sn) ≥ π1(s1, s2, . . . , sn) for all s1 ∈ S1.

The mapping that associates to each (s2, . . . , sn) ∈ S2 × · · · × Sn the corre-
sponding set B1(s2, . . . , sn), a subset of S1, is called Player 1’s best response corre-
spondence. If each set B1(s2, . . . , sn) consists of a single point, we have Player 1’s
best response function b1(s2, . . . , sn).

Best response correspondences for the other players are defined analogously.

At a Nash equilibrium, each player’s strategy is a best response to the other
players’ strategies. In other words, the strategy profile (s∗1, . . . , s

∗
n) is a Nash equi-

librium if and only if

• s∗1 ∈ B1(s
∗
2, . . . , s

∗
n).

• s∗2 ∈ B2(s
∗
1, s

∗
3 . . . , s

∗
n).

...
• s∗n ∈ Bn(s

∗
1, . . . , s

∗
n−1).

This property of Nash equilibria can be used to find them. Just graph all
players’ best response correspondences in one copy of strategy profile space and find
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where they intersect! Alternatively, describe each best response correspondence by
an equation, and solve the equations simultaneously.

3.8. Big Monkey and Little Monkey 5

Once again we consider the game of Big Monkey and Little Monkey (Sec. 1.5)
with Big Monkey going first. The normal form of this game with both players’ best
response correspondences graphed is shown below.

Little Monkey
ww wc cw cc

Big Monkey w (0, 0) (0, 0) ( 9 , 1 ) ( 9 , 1 )

c ( 4 , 4 ) ( 5 , 3) (4, 4 ) (5, 3)

Explanation:

• Big Monkey’s best response correspondence is actually a function:
– If Little Monkey does ww, do c.
– If Little Monkey does wc, do c.
– If Little Monkey does cw, do w.
– If Little Monkey does cc, do w.

This correspondence is indicated in the payoff matrix by drawing a box
around the associated payoffs to Big Monkey. In other words, in each of
the four columns of the matrix, we drew a box around Big Monkey’s highest
payoff.

• Little Monkey’s best response correspondence is not a function:
– If Big Monkey does w, do cw or cc.
– If Big Monkey does c, do ww or cw.

This correspondence is indicated in the payoff matrix by drawing a box
around the associated payoffs to Little Monkey. In other words, in each of
the two rows of the matrix, we drew a box around Little Monkey’s highest
payoffs.

Notice that three ordered pairs have both payoffs boxed. These ordered pairs cor-
respond to intersections of the graphs of the two players’ best response correspon-
dences, and hence to Nash equilibria.

For a two-player game in normal form where each player has only a finite
number of strategies, graphing the best response correspondences as we did in this
example is the best way to find Nash equilibria.

3.9. Water Pollution 2

The payoffs in the Water Polution game (Sec. 3.3) can be represented by two
2× 2 matrices of ordered triples as follows.
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Firm 3 purifies

Firm 2
purify pollute

Firm 1 purify (−1,−1,−1) (−1, 0,−1)
pollute (0,−1,−1) (−3,−3,−4)

Firm 3 pollutes

Firm 2
purify pollute

Firm 1 purify (−1,−1, 0) (−4,−3,−3)
pollute (−3,−4,−3) (−3,−3,−3)

Each ordered triple represents payoffs to Firms 1, 2, and 3.

These two matrices should be thought of as stacked one above the other. One
then indicates

• Player 1’s best response to each choice of strategies by the other players by
boxing the highest first entry in each column;

• Player 2’s best response to each choice of strategies by the other players by
boxing the highest second entry in each row;

• Player 3’s best response to each choice of strategies by the other players by
boxing the highest third entry in each “stack”.

Firm 3 purifies

Firm 2
purify pollute

Firm 1 purify (−1,−1,−1) ( −1 , 0 , −1 )

pollute ( 0 , −1 , −1 ) (−3,−3,−4)

Firm 3 pollutes

Firm 2
purify pollute

Firm 1 purify ( −1 , −1 , 0 ) (−4,−3,−3)

pollute (−3,−4,−3) ( −3 , −3 , −3 )

The Nash equilibria correspond to ordered triples with all three entries boxed.
As before, we have found four Nash equilibria. In three of them, two firms purify
and one pollutes. In the fourth, all firms pollute.
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3.10. Cournot’s model of duopoly

Cournot’s model of duopoly (Wikipedia article:
http://en.wikipedia.org/wiki/Cournot_duopoly) is the same as Stackelberg’s
(see Section 1.10), except that that the players choose their production levels simul-
taneously. This is a game in normal form with two players, strategy sets 0 ≤ s < ∞
and 0 ≤ t < ∞, and payoff functions

π1(s, t) = p(s+ t)s− cs =

{

(α− β(s+ t)− c)s if s+ t < α
β
,

−cs if s+ t ≥ α
β
,

π2(s, t) = p(s+ t)t− ct =

{

(α− β(s+ t)− c)t if s+ t < α
β
,

−ct if s+ t ≥ α
β
.

To calculate Player 2’s best response function, we must maximize π2(s, t), s
fixed, on the interval 0 ≤ t < ∞. This was done in Section 1.10; the answer is

t = b2(s) =

{

α−βs−c

2β
if s < α−c

β
,

0 if s ≥ α−c
β
.

From the symmetry of the problem, Player 1’s best response function is

s = b1(t) =

{

α−βt−c

2β
if t < α−c

β
,

0 if t ≥ α−c
β
.

See Figure 3.1. Notice that in order to make the figure analagous to the payoff
matrix in Section 3.8, which can be interpreted as the graph of a best response
correspondence, we have made the s-axis, which represents Player 1’s strategies, the
vertical axis.

There is a Nash equiibrium where the two best response curves intersect. From
the figure, we see that to find this point we must solve simultaneously the two
equations

t =
α− βs− c

2β
, s =

α− βt− c

2β
.

We find that s = t = α−c
3β

.

3.11. Problems

3.11.1. Price Competition 1. Bernie and Mannie sell tablet computers. Both
have unit costs of 100. They compete on price: the low-price seller gets all the
customers. If they charge the same price they split the customers. Explain why the
only Nash equilibrium is for both to charge 100, splitting the market but making no
profit. Suggestion: First set up the game by giving players, strategies, and payoffs.
The players are Bernie and Mannie. Bernie’s strategy is his price x and Mannie’s

80

http://en.wikipedia.org/wiki/Cournot_duopoly


t

s

α−c
 2β

α−c
  β

α−c
  β
α−c
 2β

t=b2(s)

s=b1(t)

Figure 3.1. Best response functions in Cournot’s model of duopoly.

strategy is his price y. Let’s allow x and y to be any nonnegative real numbers.
Let the the number of customers be m > 0. Each player’s payoff is his profit,
which is his fraction of the customers times m times profit per customer. Which
strategy profiles (x, y) are Nash equilibria? For example, if 100 < x < y, is (x, y) a
Nash equilibrium? Answer: no. Bernie gets all the customers and makes a profit of
x − 100 > 0 on every tablet sold. Mannie gets nothing. Bernie could improve his
payoff by increasing his price but keeping it less than y, or Mannie could improve
his payoff by decreasing his price to a number between 100 and x. Try to consider
all possibilities in some organized way.

3.11.2. Price Competition 2. Same problem, except we add one more strat-
egy for each player: charge 200, but advertise that if the tablet is available cheaper
at the other store, the customer can have it for free. Show that now there are exactly
two Nash equilibria: the previous one, and a new one in which both players use the
new strategy.

3.11.3. Two Stores on Main Street. Pleasantville has one street, Main
Street. The residents of the town are uniformly distributed along Main Street be-
tween one end and the other.

Two companies are considering opening stores on Main Street. Each store
must choose a location along the street between one end (0) and the other end (1).
Each store will attract the fraction of the population that is closer to it than to the
other store. If both stores locate at the same point (this is allowed), each will attract
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half the population. The payoff to each company is the fraction of the population
that it attracts.

We will assume the two companies choose their locations simultaneously. We
will assume that the first company’s strategy set is the set of real numbers x between
0 and 1, and second company’s strategy set is the set of real numbers y between 0
and 1. If x = y, each company’s payoff is 1

2
. If x < y, company 1’s payoff is 1

2
(x+y),

and company 2’s payoff is 1− 1
2
(x+ y). If x > y, company 1’s payoff is 1− 1

2
(x+ y),

and company 2’s payoff is 1
2
(x+ y).

Show that there is exactly one Nash equilibrium, x = y = 1
2
.

Suggestion to help you get started: If x < y, then company 1 can improve its
payoff by changing to a new strategy x′ that is between x and y.

3.11.4. Three Stores on Main Street. Same problem, but now there are
three companies. Each attracts the fraction of the population that is closest to it. If
two stores occupy the same location, they split the fraction of the population that is
closer to them than to the other store. If all three stores occupy the same location,
each attracts 1/3 of the population. Show that there is no Nash equilibrium.

3.11.5. The Spoils of War. Two countries each have one unit of wealth. Each
chooses a fraction of its wealth to devote to fighting the other. The country that
devotes a larger fraction of its wealth to fighting wins the fight. Its payoff is the
remaining wealth of both countries. The losing country’s payoff is zero. If both
countries devote the same fraction of their wealth to fighting, the result is a tie. In
this case, each country’s payoff is its remaining wealth.

We consider this situation as a two-player game. The first country’s strategy
is a real number s, 0 ≤ s ≤ 1, that represents the fraction of its wealth it will devote
to fighting. Similarly, the second country’s strategy is a real number t, 0 ≤ t ≤ 1,
that represents the fraction of its wealth it will devote to fighting. We assume the
two countries choose their strategies simultaneously.

The payoffs are:

• If s < t, π1(s, t) = 0 and π2(s, t) = 2− (s+ t).
• If s > t, π1(s, t) = 2− (s+ t) and π2(s, t) = 0.
• If s = t, π1(s, t) = 1− s and π2(s, t) = 1− t. Of course, 1− s = 1− t.

(1) Find all Nash equilibria with s < t. You may need to consider separately
the case t = 1.

(2) Find all Nash equilibria with s = t.

On both parts, for each strategy profile (s, t), you should explain why it is or
is not a Nash equilibrium.
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3.11.6. Arguing over Marbles. Two children begin to argue about some mar-
bles with a value of 1. If one child gives up arguing first, the other child gets the
marbles. If both children give up arguing at the same time, they split the marbles.

The payoff to each child is the value of the marbles he gets, minus the length
of time in hours that the argument lasts.

After one hour, it will be time for dinner. If the argument has not ended before
then, it ends then, and the children split the marbles.

We consider this a two-player game. Before the game begins, each child decides
independently how long he is willing to argue, in hours. Thus the first child’s strategy
is a real number s, 0 ≤ s ≤ 1, and the second child’s strategy is a real number t,
0 ≤ t ≤ 1.

The payoffs are:

• If s < t, the argument ends after s hours and the second child gets the
marbles, so π1(s, t) = −s and π2(s, t) = 1− s.

• If s > t, the argument ends after t hours and the first child gets the marbles,
so π1(s, t) = 1− t and π2(s, t) = −t.

• If s = t, the argument ends after s hours and the children split the marbles,
so π1(s, t) =

1
2
− s and π2(s, t) =

1
2
− s.

(1) Are (s, t) = (0, 1) and (s, t) = (1, 0) Nash equilibria? Explain.
(2) Are there any Nash equilibria (s, t) with 0 < s < t ≤ 1? Explain.
(3) Are there any Nash equilibria with s = t? Explain. Make sure you have

dealt with (0, 0) and (1, 1).

This game can be regarded as a second-price auction in which the players value
the good equally and the maximum allowed bid is that value. It is a variant of the
well-known game War of Attrition. See the Wikipedia page
http://en.wikipedia.org/wiki/War_of_attrition_(game).

3.11.7. Tit for Tat 1. There are two toy stores in town, Al’s and Bob’s. If
both charge high prices, both make $5K per week. If both charge low prices, both
make $3K per week. If one charges high prices and one charges low prices, the one
that charges high prices makes nothing, and the one that charges low prices makes
$6K per week.

At the start of each week, both stores independently set their prices for the
week.

We will consider three possible strategies for each store:

• h: Always charge high prices.
• l: Always charge low prices.
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• t: Tit for tat. Charge high prices the first week. The next week, do whatever
the other store did the previous week.

The following matrix shows the payoffs if each store follows its strategy for two
weeks.

Bob
h l t

h (10,10) (0,12) (10,10)
Al l (12,0) (6,6) (9,3)

t (10,10) (3,9) (10,10)

(1) Suppose the t strategy were not available to either player. Explain why the
remaining 2× 2 game would be a prisoner’s dilemma.

(2) Explain the (9, 3) payoffs in the second row of the matrix.
(3) Which of Al’s strategies are strictly dominated?
(4) Which of Al’s strategies are weakly dominated?
(5) Try to use iterated elimination of weakly dominated strategies to find a

Nash equilibrium. How far do you get?
(6) Use best response to find all Nash equilibria.

3.11.8. Battle of the Sexes with Money Burning. When there are several
Nash equilibria, only one of which can be found using iterated elimination of weakly
dominated strategies, is that Nash equilibrium in some sense the most reasonable
one? Here is an example to think about. Consider the Battle of the Sexes game in
Subsection 3.2.4, but change the payoff when Alice and Bob go to the same event
to 3 for the one who prefers that event:

Bob
concert wrestling

Alice concert (3, 1) (0, 0)
wrestling (0, 0) (1, 3)

Now suppose that Alice has the option of burning some money before she leaves
for the evening. If Alice does this, Bob will know, because of the smoke in the
sky. If Alice burns some money, her payoff is reduced by 1 no matter what happens
afterwards.

Alice now has four strategies:

• bc: Burn money, then go to the concert.
• bw: Burn money, then go to the wrestling match.
• dc: Don’t burn money, then go to the concert.
• dw: Don’t burn money, then go to the wrestling match.
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Bob also has four strategies: cc, cw, wc, and ww. The first letter is where Bob will
go if he’s sees the smoke, the second is where he will go if he does not.

The payoff matrix is

Bob
cc cw wc ww

bc (2, 1) (2, 1) (−1, 0) (−1, 0)
Alice bw (−1, 0) (−1, 0) (0, 3) (0, 3)

dc (3, 1) (0, 0) (3, 1) (0, 0)
dw (0, 0) (1, 3) (0, 0) (1, 3)

(1) Use iterated elimination of weakly dominated strategies to find a Nash
equilibrium.

(2) Use best response to find all Nash equilibria. (There are four.)

In this game, iterated elimination of weakly dominated strategies leads to Alice
not burning money, then both go to the concert. Thus Alice gets her preferred out-
come just by having available the option to burn some money, which is a ridiculous
thing to do, and in fact she does not do it.

3.11.9. Should You Compromise? Which is better, to insist on doing what
you want, or to compromise?

Here is a simple model. Two friends, Players 1 and 2, must choose among
activities a1, a2, and a3. Player 1 prefers a1, is neutral about a2, and dislikes a3.
Player 2 is the reverse. Each player independently chooses an activity, and gets a
payoff of v > 0 if he picks the activity he prefers, 0 if he picks activity a2, and −v
if he picks the activity he dislikes. In addition, each player incurs a cost c > 0 if
both players choose the same activity. However, if a player is the only one to choose
his activity, he incurs a higher cost rc, with r > 1. The factor r includes both
the greater financial cost that often obtains when you do something alone, and the
subjective cost of not having your friend with you.

The payoff matrix is therefore

Player 2
a1 a2 a3

a1 (v − c,−v − c) (v − rc,−rc) (v − rc, v − rc)
Player 1 a2 (−rc,−v − rc) (−c,−c) (−rc, v − rc)

a3 (−v − rc,−v − rc) (−v − rc,−rc) (−v − c, v − c)

(1) Suppose (r − 1)c < v. Find the Nash equilibria.
(2) Suppose r−1

2
c < v < (r − 1)c. Find the Nash equilibria. (There are two.

Which is best for each player?)
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(3) Suppose v < r−1
2
c. Find the Nash equilibria. (There are three. For each

player, which is best and which is second best?)
(4) Interpret the results.

3.11.10. The Twin Daughters. A mother has twin daughters whose birthday
is approaching. She tells each to ask for a whole number of dollars between one and
100 (inclusive). If the total does not exceed 101, each will get what she asks for. If
the total exceeds 101, the daughters get nothing. Show that this game has exactly
100 Nash equilibria.

3.11.11. Avoiding Voters’ Wrath. The three members of a city council are
voting on whether to give themselves a raise. The raise passes if at least two members
vote for it. The value of the raise to each member is v > 0, but each member who
votes for it incurs a cost c, 0 < c < v, in voter resentment. The members of the city
council are Alice, Bob, and Carol. Alice votes first; then Bob, knowing Alice’s vote,
votes; then Carol, knowing Alice’s and Bob’s votes, votes.

(1) Draw the game tree. (There are eight terminal vertices.)
(2) Use backward induction to find a Nash equilibrium.
(3) Show that there is another Nash equilibrium in which Carol’s strategy is

to vote no, whatever Alice and Bob do. Suggestion: There are too many
strategies for you to use the normal form of the game: Alice has two strate-
gies, Bob has four, and Carol has has sixteen. Instead, assume that Carol
uses the suggested strategy. Draw a 2 by 4 matrix that shows the payoffs to
Alice and Bob from each of their possible strategy choices, assuming that
Carol uses the suggested strategy. Find strategies for Alice and Bob that
make a Nash equilibrium for them, assuming that Carol uses the suggested
strategy. Once you’ve found these strategies, argue that Carol also cannot
improve her own payoff by changing to one of her other strategies.

3.11.12. Tobacco Market continued. For the Tobacco Market example of
Section 3.4, show that there are no Nash equilibria in which q1 + q2 + q3 < 975, 000,
exactly one qi equals 600,000, and the other qi’s are strictly between 0 and 600,000.

3.11.13. Sacred Places. Adam Smith compared established religions to mo-
nopolies, and religious freedom to competitive free enterprise. However, a third form
of religious organization has occasionally existed in human history, in which religious
power was vested in sacred places outside the domain of any ruler. Examples in-
clude the Oracle of Delphi during the period of independent Greek city-states, and
the shrine at Shiloh at the time of the Book of Judges, when the tribes of Israel
were independent. How do we explain the power of an entity such as the Oracle at
Delphi, which the rulers of Greek city-states called upon to resolve the most difficult
disputes? Its decisions were respected even though it had no power to enforce them.

86



To model this situation, let us assume that there are N ≥ 2 independent rulers
of small domains, each with a sacred site in his capital city, and M ≥ 1 independent
sacred sites outside the domain of any ruler. Each ruler publicly chooses a sacred
site at which to worship (his own, another ruler’s, or an independent site), and he
exerts efforts to get his citizens to share his allegiance. Alternatively, a ruler may
choose not to publicly select a sacred site, and to let his citizens do whatever they
want.

Payoffs and costs are as follows.

(1) Each ruler who publicly chooses a sacred site and exerts efforts to get his
citizens to do the same incurs a cost of C > 0.

(2) Each ruler who chooses to worship in his own capital receives a payoff of
I > 0 (I stands for “inside”).

(3) Each ruler who worships at any site outside his own capital receives a payoff
of O > 0 (O stands for “outside”).

(4) Each ruler who worships somewhere other than his own capital pays a
“tax” t > 0. (This could represent, for example, gifts to the local temple,
or spending by the visiting ruler.) If the place he worships is another ruler’s
capital, this tax is income to the other ruler.

(5) Each ruler receives a payoff in prestige that depends on the popularity of
the place where he worships. The prestige he receives equals a number l > 0
times the number of outside rulers who worship at that place.

Therefore:

• If a ruler worships in his own city, as do n other rulers, his payoff is I −
C + tn+ ln.

• If n other rulers worship in a ruler’s city, but that ruler worships elsewhere
and is one of a total of m outside rulers to worship in that place, the ruler’s
payoff is tn +O − C − t + lm.

We assume:

(1) I > O − t + l, i.e., it is better to be the only ruler worshiping in your own
city than to be the only outside ruler worshipping at another site.

Questions:

(1) Show that it is a Nash equilibrium for every ruler to worship in his own
city.

(2) Show that it is a Nash equilibrium for every ruler to worship in one ruler’s
city. (To show this, consider, the possibility that an outside ruler switches to
his own city. His payoff changes from O−C−t+l(N−1) to I−C. Is this an
improvement? You could also consider the possibility that an outside ruler
switches to another city, and the possibility that the inside ruler switches
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to another city, but these are worse than the previous possibility, so you
can ignore them.) A similar argument shows that it is a Nash equilibrium
for every ruler to worship at one independent site.

(3) Show that if C is large enough, it is a Nash equilibrium for every ruler to
let his citizens do as they please.

(4) Suppose N is even. Is it a Nash equilibrium for half the rulers to visit one
independent site and half to visit another? Explain.
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CHAPTER 4

Games in extensive form with incomplete information

In this chapter we return to games in extensive form, the subject of Chapter
1, but this time the players’ knowledge of the game is incomplete. This may be
because there are events within the game that cannot be predicted, such as the deal
of a card or the outcome of a battle. Or it may be because there is an important
fact that a player does not know. The notion of probability comes into play. We
have waited until now to treat these games because they cannot always be treated
by backward induction. It may be necessary to convert the game into normal form
and analyze that.

4.1. Lotteries

A lottery has n possible outcomes. The outcome depends on chance. The ith
outcome occurs with probability pi and yields a payoff xi, which is a real number.
We have all pi ≥ 0 and p1 + . . .+ pn = 1. The expected value of the lottery is

E[x] = p1x1 + · · ·+ pnxn.

If the recipient of the payoff has a utility function u(x), its expected value is

E[u(x)] = p1u(x1) + · · ·+ pnu(xn).

The expected utility principle states that the lottery with the higher expected utility
is preferred. For some discussion of the conditions under which this principle is true,
see the Wikipedia page
http://en.wikipedia.org/wiki/Expected_utility_hypothesis.

4.2. Buying Fire Insurance

This example is a decision problem, not a game.

You have a warehouse worth $1.2 million. The probability of fire in any given
year is 5%. Fire insurance costs $100,000 per year. Should you buy it?

To answer the question, we compare the two lotteries shown in Figure 4.1.
Without fire insurance the expected outcome is

E[x] = .05×−1.2M + .95× 0 = −60K.
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fire no firefireno fire
p=.05 p=.95p=.05p=.95

−1.2 M −100 K0 −100 K

without insurance with insurance

Figure 4.1. Should you buy the insurance?

With fire insurance the expected outcome is

E[x] = .05×−100K + .95×−100K = −100K.

Don’t buy the insurance.

However, people typically have concave utility functions (see Subsection 1.11.1).
Suppose your utility function is u(x) = ln(1.3M + x). (This function is just ln x
shifted 1.3M to the left, so it is continuous on the interval −1.3M < x < ∞.) Now,
without fire insurance the expected outcome is

E[u(x)] = .05 ln(.1M) + .95 ln(1.3M) = 13.95.

With fire insurance, the expected outcome is

E[u(x)] = .05 ln(1.2M) + .95 ln(1.2M) = 14.00.

Buy the insurance.

4.3. Games in extensive form with incomplete information

In order to treat games in which players have incomplete information, we will
add two ingredients to our allowed models of games in extensive form:

• Certain nodes may be assigned not to a player but to Nature. Nature’s
moves are chosen by chance. Therefore, if c is a node assigned to nature,
each move that starts at c will be assigned a probability 0 ≤ p ≤ 1, and
these probabilities will sum to 1.

• The nodes assigned to a player may be partitioned into information sets. If
several of a player’s nodes are in the same information set, then the player
does not know which of these nodes represents the true state of the game.
The sets of available moves at the different nodes of an information set must
be identical.

Each path in the game tree is assigned a probability: probability 1 if the path
does not include any of Nature’s moves, and the product of the probabilities of
Nature’s moves along the path if it does.
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A player’s strategy is required to assign the same move to every node of an
information set.

A strategy profile σ determines a collection of complete paths C(σ) through
the game tree. The collection C(σ) may include more than one complete path. To
determine the expected payoff to a player of a strategy profile, one sums the payoffs
of the complete paths in the collection C(σ), each multiplied by the conditional
probability of the path given that the strategy profile is σ. This is the probability
we assigned to the path, divided by the sum of the probabilities we assigned to all
the paths in C(σ).

A node assigned to Nature may represent a random event, such as the deal
of a card, or it may represent a point at which a player does not know what the
situation is, but can assign probabilities to the different possibilities. In either case,
one player may have information about Nature’s moves that other players lack. For
example, in a card game, Nature decides the hand you are dealt. You know it, but
other players do not.

Backward induction often does not work in games in extensive form with in-
complete information. The difficulty comes when you must decide on a move at
an information set that includes more than one node. Usually the payoffs for the
available moves depend on which node you are truly at, but you don’t know that.

If the only nodes that precede the information set in question are Nature’s,
then you can calculate the probability that you are at each node, and use expected
value to make a choice. In our treatment of the Cuban Missile Crisis later in this
chapter, we will encounter information sets of this type. On the other hand, if,
preceding the information set in question, there are nodes at which other players
made a choice, then you do not know the probability that you are at each node.
Games with information sets of this type can be treated by converting them to games
in normal form. The game Buying a Used Car in the next section is an example.

4.4. Buying a Used Car

A customer is interested in a used car. He asks the salesman if it is worth the
price. The salesman wants to sell the car. He also wants a reputation for telling
the truth. How does the salesman respond? And should the customer believe his
response?

We will assume that for cars of the type being sold, the probability the car is
worth the price (i.e., is a good car) is p, so the probability it is not worth the price
(i.e., is a bad car) is 1−p. When we complete our analysis we will consider whether
the customer or salesman needs to know these probabilities. However, the salesman
knows whether this particular car is good or bad. The customer does not.

The payoffs are:
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• The salesman gets 2 points if he sells the car and 1 point if he tells the
truth.

• The customer gets 1 point if he correctly figures out whether the car is good
or bad.

We model this situation as a game in extensive form with incomplete informa-
tion. Nature moves first and decides if the car is good or bad. Then the salesman
tells the customer whether it is good or bad. Then the customer decides whether it
is good or bad, and on that basis decides whether to buy it. See Figure 4.2. Notice

N
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C CCC
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gggg
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b bb

b

b

b g

b

(3,1) (1,1)(3,0)(0,1)(2,0)(0,0)(2,1)(1,0)

probability = p probability = 1−p

Figure 4.2. Buying a used car. The salesman’s payoffs are given first.

that the customer’s moves are divided into two information sets, reflecting the fact
that when the salesman says the car is good, the customer does not know whether
it really is good or not.

This game is an example of a game in extensive form with incomplete informa-
tion in which backward induction cannot be used at all. For example, what should
the customer do if the salesman says the car is good? The corresponding information
set contains two nodes: at one of them, the car is actually good, but at the other it is
bad. The customer’s best move depends on which is the case, but he doesn’t know
which is the case. More importantly, he doesn’t know the probabilities, because
there are nodes preceding the nodes in this information set at which the salesman
made a choice of what to say. If the salesperson speaks randomly, then when he says
the car is good, it really is good with probability p. However, there is no reason to
believe that the salesman speaks randomly.

We will therefore analyze this game by converting it to a game in normal form.

The salesman has four strategies:

• gg: If the car is good, say it is good; if the car is bad, say it is good. (Always
say the car is good.)

• gb: If the car is good, say it is good; if the car is bad, say it is bad. (Always
tell the truth.)
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• bg: If the car is good, say it is bad; if the car is bad, say it is good. (Always
lie.)

• bb: If the car is good, say it is bad; if the car is bad, say it is bad. (Always
say the car is bad.)

The customer must make the same move at two nodes that are in the same
information set. Thus he only has four strategies:

• gg: If the salesman says the car is good, believe it is good; if the salesman
says the car is bad, believe it is good. (Always believe the car is good.)

• gb: If the salesman says the car is good, believe it is good; if the salesman
says the car is bad, believe it is bad. (Always believe the salesman.)

• bg: If the salesman says the car is good, believe it is bad; if the salesman
says the car is bad, believe it is good. (Never believe the salesman.)

• bb: If the salesman says the car is good, believe it is bad; if the salesman
says the car is bad, believe it is bad. (Always believe the car is bad.)

We will consider the salesman to be Player 1 and the customer to be Player 2.

In this game, each strategy profile is associated with two paths through the
game tree. For example, consider the strategy profile (gg, bg): the salesman always
says the car is good; and the customer never believes the salesman. This profile is
associated with the two paths ggb and bgb:

• ggb: Nature decides the car is good, the salesman says the car is good,
the customer does not believe him and decides it is bad (and hence does
not buy the car): Payoffs: 1 to the salesman for telling the truth, 0 to the
customer for miscalculating.

• bgb: Nature decides the car is bad, the salesman says the car is good, the
customer does not believe him and decides it is bad (and hence does not
buy the car): Payoffs: 0 to the salesman (he lied and still didn’t sell the
car), 1 to the customer (for correctly deciding the car was bad).

The first path through the tree is assigned probability p (the probability of a good
car), the second is assigned probability 1 − p (the probability of a bad car). Thus
the ordered pair of payoffs assigned to the strategy profile (gg, bg) is p(1, 0) + (1 −
p)(0, 1) = (p, 1− p).

In this game, a good way to derive the payoff matrix is to separately write
down the payoff matrix when Nature chooses a good car and when Nature chooses
a bad car. The payoff matrix for the game is then p times the first matrix plus 1−p
times the second.

If the car is good, the payoffs are:
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Customer
gg gb bg bb

gg (3, 1) (3, 1) (1, 0) (1, 0)
Salesman gb (3, 1) (3, 1) (1, 0) (1, 0)

bg (2, 1) (0, 0) (2, 1) (0, 0)
bb (2, 1) (0, 0) (2, 1) (0, 0)

If the car is bad, the payoffs are:

Customer
gg gb bg bb

gg (2, 0) (2, 0) (0, 1) (0, 1)
Salesman gb (3, 0) (1, 1) (3, 0) (1, 1)

bg (2, 0) (2, 0) (0, 1) (0, 1)
bb (3, 0) (1, 1) (3, 0) (1, 1)

The payoff matrix for the game is p times the first matrix plus 1 − p times the
second:

Customer
gg gb bg bb

gg (2 + p, p) (2 + p, p) (p, 1− p) (p, 1− p)
Salesman gb (3, p) (1 + 2p, 1) (3− 2p, 0) (1, 1− p)

bg (2, p) (2− 2p, 0) (2p, 1) (0, 1− p)
bb (3− p, p) (1− p, 1− p) (3− p, p) (1− p, 1− p)

Let us assume p > 1
2
, so the car is usually good. We look for Nash equilibria by

drawing a box around the highest first entry in each column and the highest second
entry in each row.

Customer
gg gb bg bb

gg (2 + p, p ) ( 2 + p , p ) (p, 1− p) (p, 1− p)

Salesman gb ( 3 , p) (1 + 2p, 1 ) (3− 2p, 0) ( 1 , 1− p)

bg (2, p) (2− 2p, 0) (2p, 1 ) (0, 1− p)

bb (3− p, p ) (1− p, 1− p) ( 3− p , p ) (1− p, 1− p)

There are two Nash equilibria, (gg, gb) and (bb, bg). At the first equilibrium, the
salesman always says the car is good, and the customer always believes the salesman.
At the second, the salesman always says the car is bad, and the customer always
assumes the salesman is lying. The two Nash equilibria give the same payoff to the
customer, but the first gives a better payoff to the salesman.

Now that we have completed the analysis, we see that to find the Nash equi-
librium of the game, the salesman and customer only need to know that p > 1

2
; they

do not need any more detailed knowledge.
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4.5. The Travails of Boss Gorilla

Boss Gorilla is boss of a Gorilla Group. Other gorillas are out there who might
challenge him. When a visiting gorilla appears, it can do one of two things:

• Challenge Boss Gorilla.
• Leave.

If a visiting gorilla challenges Boss Gorilla, Boss Gorilla has two choices:

• Acquiesce. In this case the visiting gorilla joins Gorilla Group and becomes
co-boss with Boss Gorilla.

• Fight.

There are two types of visiting gorillas: Tough and Weak. The Tough ones will win
a fight with Boss Gorilla. The Weak ones will lose.

Boss Gorilla believes that the probability that a visiting gorilla is Tough is p,
with 0 < p < 1. The probability that he is Weak is 1 − p. Of course, a visiting
gorilla knows which type he is, but Boss Gorilla does not.

We will view this as a game with three players: Player 1, Tough Gorilla (T );
Player 2, Weak Gorilla (W ); and Player 3, Boss Gorilla (B). Figure 4.3 illustrates
the situation and gives the payoffs.

This game is similar to Buying a Used Car in that backward induction cannot
be used. If the visiting gorilla challenges, Boss Gorilla does not know if he is Tough
or Weak, or even what the probabilities are, since choices were made previously.
Hence we again convert to a game in normal form. Tough Gorilla has two strategies:
challenge (c) or leave (l). Weak Gorilla has the same two strategies. Boss Gorilla
has two strategies: fight if challenged (f) or acquiesce if challenged (a). At each
terminal node of the game, we must assign payoffs to all three players; the gorilla
that does not visit is assigned payoff 0.

Since the game has three players, it will not be represented by a single matrix
with p’s in the payoffs as in the previous section. Instead, since each of the three
players has two strategies, it will be represented by a pair of matrices as in Section
3.9, but the matrices will have p’s in the payoffs.

However, Tough Gorilla’s strategy c weakly dominates his strategy l. The
reason is that if he visits, he gets a payoff of 5 or 3 by using c, and a payoff of 0 by
using l; and if he doesn’t visit, his payoff is 0 in any case. We therefore eliminate
Tough Gorilla’s strategy l. To represent the reduced game, we need only one matrix,
in which it is given that Tough Gorilla uses c. A Nash equilibrium of the reduced
game is a Nash equilibrium of the original game.

The payoffs when the visiting gorilla is Weak are given by the following payoff
matrix. The first payoff is to Tough Gorilla, who is not present, so it is always 0.
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(5,−1)

Visiting Gorilla Weak
        probability = 1-p

Visiting Gorilla Tough
    probability = p

T W
c cl l

f fa a

B B

(3,3)

(0,6)

(−1,5)

(0,6)

(3,3)

Figure 4.3. T is Tough Visiting Gorilla, W is Weak Visiting Gorilla,
B is Boss gorilla. The visiting gorilla’s payoffs are given first. If a
visiting gorilla leaves, payoffs are 0 to him and 6 to Boss Gorilla. This
is the value of being boss of Gorilla Group. Therefore, if a visiting
gorilla challenges and Boss Gorilla acquiesces, payoffs are 3 to each.
If the gorillas fight, payoffs are −1 to the loser (for injuries sustained)
and 5 to the winner (6 for getting to be boss of Gorilla Group, minus
1 for injuries sustained). The dashed line indicates two nonterminal
vertices in the same information set: if a visiting gorilla challenges,
Boss Gorilla does not know if he is Tough or Weak.

Boss Gorilla
f a

Weak Gorilla c (0,−1, 5) (0, 3, 3)
l (0, 0, 6) (0, 0, 6)

The payoffs when the visiting gorilla is Tough are given by the following payoff
matrix. The second payoff, to Weak Gorilla, is always 0. The payoffs to Tough
Gorilla are due to the fact that he always uses C.

Boss Gorilla
f a

Weak Gorilla c (5, 0,−1) (3, 0, 3)
l (5, 0,−1) (3, 0, 3)

We multiply the second matrix by p and the first by 1− p and add, obtaining
the following matrix.
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Boss Gorilla
f a

Weak Gorilla c (5p,−(1− p), 5− 6p) (3p, 3(1− p), 3)
l (5p, 0, 6− 7p) (3p, 0, 6− 3p)

Note that Tough Gorilla’s payoffs all have the factor p, and Weak Gorilla’s all
have the factor 1 − p. This is just because Tough Gorilla visits with probability p
and Weak gorilla with probability 1 − p. The matrix is easier to understand if we
recall that we are not interested in Tough Gorilla’s payoffs, since we know he uses c
in the reduced game. Also, we note that the factor 1 − p in Weak Gorilla’s payoffs
does not affect his best responses. Dropping Tough Gorilla’s payoffs and dividing
Weak Gorilla’s by 1− p, we obtain

Boss Gorilla
f a

Weak Gorilla c (−1, 5− 6p) (3, 3)
l (0, 6− 7p) (0, 6− 3p)

For p > 1
3
, this 2-player game has (c, a) has a Nash equilibrium. Therefore

(c, c, a) is a Nash equilibrium of the three-player game. Both visiting gorillas chal-
lenge, and Boss Gorilla acquiesces. In other words, when the proportion of Tough
Visiting Gorillas is high enough (p > 1

3
), Boss Gorilla cannot risk fighting; Weak

Visiting Gorilla takes advantage of the situation by always challenging.

We will treat the case p < 1
3
in the next chapter.

In the next section we will encounter another situation in which a player is
unsure of the type of another player, but has beliefs about the probabilities. Again
we will model this situation by assuming a move by Nature that determines the type
of the opponent, and we will assume that whatever the type, it wants to maximize
it’s own payoffs.

4.6. Cuban Missile Crisis

You may want to compare our account of the Cuban Missile Crisis to the
Wikipedia article http://en.wikipedia.org/wiki/Cuban_missile_crisis.

In late summer of 1962, the Soviet Union began to place about 40 nuclear-
armed medium- and intermediate-range ballistic missiles in Cuba. These missiles
could target most of the eastern United States. The missile sites were guarded by
surface-to-air missiles. There were also bombers.

A U.S. spy plane discovered the missiles on October 14, 1962. In the view
of the U.S. government, the missiles posed several dangers: (1) they were a direct
military threat to the U.S., and could perhaps be used to compel U.S. withdrawal
from contested territories such as Berlin; (2) they promised to deter any possible
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U.S. attack against Cuba; and (3) their successful placement in Cuba would be seen
by the world as a Soviet victory and a U.S. defeat.

President Kennedy and his associates at first considered an air strike against
the missiles sites. Military leaders argued for a massive air strike against airfields
and other targets as well. The civilian leaders decided this proposal was too risky
and settled on a naval blockade.

The blockade went into effect October 24. Several apparently civilian freighters
were allowed through with minimal inspection. Other questionable Soviet ships were
heading toward Cuba, however, and the President and his associates feared that a
confrontation with them could get out of hand. The Soviet premier, Khrushchev,
indicated he might be willing to remove the missiles from Cuba if the U.S. removed
its own missiles from Turkey. The U.S. had been planning to remove these missiles
anyway and to substitute missiles on nuclear submarines, but did not want to appear
to be giving in to pressure, or to make the Turks feel that the U.S. would not protect
them.

On October 26 the U.S. discovered that the Soviets had also installed tactical
nuclear weapons in Cuba that could be used against invading troops. On October
27, a U.S. spy plane was shot down over Cuba, and Cuban antiaircraft defenses fired
on other U.S. aircraft. The U.S. Air Force commander, General Curtis Lemay, sent
U.S. nuclear-armed bombers toward the Soviet Union, past their normal turnaround
points.

On October 28 the crisis suddenly ended. Khrushchev announced that his
missiles and other nuclear weapons in Cuba would be dismantled and brought home.
Negotiations over the next month resulted in the withdrawal of the Soviet bombers
as well, and, in a semisecret agreement, the removal of U.S. missiles from Turkey.

Today more is known about Soviet intentions in the crisis than was known to
the U.S. government at the time. On the Soviet side, as on the U.S. side, there was
considerable division over what to do. Apparently Khrushchev made the decision
on his own to install missiles in Cuba; some of his advisors thought it reckless. He
thought Kennedy would accept the missiles as a fait accompli, and he planned to
issue an ultimatum to resolve the Berlin issue, using the missiles as a threat. The
Soviet Presidium apparently decided as early as October 22 that it would back down
rather than allow the crisis to lead to war. Two years later it removed Khrushchev
from power. One if its main charges against him was the disastrous Cuban adven-
ture.

On both sides it was not certain that decisions taken by leaders would be
carried out as they intended. On the U.S. side, civilian leaders proposed methods
of carrying out the blockade, but the U.S. Navy mostly followed its standard pro-
cedures. General LeMay, the inspiration for General Jack D. Ripper in the 1963
movie “Dr. Strangelove,” acted on his own in sending bombers toward the Soviet
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Union. He regarded the end of the crisis as a U.S. defeat: “We lost! We ought to
just go in there today and knock ’em off.” On the Soviet side, the decision to shoot
down a U.S. spy plane on October 27 was taken by the deputy to the Soviet general
in charge while the general was away from his desk. The Cubans’ decision to fire
on U.S. aircraft was taken by the Cuban president Castro over objections from the
Soviet ambassador.

We will consider several models of the Cuban missile crisis beginning at the
point where the missiles were discovered. A very simple model captures the essence
of what happened: the U.S. can either accept the missiles or threaten war to remove
them; if war is threatened, the Soviets can either defy the U.S., which would lead
to war, or can back down and remove the missiles. Backward induction should tell
us what the two parties will do.

U.S.

defy back down

accept

Soviets

threaten

(−10,−10) (1,−2)

(−2,2)

Figure 4.4. A simple model of the Cuban Missile Crisis Payoffs to
U.S. are given first.

If the U.S. accepts the Soviet missiles in Cuba, we take the payoffs to be −2 to
the U.S. and 2 to the Soviets. If the U.S. threatens war and the Soviets back down,
we take the payoffs to be 1 to the U.S. and −2 to the Soviets. If the U.S. threatens
war and the Soviets do not back down, we take the payoffs to be −10 to both the
U.S. and the Soviets. See Figure 4.4.

We conclude that if the U.S. threatens war, the Soviets will back down. Using
backward induction, the U.S. decides to threaten war rather than accept the Soviet
missiles. The Soviets then back down rather than go to war.

This is in fact what happened. On the other hand, the Soviets could do this
analysis, too, so why did they place the missiles in Cuba to begin with?

The payoffs in Figure 4.4 assume a rather reasonable Soviet leadership. If
the Soviet leadership regarded backing down in the face of a U.S. threat as totally
unacceptable, and was less fearful of nuclear war, we get a situation like that in
Figure 4.5.

In this case, if the U.S. threatens war, the Soviets will not back down. Using
backward induction, the U.S. will decide to accept the missiles.
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U.S.

Soviets

threaten

defy back down

(−10,−6) (1,−8)

accept

(−2,2)

Figure 4.5. Cuban Missile Crisis with hard-line Soviets.

In fact the U.S. government was not sure if the Soviets would turn out to be
reasonable or hard-line. The evidence was conflicting; for example, an accommo-
dating letter from Khrushchev on October 24 was followed by the shooting down
of a U.S. plane on October 26. In addition, the U.S. understood in general terms
that there were conflicting attitudes within the Soviet leadership. Figure 4.6 shows
the situation if the U.S. is unsure whether the Soviet leadership is reasonable, as in
Figure 4.4, or hard-line, as in Figure 4.5.

Nature

U.S. U.S.

Soviets

threaten

defydefy

Soviets hard-line

back down back down

accept

Soviets soft

(−10,−6) (1,−8)

probability = p probability = 1−p

Soviets

threatenaccept

(−2,2)

(−10,−10) (1,−2)

(−2,2)

Figure 4.6. Cuban Missile Crisis with unknown Soviet leadership.

In the first move of the game, Nature decides, with certain probabilities,
whether the Soviets are hard-line or reasonable. The Soviets know which they are,
but the U.S. does not. Therefore, when the U.S. makes its move, which is the first
move in the game by a player, both its nodes are in the same information set; this
is indicated by a dashed line. The U.S. must make the same move (threaten war or
accept the missiles) at both of these nodes. However, if the U.S. threatens war, the
Soviets, knowing who they are, will reply differently in the two cases.

This game differs from Buying a Used Car and Travails of Boss Gorilla in that
the nodes toward the bottom of the tree are not in information sets containing more
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than one node. We can therefore at least start to analyze it by backward induction.
In fact, the one information set that contains more than one move is preceded only
by a move of Nature’s. This kind of information set does not pose a difficulty for
backward induction.

We must look first at the two nodes where the Soviets move, following a U.S.
threat of war. (These are the only nodes that are followed only by terminal vertices.)
If the Soviets are hard-line, they will choose to defy, with payoffs (−10,−6). If the
Soviets are reasonable, they will choose to back down, with payoffs (1,−2).

Proceeding by backward induction, we look next at the two nodes where the
U.S. moves, which are in the same information set. In this case, the probability that
we are at each node in the information set is clear, so we can describe the payoffs
of our choices using expected value.

If the U.S. threatens war, the payoffs are

p(−10,−6) + (1− p)(1,−2) = (1− 11p,−2− 4p).

If the U.S. accepts the Soviet missiles, the payoffs are

p(−2, 2) + (1− p)(−2, 2) = (−2, 2).

The U.S. will threaten war provided 1− 11p > −2, i.e., provided p < 3
11
. If p > 3

11
,

the U.S. will accept the missiles.

President Kennedy apparently considered the probability of an unreasonable
Soviet leadership to be somewhere between 1

3
and 1

2
. Even 1

3
is greater than 3

11
. Now

we have the opposite question: why didn’t the U.S. accept the missiles?

In fact, the U.S. did not exactly threaten the Soviets with war if they did not
remove their missiles. Instead it took actions, including a naval blockade, increased
overflights of Cuba, and other military preparations, that increased the chance of
war, even if war was not the U.S. intention. Both sides recognized that commanders
on the scene might take actions the leadership did not intend, and events might spiral
out of control. As we have seen, in the course of the crisis, dangerous decisions were
in fact taken that leaders had trouble interpreting and bringing under control.

Brinkmanship (Wikipedia article:
http://en.wikipedia.org/wiki/Brinkmanship) typically refers to the creation of
a probabilistic danger in order to win a better outcome. On the one hand, it requires
a great enough probability of disaster to persuade a reasonable opponent to concede
rather than face the possibility that the dangerous situation will get out of hand.
On the other hand, it requires a low probability of the nightmare outcome: the
dangerous situation gets out of hand, and the opponent turns out to be a hard-
line one who will not back down. The term dates to the 1950’s. It is generally
believed that the U.S. successfully practiced brinkmanship in the Cuban Missile
Crisis. Figure 4.7 is a brinkmanship model of the Cuban Missile Crisis.
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Nature

U.S. U.S.

Soviets

create danger

defydefy

Soviets hard-line

back down back down

accept

Soviets soft

(−10,−6)

(1,−8)

probability = p probability = 1−p

Soviets

create dangeraccept

(−2,2)

(−10,−10)

(1,−2)

(−2,2)

Nature Nature

war no warwarno war
probability = qprobability = q probability = 1−qprobability = 1−q

(−2,2) (−2,2)

Figure 4.7. Cuban Missile Crisis with brinkmanship.

The change from Figure 4.6 is that, instead of threatening war, the U.S. now
creates a dangerous situation by its military moves. The Soviets can defy or back
down. If they defy, Nature decides whether there is war (with probability q) or no
war (with probability 1−q). If there is war, the payoffs are what they were in Figure
4.6 if the Soviets defied the U.S. threat. If there is no war, then the missiles remain;
we take the payoffs to be the same as those when the U.S. accepts the Soviet missiles
to begin with.

The game in Figure 4.7 can be analyzed by backward induction. Nature’s last
move results in the following payoffs if the Soviets defy the U.S.

• If Soviets are hard-line: q(−10,−6) + (1− q)(−2, 2) = (−2 − 8q, 2− 8q).
• If Soviets are reasonable: q(−10,−10)+(1−q)(−2, 2) = (−2−8q, 2−12q).

Backing up one step, we find:

• If the Soviets are hard-line and the U.S. creates a dangerous situation, the
Soviets will defy if 2 − 8q > −8. Since this inequality is true for all q
between 0 and 1, the Soviets will certainly defy.

• If the Soviets are reasonable and the U.S. creates a dangerous situation, the
Soviets will defy if 2 − 12q > −2, i.e., if q < 1

3
. If q > 1

3
, the Soviets will

back down.

Now we back up one more step and ask whether the U.S. should create a dan-
gerous situation or accept the Soviet missiles. If the U.S. accepts the Soviet missiles,
the payoffs are of course p(−2, 2) + (1 − p)(−2, 2) = (−2, 2). If the U.S. creates a
dangerous situation, the payoffs depend on the probability of war q associated with
the situation that the U.S. creates. The payoffs are:

• If q < 1
3
: p(−2−8q, 2−8q)+(1−p)(−2−8q, 2−12q) = (−2−8q, 2−12q+4pq).
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• If q > 1
3
: p(−2−8q, 2−8q)+(1−p)(1,−2) = (1−3p−8pq,−2+4p−8pq).

Let’s consider both cases.

• The payoff to the U.S. from creating a dangerous situation with q < 1
3
is

−2− 8q. The U.S. is better off simply accepting with missiles, which yields
a payoff of −2. The probability of war is too low to induce even reasonable
Soviets to back down. Making such a threat increases the danger to the
U.S. without any offsetting benefit.

• The payoff to the U.S. from creating a dangerous situation with q > 1
3
is

1−3p−8pq. The U.S. benefits from creating such a situation if 1−3p−8pq >
−2, i.e., if

q <
3(1− p)

8p
.

Therefore, if 1
3
< 3(1−p)

8p
, the U.S. can benefit by creating a dangerous situation in

which the probability of war q is any number between 1
3
and 3(1−p)

8p
.

Figure 4.8 helps in interpreting this result. If 0 < p < 3
11
, any q between 1

3
and

1 gives the U.S. a better result than accepting the missiles. Of course, we already
knew that for p in this range, a simple threat of war (equivalent to q = 1) would give
the U.S. a better result than accepting the missiles. More interesting is the interval
3
11

< p < 9
17
, which includes the U.S. government’s guess as to the true value of p.

For each p in this interval there is a corresponding interval 1
3
< q < 3(1−p)

8p
that gives

the U.S. a better result than accepting the missiles.

q

p

1

13/11 9/17

1/3

q=3(1-p)/8p

Figure 4.8. Where brinkmanship is helpful.
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4.7. Problems

4.7.1. Survivor strategy. At the end of season 1 of the television show Sur-
vivor, there were three contestants left on the island: Rudy, Kelly, and Rich. They
were engaged in an “immunity challenge,” in this case a stamina contest. Each
contestant had to stand on an awkward support with one hand on a central pole. If
the contestant’s hand lost contact with the pole, even for an instant, the contestant
was out. Once two contestants were out, the third contestant was the winner of the
immunity challenge.

The winner of the immunity challenge would then choose one of the other two
contestants to kick off the island.

Once there were only two contestants remaining on the island, a jury consisting
of seven contestants who had recently been voted off the island would decide which
of the two was the winner. The winner would get $1 million.

We pick up the story when the immunity contest has been going for 1 1/2
hours. Rudy, Kelly, and Rich are still touching the pole.

Rich has been thinking about the following considerations (as he later ex-
plained to the camera):

• Rich and Kelly are strong young people. Rudy is much older. In addition,
Kelly has become known for her stamina. Rich estimates that the probabil-
ity of each winning the contest is Rich .45, Kelly .50, and Rudy .05. Rich
further estimates that if he is the first contestant to lose touch with the
pole, Kelly’s probability of winning would be .9, and Rudy’s would be .1.

• Rudy is much more popular with the jury than either Rich or Kelly. Rich
figures that if Rudy is one of the last two contestants on the island, the
jury is certain to pick Rudy as the winner.

• Rich and Kelly are equally popular with the jurors. However, if Rich or
Kelly wins the immunity contest and kicks the popular Rudy off the island,
some jurors might be made unhappy. Rich estimates that if he and Kelly
are the last contestants on the island, but he has kicked off Rudy, there is
a .4 chance the jury would pick him and a .6 chance it would pick Kelly.
On the other hand, if he and Kelly are the last contestants on the island,
and Kelly has kicked off Rudy, there is a .6 chance the jury would pick him
and a .4 chance it would pick Kelly.

Rich is thinking about stepping away from the pole, thereby losing the immunity
contest on purpose. Should he do it?

Make sure your instructor can follow your reasoning.

Figure 4.7.1 illustrates the situation.

(If you want to know what actually happened, Netflix has the DVD!)
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       prob. = .6

Kelly wins Rich wins

Rudy wins contest
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Rich or Kelly off.
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picks Rudy.
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Kelly wins contest
 prob. = .5

Kelly
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so  she'll have
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Nature (jury)

Jury picks Kelly
prob. = .4

Jury picks Rich
       prob. = .6

Kelly wins Rich wins

Rick wins contest
                      prob. = .45

Rich

Kicks off Rudy
so  he'll have
a chance!

Nature (jury)

Jury picks Kelly
prob. = .6

Jury picks Rich
       prob. = .4

Kelly wins Rich wins

Nature

4.7.2. The value of college. This game has three players: very intelligent
young people (V ), less intelligent young people (L), and employers (E). The young
people have two options: go to college (c) or not (n). When a young person applies
for a job, an employer has two options: offer a high salary (h) or offer a low salary
(l). A very intelligent young person will only accept a high salary. A less intelligent
young person will accept either salary.

• Employer’s payoffs
– Pay high salary: −8.
– Pay low salary: −3.
– Hire very intelligent young person: 12.
– Hire less intelligent young person: 6.

• Very intelligent young person’s payoffs:
– Go to college: −1. (It teaches nothing important and is expensive, but
it’s easy.)

– Get offered high salary: 8. (She takes the job and gets paid.)
– Get offered low salary: 6. (The very intelligent young person will reject
the offer and start her own business.)

• Less intelligent young person’s payoffs:
– Go to college: −5. (It teaches nothing important and is expensive, and
it’s really hard.)

– Get offered high salary: 8.
– Get offered low salary: 3. (The less intelligent young person will accept
either offer and get paid.)

Half of young people are very intelligent, half are less intelligent. When a
young person applies for a job, the employer does not know how intelligent she is,
only whether she has gone to college.

The game tree in Figure 4.9 illustrates the situation.
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N

 (7,0,4)

Young person is V
probability = 1/2

V L
c cn n

h l

E E

Young person is L 
   probability = 1/2

E E

h l h l h l

(5,0,0)    (6,0,0)(8,0,4) (0,3,−2) (0,−2,3) (0,8,−2) (0,3,3)

Figure 4.9. N = Nature, V = very intelligent young person, L =
less intelligent young person, E = employer, c = college, n = no
college, h = offer high salary, l = offer low salary. The first payoff
is to V , the second to L, and the third to E. Payoffs to the young
person who is not present are set to 0.

The young people each have two strategies: go to college (c) or not (n). An
employer has four strategies:

• hh: Offer a high salary to all job applicants.
• hl: Offer a high salary to an applicant who has been to college, offer a low
salary to an applicant who has not been to college.

• lh: Offer a low salary to an applicant who has been to college, offer a high
salary to an applicant who has not been to college.

• ll: Offer a low salary to all job applicants.

(1) Explain briefly why L’s strategy c is weakly dominated by her strategy n.
In other words, explain briefly why a less intelligent young person should
not go to college.

(2) Eliminate L’s strategy c, obtaining a reduced game. Complete the following
2× 4 payoff matrix, showing payoffs to all three players assuming L uses n.
See Section 4.5 for how to do this.

E
hh hl lh ll

V c
n

(3) Find any pure-strategy Nash equilibria. Since this is a three-player game, be
sure to give the strategies for all three players. (There are two pure-strategy
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Nash equilibria. They are equally good for the less intelligent young people,
but one is better for both very intelligent young people and employers.)
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CHAPTER 5

Mixed-strategy Nash equilibria

Even simple games can fail to have Nash equilibria in the sense we have so far
discussed. Sometimes it is best to mix your actions unpredictably. For example, a
tennis player wants to serve sometimes to his opponent’s forehand and sometimes
to his backhand, in a random manner that his opponent can’t predict. But what
fraction of his serves should go to each? This depends on the skills of both players.

5.1. Mixed-strategy Nash equilibria

In tennis, the player serving can serve to his opponent’s backhand or forehand.
The player receiving the serve can anticipate a serve to his backhand or a serve to
his forehand.

For a certain pair of tennis players, the probability that the serve is returned
is given by the following table.

Receiver anticipates serve to
backhand forehand

Server serves to backhand .6 .2
forehand .3 .9

We regard this as a game in normal form. The payoff to the receiver is the fraction
of serves he returns; the payoff to the server is the fraction of serves that are not
returned. Thus the payoff matrix is

Receiver anticipates serve to
backhand forehand

Server serves to backhand (.4, .6) (.8, .2)
forehand (.7, .3) (.1, .9)

You can check that there are no Nash equilibria in the sense we have discussed.

It is easy to understand why this game has no equilibria. If I plan to serve
to your forehand, your best response is to anticipate a serve to your forehand. But
if you anticipate a serve to your forehand, my best response is to serve to your
backhand. But if I plan serve to your backhand, your best response is to anticipate
a serve to your backhand. But if you anticipate a serve to your backhand, my best
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response is to serve to your forehand. We are back where we started from, without
having found an equilibrium!

Does game theory have any suggestions for these players? Yes: the suggestion
to the server is to mix his serves randomly, and the suggestion to the receiver is to
mix his expectations randomly. What fraction of the time should the server serve to
the forehand, and what fraction of the time should the receiver anticipate a serve to
his forehand? To answer this question we must develop the idea of a mixed strategy.

Consider a game in normal form with players 1, . . . , n and corresponding strat-
egy sets S1, . . . , Sn, all finite. Suppose that for each i, Player i’s strategy set consists
of ki strategies, which we denote si1, . . . , siki. Amixed strategy σi for Player i consists
of using strategy si1 with probability pi1, strategy si2 with probability pi2, . . . , strat-
egy siki with probability piki . Of course, each pij ≥ 0, and

∑ki
j=1 pij = 1. Formally,

σi =
∑ki

j=1 pijsij.

If pij > 0, we say that the pure strategy sij is active in the mixed strategy σi.

A mixed strategy σi is called pure if only one pure strategy is active, i.e., if
one pij is 1 and all the rest are 0. We will usually denote by sij the pure strategy of
Player i that uses sij with probability 1 and his other strategies with probability 0.
Up until now we have only discussed pure strategies.

We will try whenever possible to avoid double subscripting. Thus we will often
denote a strategy of Player i by si, and the associated probability by psi. This will
require summing over all si ∈ Si instead of summing from j = 1 to ki. Thus a mixed
strategy of Player i will be written

(5.1) σi =
∑

all si∈Si

psisi.

If each player i chooses a mixed strategy σi, we get a mixed-strategy profile
(σ1, . . . , σn).

Recall that if each player i chooses a pure strategy si, we get a pure strategy
profile (s1, . . . , sn). Recall that associated with each pure strategy profile (s1, . . . , sn)
is a payoff to each player; the payoff to Player i is denoted πi(s1, . . . , sn).

Suppose

• Player 1’s mixed strategy σ1 uses his strategy s1 with probability ps1 ,
• Player 2’s mixed strategy σ2 uses his strategy s2 with probability ps2 ,
...

• Player n’s mixed strategy σn uses his strategy sn with probability psn.

We assume that the players independently choose pure strategies to use. Then, if
the players use the mixed-strategy profile (σ1, . . . , σn), the probability that the pure
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strategy profile (s1, . . . , sn) occurs is the product ps1ps2 · · · psn. Thus the expected
payoff to Player i is

(5.2) πi(σ1, . . . , σn) =
∑

all (s1,...,sn)

ps1ps2 . . . psnπi(s1, . . . , sn).

Let σ denote the mixed-strategy profile (σ1, . . . , σn). Suppose in σ we replace
the ith player’s mixed strategy σi by another of his mixed strategies, say τi. We will
denote the resulting mixed-strategy profile by (τi, σ−i). This notation is analogous
to that introduced in Subsection 3.1.

If Player 1 uses a pure strategy s1, equation (5.2) yields for Player 1’s payoff

(5.3) π1(s1, σ2 . . . , σn) =
∑

all (s2,...,sn)

ps2 . . . psnπ1(s1, . . . , sn).

Equation (5.2) for Player 1’s payoff now can be rewritten as

(5.4) π1(σ1, . . . , σn) =
∑

all s1∈S1

ps1
∑

all (s2,...,sn)

ps2 . . . psnπ1(s1, . . . , sn).

Using (5.3), equation (5.4) can be written

(5.5) π1(σ1, . . . , σn) =
∑

all s1∈S1

ps1π1(s1, σ2 . . . , σn) =
∑

all s1∈S1

ps1π1(s1, σ−1).

More generally, for Player i,

(5.6) πi(σ1, . . . , σn) =
∑

all si∈Si

psiπi(si, σ−i).

In other words, the payoff to Player i from using strategy σi against the other
players’ mixed strategies is just a weighted average of his payoffs from using his pure
strategies against their mixed strategies, where the weights are the probabilities in
his strategy σi.

A mixed strategy profile (σ∗
1, . . . , σ

∗
n) is a mixed strategy Nash equilibrium if no

single player can improve his own payoff by changing his strategy. In other words:

• For every mixed strategy σ1 of Player 1,

π1(σ
∗
1 , σ

∗
2, . . . , σ

∗
n) ≥ π1(σ1, σ

∗
2, . . . , σ

∗
n).

• For every mixed strategy σ2 of Player 2,

π2(σ
∗
1 , σ

∗
2, σ

∗
3, . . . , σ

∗
n) ≥ π2(σ

∗
1 , σ2, σ

∗
3, . . . , σ

∗
n).

...
• For every mixed strategy σn of Player n,

πn(σ
∗
1 , . . . , σ

∗
n−1, σ

∗
n) ≥ πn(σ

∗
1, . . . , σ

∗
n−1, σn).
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More compactly, a mixed strategy profile σ∗ = (σ∗
1 , . . . , σ

∗
n) is a Nash equilib-

rium if, for each i = 1, . . . , n, πi(σ
∗) ≥ πi(σi, σ

∗
−i) for every mixed strategy σi of

Player i.

Theorem 5.1. Nash’s Existence Theorem. If, in an n-person game in normal form,
each player’s strategy set is finite, then the game has at least one mixed strategy Nash
equilibrium.

John Nash was awarded the Nobel Prize in Economics in 1994 largely for
discovering this theorem. We shall not give the proof, which uses mathematical
ideas beyond the scope of this course.

The definition of a mixed strategy Nash equilibrium implicitly assumes that
the lottery with the higher expected utility is preferred. Therefore it should only be
used in situations where the Expected Utility Principle (Section 4.1) can reasonably
be expected to hold.

The next result gives a characterization of Nash equilibria that is very useful
in finding them.

Theorem 5.2. Fundamental Theorem of Nash Equilibria. The mixed strategy profile
σ = (σ1, . . . , σn) is a mixed strategy Nash equilibrium if and only if the following two
conditions are satisfied for every i = 1, . . . , n.

(1) If the strategies si and s′i are both active in σi, then πi(si, σ−i) = πi(s
′
i, σ−i).

(2) If the strategy si is active in σi and the strategy s′i is not active in σi, then
πi(si, σ−i) ≥ πi(s

′
i, σ−i).

This theorem just says that mixed strategy Nash equilibria are characterized
by the following property: each player’s active strategies are all best responses to
the profile of the other players’ mixed strategies, where “best response” means best
response among pure strategies.

Unlike Nash’s Existence Theorem, the Fundamental Theorem of Nash Equi-
libria is easy to prove. We will just give the idea of how to prove (1). Let
σ = (σ1, . . . , σn) be a mixed strategy profile. Suppose that in Player i’s strat-
egy σi, his pure strategies si and s′i are both active, with probabilities pi > 0
and p′i > 0 respectively. Look at equation (5.6). Suppose, for example, that
πi(si, σ−i) < πi(s

′
i, σ−i). Then Player i can switch to a new strategy τi that differs

from σi only in that the pure strategy si is not used at all, but the pure strat-
egy s′i is used with probability pi + p′i. This would increase Player i’s payoff, so
σ = (σ1, . . . , σn) would not be a mixed strategy Nash equilibrium.

In the remainder of this section we give some easy consequences of the Funda-
mental Theorem of Nash Equilibria, and we comment on the relationship between
mixed strategy Nash equilibria and iterated elimination of dominated strategies.
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Theorem 5.3. Let σ∗ = (σ∗
1 , . . . , σ

∗
n) be a mixed strategy Nash equilibrium with σ∗

i

given by (5.1). Let S∗
i = {si : psi > 0} be the set of Player i’s active strategies.

For si ∈ S∗
i , let πi(si, σ

∗
−i) = K. (According to the Fundamental Theorem, all the

payoffs πi(si, σ
∗
−i) with si ∈ S∗

i are equal.)

(1) Let τi be any combination of Player i’s active strategies, i.e., τi =
∑

si∈S∗

i
qsisi

with all qsi ≥ 0 and
∑

qsi = 1. Then πi(τi, σ
∗
−i) = K.

(2) In particular, πi(σ
∗) = K.

Proof. (1) We calculate

πi(τi, σ
∗
−i) =

∑

all si∈Si

qsiπi(si, σ
∗
−i) =

∑

si∈S∗

i

qsiπi(si, σ
∗
−i) =

∑

si∈S∗

i

qsiK = K.

The first equality follows from (5.6). The second equality holds because only the qsi
with si ∈ S∗

i are nonzero. The third equality holds because
∑

qsi = 1.

(2) follows from (1) by letting qsi = psi, so τi = σ∗
i . �

Theorem 5.3, together with the definition of Nash equilibrium, says that at a
Nash equilibrium, all of Player i’s active strategies are best responses to the profile of
the other players’ mixed strategies (not just best responses among pure strategies),
and in fact any combination of Player i’s active strategies is a best response to the
profile of the other players’ mixed strategies

Theorem 5.4. If s∗ = (s∗1, . . . , s
∗
n) is a profile of pure strategies, then s∗ is a mixed

strategy Nash equilibrium if and only if s∗ is a Nash equilibrium in the sense of
Subsection 3.1.

Proof. Suppose s∗ = (s∗1, . . . , s
∗
n) is a profile of pure strategies that is a mixed

strategy Nash equilibrium. Consider Player i and one of his strategies si other than
s∗i . Since si is not active, the second part of the Fundamental Theorem says that
πi(s

∗
i , s

∗
−i) ≥ πi(si, s

∗
−i). This says that s∗ is a Nash equilibrium in the sense of

Subsection 3.1.

On the other hand, suppose s∗ = (s∗1, . . . , s
∗
n) is a profile of pure strategies

that is a Nash equilibrium in the sense of Subsection 3.1. Then condition (1) of
the Fundamental Theorem is automatically satisfied since each player has only one
active strategy. Condition (2) is an immediate consequence of the definition of Nash
equilibrium in Subsection 3.1. Since both conditions hold, s∗ is a mixed strategy
Nash equilibrium. �

A mixed strategy profile σ∗ = (σ∗
1 , . . . , σ

∗
n) is a strict mixed strategy Nash

equilibrium if, for each i = 1, . . . , n, πi(σ
∗) > πi(σi, σ

∗
−i) for every mixed strategy

σi 6= σ∗
i of Player i.

The following result is a consequence of the two previous theorems.
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Theorem 5.5. σ∗ = (σ∗
1, . . . , σ

∗
n) is a strict mixed strategy Nash equilibrium if and

only if (i) each σ∗
i is a pure strategy, and (ii) σ∗ is a strict Nash equilibrium in the

sense of Subsection 3.1.

For most two-player games, at each Nash equilibrium, both players use the
same number of active pure strategies. Thus, in two-player games, one can begin by
looking for Nash equilibria in which each player uses one active pure strategy, then
Nash equilibria in which each player uses two active pure strategies, etc. In most
two-player games, this procedure not only finds all mixed strategy Nash equilibria;
it also yields as a byproduct a proof that there are no Nash equilibria in which the
two players use different numbers of active pure strategies.

Finally, we comment on the relationship between mixed strategy Nash equilib-
ria and iterated elimination of dominated strategies. Theorems 3.1 and 3.2 remain
true for mixed strategy Nash equilibria. In particular, suppose we do iterated elim-
ination of weakly dominated strategies on a game G in normal form. Let H be the
reduced game that results. Then each mixed strategy Nash equilibrium of H is also
a mixed strategy Nash equilibrium of G. If we do iterated elimination of strictly
dominated strategies, then each strategy that is eliminated is not part of any mixed
strategy Nash equilibrium of G.

5.2. Tennis

We recall the game of tennis described in the previous section, with the payoff
matrix

Receiver anticipates serve to
backhand forehand

Server serves to backhand (.4, .6) (.8, .2)
forehand (.7, .3) (.1, .9)

We shall find all mixed strategy Nash equilibria in this game.

Suppose the receiver uses his two strategies with probabilities p and 1−p, and
the server uses his strategies with probabilities q and 1 − q. It is helpful to write
these probabilities next to the payoff matrix as follows:

Receiver anticipates serve to
q 1− q

backhand forehand
Server serves to p backhand (.4, .6) (.8, .2)

1− p forehand (.7, .3) (.1, .9)

We shall look for a mixed strategy Nash equilibria (pb+ (1− p)f, qb+ (1− q)f).
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In accordance with the advice in the previous section, we shall first look for
equilibria in which both players use one active pure strategy, then look for equilibria
in which both players use two active pure strategies.

1. Suppose both players use one active pure strategy. Then we would have
a pure strategy Nash equilibrium. You checked in the previous section that there
aren’t any..

2. Suppose both players use two active pure strategies. Then 0 < p < 1 and
0 < q < 1. Since both of Player 2’s pure strategies b and f are active, each gives
the same payoff to Player 2 against Player 1’s mixed strategy pb+ (1− p)f :

.6p+ .3(1− p) = .2p+ .9(1− p).

Solving this equation for p, we find that p = .6.

Similarly, since both of Player 1’s pure strategies b and f are active, each gives
the same payoff to Player 1 against Player 2’s mixed strategy qb+ (1− q)f :

.4q + .8(1− q) = .7q + .1(1− q).

Solving this equation for q, we find that q = .7.

We conclude that the (.6b+ .4f, .7b+ .3f) satisfies the equality criterion for a
mixed strategy Nash equilibrium. Since there are no unused pure strategies, there
is no inequality criterion to check. Therefore we have found a mixed strategy Nash
equilibrium in which both players have two active pure strategies.

Note that in the course of finding this Nash equilibrium, we actually did more.

(1) We showed that if both of Player 2’s pure strategies are active at a Nash
equilibrium, then Player 1’s strategy must be .6b+ .4f . Hence there are no
Nash equilibria in which Player 2 uses two pure strategies but Player 1 uses
only one pure strategy.

(2) Similarly, we showed that if both of Player 1’s pure strategies are active at
a Nash equilibrium, then Player 2’s strategy must be 7b+ .3f . Hence there
are no Nash equilibria in which Player 1 uses two pure strategies but Player
2 uses only one pure strategy.

This is an example of how, in the course of finding mixed-strategy Nash equi-
libria for a two-player game in which both players use the same number of pure
strategies, one usually shows as a byproduct that there are no Nash equilibria in
which the two players use different numbers of pure strategies.

5.3. Other ways to find mixed-strategy Nash equilibria

Here are two ways to find mixed-strategy Nash equilibria in the previous prob-
lem without using the Fundamental Theorem. Both may be useful in other problems.
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5.3.1. Differentiating the payoff functions. In the tennis problem, there
are two payoff functions, π1 and π2. Since Player 1’s strategy is determined by the
choice of p and Player 2’s by the choice of q, we may regard π1 and π2 as functions
of (p, q) with 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. From the payoff matrix, we have

π1(p, q) = .4pq + .8p(1− q) + .7(1− p)q + .1(1− p)(1− q),

π2(p, q) = .6pq + .2p(1− q) + .3(1− p)q + .9(1− p)(1− q).

Suppose (p, q) is a mixed-strategy Nash equilibrium with 0 < p < 1 and 0 < q < 1.
Then the definition of mixed-strategy Nash equilibrium implies that

∂π1

∂p
(p, q) = 0 and

∂π2

∂q
(p, q) = 0.

Therefore

∂π1

∂p
(p, q) = .4q + .8(1− q)− .7q − .1(1− q) = .7− q = 0,

∂π2

∂q
(p, q) = .6p− .2p+ .3(1− p)− .9(1− p) = .− .6 + p = 0.

We see that (p, q) = (.6, .7).

5.3.2. Best-response correspondences. From the calculation of partial deriva-
tives above,

∂π1

∂p
(p, q) =











+ if q < .7,

0 if q = .7,

− if q > .7.

∂π2

∂q
(p, q) =











− if p < .6,

0 if p = .6,

+ if p > .6,

These partial derivatives tell us each player’s best response to all strategies of his
opponent. For Player 1:

• If Player 2 chooses q with 0 ≤ q < .7, Player 1 observes that his own payoff
is an increasing function of p. Hence his best response is p = 1.

• If Player 2 chooses q = .7, Player 1 observes that his own payoff will be the
same whatever p he chooses. Hence he can choose any p between 0 and 1.

• If Player 2 chooses q with .7 < q ≤ 1, Player 1 observes that his own payoff
is a decreasing function of p. Hence his best response is p = 0.

Player 1’s best-response correspondence B1(q) is graphed in Figure 5.1, along with
Player 2’s best-response correspondence B2(p). Note that B1(.7) is the set 0 ≤ p ≤ 1
and B2(.6) is the set 0 ≤ q ≤ 1. Points of intersection of the two graphs are
Nash equilibria. In this case, the only point of intersection of the two graphs is
(p, q) = (.6, .7).

116



q

p

1

1

.6

.7

p ε B1(q)

q ε B2(p)

Figure 5.1. Graphs of best-response correspondences in the game of
tennis. The only point in the intersection of the two graphs is (p, q) =
(.6, .7).

5.4. One-card Two-round Poker

We will play poker with a deck of two cards, one high (H) and one low (L).
There are two players. Play proceeds as follows.

(1) Each player puts $2 into the pot.
(2) Player 1 is dealt one card, chosen by chance. He looks at it. He either bets

$2 or he folds. If he folds, Player 2 gets the pot. If he bets:
(3) Player 2 either bets $2 or he folds. If he folds, Player 1 gets the pot. If he

bets:
(4) Player 1 either bets $2 or he folds. If he folds, Player 2 gets the pot. If he

bets:
(5) Player 2 either bets $2 or he folds. If he folds, Player 1 gets the pot. If he

bets, Player 1 shows his card. If it is H , Player 1 wins the pot. If it is L,
Player 2 wins the pot.

The game tree is shown in Figure 5.2.

Player 2 has three pure strategies:

• bb: the first time Player 1 bets, respond by betting; the second time Player
1 bets, respond by betting.
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11

11

2

2

2

2

b

b

b

b

b

b

b

b

f f

f

f

f

f

f

f

−2 −2

2 2

−4 −4

6 4 4 −6

H L
p = 1/2 p = 1/2

Figure 5.2. One-card two-round poker. Nodes in the same infor-
mation set are linked by a dashed line. Only payoffs to Player 1 are
shown; payoffs to Player 2 are opposite.

• bf : the first time Player 1 bets, respond by betting; the second time Player
1 bets, respond by folding.

• f : the first time Player 1 bets, respond by folding.

(Actually, f is not a strategy in the sense that we have defined the term, since it
does not specify what Player 2 will do after Player 1 bets for a second time. We have
not specified this choice because, if Player 2 correctly does what he intends and folds
after one bet by Player 1, the question of what to do after a second bet by Player 1
will not arise. Thus this choice does not affect the payoffs that we calculate.)

To describe Player 1’s pure strategies, we first note that if Player 1 is dealt
the high card, he has three options:

• bb: bet; if Player 2 responds by betting, bet again.
• bf : bet; if Player 2 responds by betting, fold.
• f : fold.

If Player 1 is dealt the low card, he has the same three options. Thus Player 1 has
nine pure strategies: choose one option to use if dealt the high card, and one to
option to use if dealt the low card.
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The payoff matrix for this game is 9×3. If we draw it, we will quickly see that
six of Player 1’s pure strategies are weakly dominated: every strategy of Player 1
that does not use the option bb when dealt the high card is weakly dominated by
the corresponding strategy that does use this option. This is obviously correct: if
Player 1 is dealt the high card, he will certainly gain a positive payoff if he continues
to bet, and will certainly suffer a negative payoff if he ever folds.

We therefore eliminate six of Player 1’s strategies and obtain a reduced 3× 3
game. In the reduced game, we denote Player 1’s strategies by bb, bf , and f . The
notation represents the option Player 1 uses if dealt the low card; if dealt the high
card, he uses the option bb. Any Nash equilibria of the reduced game are also Nash
equilibria of the full game.

If the card dealt is high, the payoffs are:

Player 2
bb bf f

bb (6,−6) (4,−4) (2,−2)
Player 1 bf (6,−6) (4,−4) (2,−2)

f (6,−6) (4,−4) (2,−2)

If the card dealt is low, the payoffs are:

Player 2
bb bf f

bb (−6, 6) (4,−4) (2,−2)
Player 1 bf (−4, 4) (−4, 4) (2,−2)

f (−2, 2) (−2, 2) (−2, 2)

The payoff matrix for the game is 1
2
times the first matrix plus 1

2
times the second:

Player 2
bb bf f

bb (0, 0) (4,−4) (2,−2)
Player 1 bf (1,−1) (0, 0) (2,−2)

f (2,−2) (1,−1) (0, 0)

We shall look for a mixed-strategy Nash equilibrium (σ1, σ2), with σ1 = p1bb+
p2bf + p3f and σ2 = q1bb+ q2bf + q3f :

Player 2
q1 q2 q3
bb bf f

p1 bb (0, 0) (4,−4) (2,−2)
Player 1 p2 bf (1,−1) (0, 0) (2,−2)

p3 f (2,−2) (1,−1) (0, 0)
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We should consider three possibilities:

(1) Both players use a pure strategy.
(2) Both players use exactly two active pure strategies.
(3) Both players use exactly three active pure strategy.

One easily deals with the first case: there are no pure strategy Nash equilibria. The
second case divides into nine subcases, since each player has three ways to choose
his two active strategies. For now we ignore these possibilities; we will return to
them in the next section.

In the third case, we assume that all pi and qi are positive. Since all qi are
positive, each of Player 2’s pure strategies gives the same payoff to Player 2 against
Player 1’s mixed strategy σ1. These three payoffs are:

π2(σ1, bb) = p1(0) + p2(−1) + p3(−2),

π2(σ1, bf) = p1(−4) + p2(0) + p3(−1),

π2(σ1, f) = p1(−2) + p2(−2) + p3(0).

The fact that these three quantities must be equal yields two independent equations.
For example, one can use π2(σ1, bb) = π2(σ1, f) and π2(σ1, bf) = π2(σ1, f):

p1(0) + p2(−1) + p3(−2) = p1(−2) + p2(−2) + p3(0),

p1(−4) + p2(0) + p3(−1) = p1(−2) + p2(−2) + p3(0).

Simplifying, we have

2p1 + p2 − 2p3 = 0,

−2p1 + 2p2 − p3 = 0.

A third equation is given by
p1 + p2 + p3 = 1.

These three equations in the three unknowns (p1, p2, p3) can be solved to yield the
solution

(p1, p2, p3) = (
1

5
,
2

5
,
2

5
).

Had any pi failed to lie strictly between 0 and 1, we would discard the possibility that
there is a Nash equilibrium in which both players use three active pure strategies.

(One way to use the third equation is to use it to substitute p3 = 1− p1 − p2
in the first two equations. This is analogous to how we solved the tennis problem.)

Similarly, since all pi are positive, each of Player 1’s three pure strategies gives
the same payoff to Player 1 against Player 2’s mixed strategy σ2. This observation
leads to three equations in the three unknowns (q1, q2, q3), which can be solved to
yield

(q1, q2, q3) = (
8

15
,
2

15
,
1

3
).
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When you find a Nash equilbrium of a game in extensive form in which players
move several times, it is useful to translate it into plans for the play of the game. In
this case, the mixed-strategy Nash equilibrium we have found yields the following
plans.

• Player 1: If dealt the high card, bet at every opportunity. If dealt the low
card:
(1) Bet with probability 3

5
, fold with probability 2

5
.

(2) If you get to bet a second time, bet with probability 1
3
, fold with

probability 2
3
.

• Player 2:
(1) If Player 1 bets, bet with probability 2

3
, fold with probability 1

3
.

(2) If you get to bet a second time, bet with probability 4
5
, fold with

probability 1
5
.

Player 1’s strategy includes a lot of bluffing (betting when he has the low card)!
Because Player 1 bluffs so much, it is rational for Player 2 to bet a lot even though
he has no idea what the situation is.

Note that in searching for a Nash equilibria in which both players use all three
of their pure strategies, we in fact showed:

(1) If all three of Player 2’s pure strategies are active at a Nash equilibrium,
then Player 1’s strategy must be (p1, p2, p3) = (1

5
, 2
5
, 2
5
). Hence there are no

Nash equilibria in which Player 1 uses only one or two pure strategies and
Player 2 uses three pure strategies.

(2) If all three of Player 1’s pure strategies are active at a Nash equilibrium,
then Player 2’s strategy must be (q1, q2, q3) = ( 8

15
, 2
15
, 1
3
). Hence there are

no Nash equilibria in which Player 1 uses three pure strategies but Player
2 uses only one or two pure strategies.

If the two players use these strategies, the expected payoff to each player is
given by formula (5.2). For example, the expected payoff to Player 1 is

π1(σ1, σ2) = p1q1 ·0+p1q2 ·4+p1q3 ·2+p2q1 ·1+p2q2 ·0+p2q3 ·2+p3q1·2+p3q2 ·1+p3q3 ·0.
Substituting the values of the pi and qj that we have calculated, we find that the
expected payoff to Player 1 is 6

5
. Since the payoffs to the two players must add

up to 0, the expected payoff to Player 2 is −6
5
. (In particular, we have found an

arguably better strategy for Player 2 than always folding, which you might have
suspected would be his best strategy. If Player 2 always folds and Player 1 uses his
best response, which is to always bet, then Player 2’s payoff is −2.)

Tom Ferguson is a mathematician at UCLA, where he teaches game theory.
His online game theory text is available at
http://www.math.ucla.edu/~tom/Game_Theory/Contents.html, and his home page
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is http://www.math.ucla.edu/~tom. On his home page you will find some recent
articles applying game theory to poker that he wrote with his son, Chris Ferguson.
Chris is a champion poker player, having won over $7 million. His Wikipedia page
is http://en.wikipedia.org/wiki/Chris_Ferguson. A 2009 New Yorker article
about Chris Ferguson, poker, and game theory is available at
http://www.newyorker.com/reporting/2009/03/30/090330fa_fact_wilkinson.

5.5. Two-player zero-sum games

One-card Two-round Poker is an example of a two-player zero-sum game.
“Zero-sum” means that the two players’ payoffs always add up to 0; if one player
does better, the other must do worse. The Nash equilibria of two-player zero-sum
games have several useful properties.

To explore these properties, we first define, for any two-player game in normal
form, maximin strategies, maximin payoffs, and maximin equilibria.

If Player 1 uses strategy σ1, his minimum possible payoff is

m1(σ1) = min
σ2

π1(σ1, σ2)

A maximin strategy for Player 1, denoted σ†
1, is a strategy that makes this minimum

possible payoff as high as possible. Player 1’s minimum possible payoff when he uses
the strategy σ†

1 is his maximin payoff m†
1, given by

m†
1 = m1(σ

†
1) = max

σ1

m1(σ1) = max
σ1

min
σ2

π1(σ1, σ2).

By using the strategy σ†
1, Player 1 guarantees himself a payoff of at least m†

1, no
matter what Player 2 does. This is the highest payoff that Player 1 can guarantee
himself.

Similarly, if Player 2 uses strategy σ2, his minimum possible payoff is

m2(σ2) = min
σ1

π2(σ1, σ2)

A maximin strategy for Player 2, denoted σ†
2, is a strategy that makes this minimum

possible payoff as high as possible. Player 2’s minimum possible payoff when he uses
the strategy σ†

2 is his maximin payoff m†
2, given by

m†
2 = m2(σ

†
2) = max

σ2

m2(σ2) = max
σ2

min
σ1

π1(σ1, σ2).

By using the strategy σ†
2, Player 2 guarantees himself a payoff of at least m†

2, no
matter what Player 1 does. This is the highest payoff that Player 2 can guarantee
himself

A strategy profile (σ†
1, σ

†
2) in which both players use maximin strategies is called

a maximin equilibrium. Each player’s payoff is at least his maximin payoff m†
i .
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For example, consider the Battle of Sexes in Subsection 3.2.4. Let

σ1 = p · concert + (1− p) · wrestling, σ2 = q · concert + (1− q) · wrestling.
We shall represent a strategy profile by (p, q) instead of (σ1, σ2). Then

π1(p, q) = 2 · pq + 1 · (1− p)(1− q),
∂π1

∂q
= 2 · p− 1 · (1− p) = −1 + 3p.

Therefore

∂π1

∂q
=











− if 0 ≤ p < 1
3
,

0 if p = 1
3
,

+ if 1
3
< p ≤ 1.

Hence

m1(p) = min
0≤q≤1

π1(p, q) =











π1(p, 1) if 0 ≤ p < 1
3
,

any π1(p, q) if p = 1
3
,

π1(p, 0) if 1
3
< p ≤ 1.

Therefore Player 1’s minimium possible payoff when he uses the strategy p is

m1(p) = min
0≤q≤1

π1(p, q) =











2p if 0 ≤ p < 1
3
,

2
3

if p = 1
3
,

1− p if 1
3
< p ≤ 1.

If we graph m1(p), we see that it is maximum at p = 1
3
, and π1(

1
3
, q) = 2

3
for any q.

Therefore Player 1’s maximin strategy is p† = 1
3
, and his maximin payoff is m†

1 =
2
3
.

A similar calculation shows that Player 2’s maximin strategy is q† = 2
3
, and his

maximin payoff is m†
2 = 2

3
. Therefore (p†, q†) = (1

3
, 2
3
) is a maximin equilibrium. It

is not, however, a Nash equilibrium; the Nash equilibria are (0, 0), (1, 1), and (2
3
, 1
3
).

The situation for a two-player zero-sum game is much nicer.

Theorem 5.6. For a two-player zero-sum game:

(1) A strategy profile is a Nash equilibrium if and only if it is a maximin equi-
librium.

(2) At any Nash equilibrium, both players get their maximin payoffs.

(3) Let m†
i denote Player i’s maximin payoff. Then m†

1 +m†
2 = 0.

Proof. First, assume (σ∗
1, σ

∗
2) is a Nash equilibrium. Let σ′

1 be any strategy of
Player 1, and let σ′

2 be a corresponding strategy of Player 2 that gives Player 1 his
lowest possible payoff when he uses σ′

1. In other words, suppose

(5.7) m1(σ
′
1) = π1(σ

′
1, σ

′
2) ≤ π1(σ

′
1, σ2) for all σ2.

Then

(5.8) m1(σ
′
1) = π1(σ

′
1, σ

′
2) ≤ π1(σ

′
1, σ

∗
2) ≤ π1(σ

∗
1, σ

∗
2).
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The first inequality holds because of (5.7). The second holds because (σ∗
1, σ

∗
2) is a

Nash equilibrium.

Now m†
1 is the maximum of the numbers m1(σ

′
1), so (5.8) implies that m†

1 ≤
π1(σ

∗
1, σ

∗
2). However, we claim that π1(σ

∗
1, σ

∗
2) is itself Player 1’s lowest possible

payoff when he uses the strategy σ∗
1 . It follows that σ∗

1 is a maximin strategy for

Player 1, and π1(σ
∗
1 , σ

∗
2) = m†

1. Similarly, σ∗
2 is a maximin strategy for Player 2, and

π2(σ
∗
1, σ

∗
2) = m†

2. Since π1(σ
∗
1 , σ

∗
2) + π2(σ

∗
1, σ

∗
2) = 0, it follows that m†

1 +m†
2 = 0.

(Note that in our argument, the conclusion that m†
1+m†

2 = 0 follows from the
assumption that a Nash equilibrium exists. However, this is always true by Nash’s
Existence Theorem.)

To prove that π1(σ
∗
1 , σ

∗
2) is Player 1’s lowest possible payoff when he uses the

strategy σ∗
1 , we note that

(5.9) π2(σ
∗
1, σ

∗
2) ≥ π2(σ

∗
1, σ2) for all σ2

because (σ∗
1, σ

∗
2) is a Nash equilibrium. But then, for any σ2,

π1(σ
∗
1, σ

∗
2) = −π2(σ

∗
1, σ

∗
2) ≤ −π2(σ

∗
1 , σ2) = π1(σ

∗
1 , σ2).

The two equalities hold because the game is zero-sum, and the inequality follows
from (5.9).

To complete the proof of Theorem 5.6, let (σ†
1, σ

†
2) be a maximin equilibrium.

To show that (σ†
1, σ

†
2) is a Nash equilibrium, let σ1 and σ2 be arbitrary strategies

for Players 1 and 2 respectively. We must show that π1(σ1, σ
†
2) ≤ π1(σ

†
1, σ

†
2) and

π2(σ
†
1, σ2) ≤ π2(σ

†
1, σ

†
2). We shall show the first inequality; the second is similar.

Since σ†
2 is Player 2’s maximin strategy,

(5.10) m†
2 = m2(σ

†
2) ≤ π2(σ1, σ

†
2).

Therefore

π1(σ1, σ
†
2) = −π2(σ1, σ

†
2) ≤ −m†

2 = m†
1 = m1(σ

†
1) ≤ π1(σ

†
1, σ

†
2).

The first equality holds because we have a zero-sum game; the second because of
conclusion (3) of the theorem, which has already been proved; and the third by the

definition of m†
1. The first inequality follows from (5.10). The second holds by the

definition of m1(σ
†
1). �

Theorem 5.6 implies that all Nash equilibria of a two-player zero-sum game are
obtained by pairing any maximin strategy of Player 1 with any maximin strategy
of Player 2. In particular, Player 1’s strategy from one Nash equilibrium may be
paired with Player 2’s strategy from a second Nash equilibrium to yield a third
Nash equilibrium. All three Nash equilibria, along with any others, will give the
same payoff to Player 1, and the same opposite payoff to Player 2.
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In many problems, Theorem 5.6 can be used to rule out the existence of other
Nash equilibria once you have found one. In One-card Two-round Poker, for ex-
ample, we found a Nash equilibrium in which both players had three active pure
strategies. We saw that our calculations to find this Nash equilibrium ruled out the
existence of Nash equilibria in which Player 1 used one or two pure strategies and
Player 2 used three pure strategies.

Now suppose there were a Nash equilibria in which Player 1 used one or two
pure strategies and Player 2 used one or two pure strategies. Then we could pair
Player 1’s strategy from this Nash equilibrium with Player 3’s strategy from the
Nash equilibrium we found, thus obtaining a Nash equilibrium in which Player 1
used one or two pure strategies and Player 2 used three pure strategies. However,
we just saw that there is no such Nash equilibrium.

We conclude that the Nash equilibrium we found for One-card Two-round
Poker is the only one there is.

You may recall that when we were working on One-card Two-round Poker, we
did not investigate the nine types of possible Nash equilibria in which each player
used exactly two pure strategies. We now know that there are no Nash equilibria of
these types.

The same ideas work more generally for two-player constant-sum games, in
which the two players’ payoffs always add up to the same constant. In Tennis, for
example, they always add up to 1.

5.6. The Ultimatum Minigame

The section deals with a simplified version of the Ultimatum Game of Section
1.7.

There are two players, Alice and Bob. The game organizer gives Alice $4. She
can make Bob a fair offer of $2 or an unfair offer of $1. If Bob accepts Alice’s offer,
the $4 is divided accordingly between the two players. If Bob rejects the offer, the
$4 goes back to the game organizer.

We shall assume that if Alice makes the fair offer, Bob will always accept it.
Then the game tree is given by Figure 5.3.

Backward induction predicts that Alice will make an unfair offer and Bob will
accept it. This correspond to the prediction of backward induction in the Ultimatum
Game.

Alice has two strategies: make a fair offer (f) or make an unfair offer (u).
Bob also has two strategies: accept an unfair offer (a) or reject an unfair offer (r).
Whichever strategy Bob adopts, he will accept a fair offer. The normal form of the
game is given by the following matrix.
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Alice

Bob

fair offer unfair offer

(2,2)
accept reject

(3,1) (0,0)

Figure 5.3. Ultimatum Minigame. Alice is Player 1, Bob is Player 2.

Bob
a r

Alice f (2, 2) (2, 2)
u (3, 1) (0, 0)

There are two pure strategy Nash equilibria: (u, a), a strict Nash equilibrium
in which Alice makes an unfair offer and Bob accepts it; and (f, r), a nonstrict Nash
equilibrium in which Alice makes a fair offer because Bob threatens to reject an
unfair offer.

The second Nash equilibrium is not strict because, if Alice uses f , Bob’s strat-
egy a gives him the same payoff as his strategy r. In this situation we should look
for Nash equilibria in which Alice uses one strategy f but Bob uses both strategies a
and r.

Let’s look at this Nash equilibrium (f, r) from the point of view of the Fun-
damental Theorem of Nash Equilibria, Theorem 5.2. The inactive strategies are
Alice’s strategy u and Bob’s strategy a. In this case the Fundamental Theorem says
that in order to have a Nash equilibrium, the following inequalities must hold:

π1(f, r) ≥ π1(u, r) and π2(f, r) ≥ π2(f, a).

Both inequalities are true, but the second is actually an equality.

Advice to remember when looking for mixed strategy Nash equi-
libria: Suppose you find a mixed strategy Nash equilibrium σ∗ in which, for one
or more inactive strategies s′i, the corresponding inequality condition is actually an
equality. Then there may be Nash equilibria in which, in addition to the strategies
that are active in σ∗, one or more of the strategies s′i is active. Even in a two-person
game, these Nash equilibria may be ones in which the players use different numbers
of active strategies.

126



Following this advice, we examine strategy profiles (f, qa+ (1− q)r) with 0 <
q < 1. In order for this to be a Nash equilibrium, each of Bob’s pure strategies a and
r should give Bob the same payoff against Alice’s strategy f . Of course this is true:
each gives Bob a payoff of 2. Thus every strategy profile of the form (f, qa+(1−q)r)
with 0 < q < 1 satisfies the equality conditions for a Nash equilibrium.

Finally we check the inequality condition: Alice’s strategy f should give her
at least as good a payoff against Bob’s mixed strategy as does her unused strategy
u, so we must have π1(f, qa+(1− q)r) ≥ π1(u, qa+(1− q)r). This inequality yields

2q + 2(1− q) ≥ 3q or q ≤ 2

3
.

Thus, in order to induce Alice to make a fair offer, Bob does not have to threaten
to definitely reject an unfair offer. It is enough to threaten to reject an unfair offer
with probability 1− q ≥ 1

3
.

5.7. Colonel Blotto vs. the People’s Militia

There are two valuable towns. Col. Blotto has four regiments. The People’s
Militia has three regiments. Each decides how many regiments to send to each town.

If Col. Blotto sends m regiments to a town and the People’s Militia sends n,
Col. Blotto’s payoff for that town is

1 + n if m > n,

0 if m = n,

−(1 +m) if m < n.

Col. Blotto’s total payoff is the sum of his payoffs for each town. The People’s
Militia’s payoff is the opposite of Col. Blotto’s.

We consider this to be a game in normal form. Col. Blotto has five strategies,
which we denote 40, 31, 22, 13, and 04. Strategy 40 is to send four regiments to
town 1 and none to town 2, etc. Similarly, the People’s Militia has four strategies,
which we denote 30, 21, 12, and 03.

We shall look for a mixed-strategy Nash equilibrium (σ1, σ2), with σ1 = p140+
p231 + p322 + p413 + p504 and σ2 = q130 + q221 + q312 + q403:

People’s Militia
q1 q2 q3 q4
30 21 12 03

p1 40 (4,−4) (2,−2) (1,−1) (0, 0)
p2 31 (1,−1) (3,−3) (0, 0) (−1, 1)

Col. Blotto p3 22 (−2, 2) (2,−2) (2,−2) (−2, 2)
p4 13 (−1, 1) (0, 0) (3,−3) (1,−1)
p5 04 (0, 0) (1,−1) (2,−2) (4,−4)
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We should consider the following possibilities.

(1) Both players use a pure strategy.
(2) Both players use exactly two active strategies.
(3) Both players use exactly three active strategies.
(4) Both players use exactly four active strategies.

We will also look briefly at the possibility that both players use all their active
strategies (five for Col. Blotto, four for the People’s Militia).

1. If both players use a pure strategy, we have a pure strategy Nash equilib-
rium. One easily checks that there are none.

2. We will not look at any possibilities in which both players use exactly two
active strategies.

3. Suppose both player use exactly three active strategies. There are 40 ways
this can happen. (Col. Blotto has 10 ways to choose 3 of his 5 strategies; the
People’s Militia has 4 ways to choose 3 of their 4 strategies; 10 × 4 = 40.) We will
consider just two of these possibilities.

5.7.1. Suppose Col. Blotto uses only his 40, 31, and 22 strategies, and the
People’s Militia uses only its 30, 21, and 12 strategies. Thus we look for a Nash
equilibrium σ = (σ1, σ2), σ1 = p140 + p231 + p322, σ2 = q130 + q221 + q312.

Each of the People’s Militia’s pure strategies 30, 21, and 12 must yield the
same payoff to the People’s Militia against Col. Blotto’s mixed strategy σ1. These
three payoffs are

π2(σ1, 30) = −4p1 − p2 + 2p3,

π2(σ1, 21) = −2p1 − 3p2 − 2p3,

π2(σ1, 12) = −p1 − 2p3.

We obtain three equations in three unknowns by using π2(σ1, 30) = π2(σ1, 21) and
π2(σ1, 30) = π2(σ1, 12), together with p1 + p3 + p5 = 1:

−2p1 + 2p2 + 4p3 = 0,

−3p1 − p2 + 4p3 = 0,

p1 + p2 + p3 = 1.

The solution is (p1, p2, p3) = (3
4
,−1

4
, 1
2
). Since p2 is not strictly between 0 and 1,

there is no Nash equilibrium of the desired type.

5.7.2. Suppose Col. Blotto uses only his 40, 22, and 04 strategies, and the
People’s Militia uses only its 30, 21, and 12 strategies. Thus we look for a Nash
equilibrium σ = (σ1, σ2), σ1 = p140 + p322 + p504, σ2 = q130 + q221 + q312.
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Each of the People’s Militia’s pure strategies 30, 21, and 12 must yield the
same payoff to the People’s Militia against Col. Blotto’s mixed strategy σ1. These
three payoffs are

π2(σ1, 30) = −4p1 + 2p3,

π2(σ1, 21) = −2p1 − 2p3 − p5,

π2(σ1, 12) = −p1 − 2p3 − 2p5.

We obtain three equations in three unknowns by using π2(σ1, 30) = π2(σ1, 12) and
π2(σ1, 21) = π2(σ1, 12), together with p1 + p3 + p5 = 1:

−3p1 + 4p3 + 2p5 = 0,

−p1 + p5 = 0,

p1 + p3 + p5 = 1.

The solution is (p1, p3, p5) = (4
9
, 1
9
, 4
9
).

Each of Col. Blotto’s pure strategies 40, 22, and 04 must yield the same payoff
to Col. Blotto against the People’s Militia’s mixed strategy σ2. These three payoffs
are

π1(40, σ2) = 4q1 + 2q2 + q3,

π1(22, σ2) = −2q1 + 2q2 + 2q3,

π1(04, σ2) = q2 + 2q3.

We obtain three equations in three unknowns by using π1(40, σ2) = π1(04, σ2) and
π1(22, σ2) = π1(04, σ2), together with q1 + q2 + q3 = 1:

4q1 + q2 − q3 = 0,

−2q1 + q2 = 0,

q1 + q2 + q3 = 1.

The solution is (q1, q2, q3) = (1
9
, 2
9
, 2
3
).

These calculations rule out the existence of Nash equilibria in which the Peo-
ple’s Militia’s active strategies are 30, 21, 12, and Col. Blotto’s active strategies
are one or two of his strategies 40, 22, and 04. They also rule out the existence of
Nash equilibria in which Col. Blotto’s active strategies are 40, 22, and 04, and the
People’s Militia’s active strategies are one or two of their strategies 30, 21, 12.

We have seen that (σ1, σ2) with σ1 =
4
9
40+ 1

9
22+ 4

9
04 and σ2 =

1
9
30+ 2

9
21+ 2

3
12

satisfies the equality conditions for a Nash equilibrium. We now check the inequality
conditions.
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For Col Blotto:

π1(40, σ2) = π1(22, σ2) = π1(04, σ2) =
14

9
,

π1(31, σ2) =
1

9
(1) +

2

9
(3) +

2

3
(0) =

7

9
,

π1(13, σ2) =
1

9
(−1) +

2

9
(0) +

2

3
(3) =

17

9

For the People’s Militia:

π2(σ1, 30) = π2(σ1, 21) = π2(σ1, 12) = −14

9
,

π2(σ1, 03) = −14

9

Since π1(13, σ2) >
14
9
, the inequality conditions are not satisfied; (σ1, σ2) is not

a Nash equilibrium.

Notice, however, that π2(σ1, 03) = −14
9
, i.e., Player 2’s strategy 03 does just as

well against σ1 as the strategies that are active in σ2. As in Section 5.6, when this
happens, it is possible that there is a mixed-strategy Nash equilibrium in which the
two players use different numbers of active strategies. In this case, we must check the
possibility that there is a Nash equilibrium in which Col. Blotto’s active strategies
are 40, 22, and 04, and the People’s Militia’s strategies include 03 in addition to 30,
21, and 12.

3′. Thus we suppose Col. Blotto’s active strategies are 40, 22, and 04, and all
of the People’s Militia’s strategies are active. In other words, we look for a Nash
equilibrium σ = (σ1, σ2), σ1 = p140 + p322 + p504, σ2 = q130 + q221 + q312 + q403.

Each of the People’s Militia’s pure strategies must yield the same payoff to the
People’s Militia against Col. Blotto’s mixed strategy σ1. We obtain four equations
in three unknowns by using π2(σ1, 30) = π2(σ1, 03), π2(σ1, 21) = π2(σ1, 03), and
π2(σ1, 12) = π2(σ1, 03), together with p1 + p3 + p5 = 1. Usually, if there are more
equations than unknowns, there are no solutions. In this case, however, there is a
solution: (p1, p3, p5) = (4

9
, 1
9
, 4
9
), i.e., the same solution we had before allowing the

People’s Militia to use its strategy 03. A little thought indicates that this is what
will always happen.

Each of Col. Blotto’s pure strategies 40, 22, and 04 must yield the same payoff
to Col. Blotto against the People’s Militia’s mixed strategy σ2. These three payoffs
are

π1(40, σ2) = 4q1 + 2q2 + q3,

π1(22, σ2) = −2q1 + 2q2 + 2q3 − 2q4,

π1(04, σ2) = q2 + 2q3 + 4q4.
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We obtain three equations in four unknowns by using π1(40, σ2) = π1(04, σ2) and
π1(22, σ2) = π1(04, σ2), together with q1 + q2 + q3 + q4 = 1:

4q1 + q2 − q3 − 4q4 = 0,

−2q1 + q2 − 6q4 = 0,

q1 + q2 + q3 + q4 = 1.

As usually happens with fewer equations than unknowns, there are many solutions.
One way to list them all is as follows:

q1 =
1

9
− q4, q2 =

2

9
+ 4q4, q3 =

2

3
− 4q4, q4 arbitrary.

In order to keep all the qi’s strictly between 0 and 1, we must restrict q4 to the
interval 0 < q4 <

1
9
.

Thus, if σ1 =
4
9
40 + 1

9
22 + 4

9
04 and

σ2 = (
1

9
− q4)30 + (

2

9
+ 4q4)21 + (

2

3
− 4q4)12 + q403, 0 < q4 <

1

9
,

then (σ1, σ2) satisfies the equality conditions for a Nash equilibrium. We now con-
sider the inequality conditions when 0 < q4 <

1
9
, so that all of the People’s Militia’s

strategies are active. Then for the People’s Militia, there is no inequality constraint
to check. For Col. Blotto:

π1(40, σ2) = π1(22, σ2) = π1(04, σ2) =
14

9
,

π1(31, σ2) = (
1

9
− q4)(1) + (

2

9
+ 4q4)(3) + (

2

3
− 4q4)(0) + q4(−1) = 10q4 +

7

9
,

π1(13, σ2) = (
1

9
− q4)(−1) + (

2

9
+ 4q4)(0) + (

2

3
− 4q4)(3) + q4(1) = −10q4 +

17

9

To satisfy the inequality constraints for a Nash equilibrium, we need

10q4 +
7

9
≤ 14

9
and − 10q4 +

17

9
≤ 14

9
.

These inequality conditions are satisfied for 1
30

≤ q4 ≤ 7
90
.

We have thus found a one-parameter family of Nash equilibria (σ1, σ2): σ1 =
4
9
40 + 1

9
22 + 4

9
04 and

σ2 = (
1

9
− q4)30 + (

2

9
+ 4q4)21 + (

2

3
− 4q4)12 + q403,

1

30
≤ q4 ≤

7

90
,

The most attractive of these Nash equilibria occurs for q4 at the midpoint of its
allowed interval of values: (q1, q2, q3, q4) = ( 1

18
, 4
9
, 4
9
, 1
18
). At this Nash equilibrium,

the People’s Militia uses its 30 and 03 strategies equally, and also uses its 21 and 12
strategies equally.

We shall discuss this “symmetric” Nash equilibrium further in Section 7.4.
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4. We will not look at any possibilities in which both players use four active
strategies.

5. Suppose Col. Blotto uses all five of his pure strategies. Then at a Nash
equilibrium, each of Col. Blotto’s five pure strategies gives the same payoff to him
against the People’s Militia’s mixed strategy σ2. Therefore we have the following
system of 5 equations in the 4 unknowns q1, q2, q3, q4:

π1(40, σ2) = π1(04, σ2),

π1(31, σ2) = π1(04, σ2),

π1(22, σ2) = π1(04, σ2),

π1(13, σ2) = π1(04, σ2),

q1 + q2 + q3 + q4 = 1.

Typically, when there are more equations than unknowns, there is no solution. One
can check that that is the case here.

The game we have discussed is one of a class called Colonel Blotto games.
They differ in the number of towns and in the number of regiments available to
Col. Blotto and his opponent. There is a Wikipedia page devoted to these games:
http://en.wikipedia.org/wiki/Colonel_Blotto. There you will learn that it
has been argued that U.S. presidential campaigns should be thought of as Colonel
Blotto games, in which the candidates must allocate their resources among the
different states.

5.8. Water Pollution 3

In the game of Water Pollution (Sec. 3.3), we have already considered pure
strategy Nash equilibria. Now we will consider mixed strategy Nash equilibria in
which all three players use completely mixed strategies. Let g and b denote the
strategies purify and pollute respectively. Then we search for a mixed strategy
Nash equilibrium (σ1, σ2, σ3) = (xg+(1−x)b, yg+(1−y)b, zg+(1− z)b). Since the
numbers x, y, and z determine the player’s strategies, we shall think of the payoff
functions πi as functions of (x, y, z). The following chart helps to keep track of the
notation:

Firm 3 z g

Firm 2
y 1− y
g b

Firm 1 x g (−1,−1,−1) (−1, 0,−1)
1− x b (0,−1,−1) (−3,−3,−4)

Firm 3 1− z b
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Firm 2
y 1− y
g b

Firm 1 x g (−1,−1, 0) (−4,−3,−3)
1− x b (−3,−4,−3) (−3,−3,−3)

The criteria for a mixed strategy Nash equilibrium in which all three players
have two active strategies (i.e., 0 < x < 1, 0 < y < 1, 0 < z < 1) are:

π1(1, y, z) = π1(0, y, z), π2(x, 1, z) = π2(x, 0, z), π3(x, y, 1) = π3(x, y, 0).

The first equation, for example, says that if Players 2 and 3 use the mixed strategies
yg+ (1− y)b and zg+ (1− z)b respectively, the payoff to Player 1 if he uses g must
equal the payoff to him if he uses b.

The first equation, written out, is

−yz−(1−y)z−y(1−z)−4(1−y)(1−z) = 0yz−3(1−y)z−3y(1−z)−3(1−y)(1−z),

which simplifies to

(5.11) 1− 3y − 3z + 6yz = 0.

The other two equations, after simplification, are

(5.12) 1− 3x− 3z + 6xz = 0 and 1− 3x− 3y + 6xy = 0.

A straightforward way to solve this system of three equations in the unknowns
x, y, and z is to begin by solving the last two equations for z in terms of x and for
y in terms of x. We obtain

(5.13) z =
1− 3x

3− 6x
, y =

1− 3x

3− 6x
.

Therefore z = y. Similarly, if we solve the first equation for y in terms of z and the
second for x in terms of z, we find that y = x. Hence x = y = z. Now we set z = y
in the first equation, which yields 6y2 − 6y + 1 = 0. The quadratic formula then
gives y = 1

2
± 1

6

√
3. We have therefore found two mixed strategy Nash equilibria:

x = y = z = 1
2
+ 1

6

√
3 and x = y = z = 1

2
− 1

6

√
3.

5.9. Equivalent games

Assigning payoffs in games is a tricky business. Are there some aspects of the
process that we can safely ignore?

When you do backward induction on a game in extensive form with complete
information, or when you eliminate dominated strategies or look for pure-strategy
Nash equilibria in a game in normal form, all you need to do is compare one payoff of
Player i to another payoff of the same player. Therefore any reassignment of Player
i’s payoffs that preserves their order will not affect the outcome of the analysis.
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The situation is different when you work with a game in extensive form with
incomplete information, or when you look for mixed-strategy Nash equilibria in a
game in normal form. Suppose Player i’s payoffs in the different situations are
v1, . . . , vk. The safe reassignments of payoffs are affine linear: choose numbers a > 0
and b, and replace each vj by avj + b. You may use a different a and b for each
player.

We will not give a proof of this, but it is intuitively obvious. Suppose, for
example, that player i’s payoffs are in dollars, and we replace each vi by 100vi+200.
This can be interpreted as calculating Player i’s payoffs in cents instead of dollars,
and giving Player i two dollars each time he plays the game, independent of how
he does. Neither of these changes should affect Player i’s choice of strategies in the
game.

Example. The payoff matrix for a Prisoner’s Dilemma with two players and
two strategies takes the form

Player 2
c d

Player 1 c (r1, r2) (s1, t2)
d (t1, s2) (p1, p2)

with si < pi < ri < ti for each i. This is a standard notation. The strategies are
cooperate (c) and defect (d). The letter s stands for sucker’s payoff, p for punishment
(the lousy payoff when both players defect), t for temptation, and r for reward (the
good payoff when both cooperate). Note that d strictly dominates c for both players,
but the strategy profile (c, c) yields better payoffs to both than the strategy profile
(d, d).

Let us try to replace Player 1’s payoffs v by new payoffs av + b so that r1
becomes 1 and p1 becomes 0. Thus we want to choose a and b so that

ar1 + b = 1,

ap1 + b = 0.

We find that a = 1
r1−p1

and b = − p1
r1−p1

. Similarly, we replace Player 2’s payoffs v

by new payoffs av + b with a = 1
r2−p2

and b = − p2
r2−p2

. We obtain the new payoff
matrix

Player 2
c d

Player 1 c (1, 1) (e1, f2)
d (f1, e2) (0, 0)

with

ei =
si − pi
ri − pi

< 0 and fi =
ti − pi
ri − pi

> 1.
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You might find the second payoff matrix easier to think about than the first.
Also, if one were interested in doing a complete analysis of these games, the second
payoff matrix would be preferable to the first because it has four parameters instead
of eight.

5.10. Software for computing Nash equilibria

When the game is large, computing Nash equilibria can become too difficult,
or at least too tedious, to do by hand.

To find a Nash equilibrium, according to the Fundamental Theorem of Nash
Equilibria, one must do the following.

(1) Determine which strategies will be active.
(2) Find a solution to a set of equations with all variables nonnegative.
(3) If not all strategies are active, check some further inequalities.

There are two nice features of this problem: in step 2, the inequalities are linear
(pij ≥ 0); and step 3, since a solution to the equalities has already been found, is
just arithmetic.

For an n-player game, the equations in step 2 are polynomial of degree n− 1.
For example, in the three-player game Water Pollution, we found second-degree
polynomials in subsection 5.8.

The easiest case is therefore two-player games, which give rise to linear equa-
tions. In fact, for two-player games, there are alternate approaches to computing
Nash equilibria that do not directly use the Fudamental Theorem. For a two-player
zero-sum game, the problem of finding a Nash equilibrium can be converted into a
linear programming problem, for which many solution methods are known. For gen-
eral two-player games, one can use the Lemke-Howson algorithm, which is related
to the simplex algorithm of linear programming.

For n-player games, one first uses a heuristic (an experience-based algorithm
that is not guaranteed to work) to choose a likely set of active strategies. Then one
can use computer algebra or a numerical method to find solutions to the resulting
system of polynomial equations and linear equalities. Finally one checks whether
the inequalities in the Fundamental Theorem are satisfied.

The free software Gambit, available at http://www.gambit-project.org, in-
corporates a variety of methods for computing Nash equilibria numerically. Gambit
can also be used to eliminate dominated strategies in normal-form games, and to
perform backward induction in extensive-form games.
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5.11. Critique of Nash Equilibrium

Let’s consider the game of Tennis (Section 5.2). Suppose you must serve once,
and you know that your opponent is using his mixed strategy for a Nash equilibria:
expect a serve to his backhand 70% of the time, and a serve to his forehand 30% of
the time. Should you use your own mixed strategy for a Nash equilibrium, namely
serve 60% to his forehand and 40% to his backhand? The answer is that it doesn’t
matter: according to Theorem 5.3, either of your pure strategies, or any mixture of
them, gives you the same expected payoff against him.

But what if you must serve repeatedly, as is actually the case in a game of
tennis? If you do not respond to his 70-30 expectations with the corresponding
60-40 strategy, then his 70-30 strategy is not his best response to your strategy. If
he realizes what you are doing, he can change strategies and improve his payoff.

More generally, if the two players are not in a Nash equilibrium, one player
might eventually realize that he can improve his own payoff by changing his strategy.
If the new strategy profile is not a Nash equilibrium, again one of the players might
eventually realize that he can improve his payoff by changing his strategy. Thus one
would not expect the players to stay with a pair of strategies that is not a Nash
equilibrium. However, these repeated adjustments do not always lead the players
toward a Nash equilibrium, as we shall see in Chapter 10.

A common view is that rational analysis of a game by the players will lead them
to play a Nash equilibrium, although a period of trial and error may be necessary
if there are several Nash equilibria. Another view is that when a game is played
repeatedly, trial and error leads to a Nash equilibrium without the necessity for
rational analysis. At present there do not exist either theoretical arguments or
experimental results to fully justify either view.

We have seen that game theory provides models of interaction that can be
used to understand and deal with recreational games, ordinary human interactions,
animal behavior, and issues of politics, economics, business, and war. This list is
not exhaustive. The role played by the Nash equilibrium may well depend on the
context in which it arises.

5.12. Problems

5.12.1. Courtship among Birds. In many bird species, males are faithful or
philanderers, females are coy or loose. Coy females insist on a long courtship before
copulating, while loose females do not. Faithful males tolerate a long courtship and
help rear their young, while philanderers do not wait and do not help. Suppose v
is the value of having offspring to either a male or a female, 2r > 0 is the total
cost of rearing offspring, and w > 0 is the cost of prolonged courtship to both male
and female. We assume v > r + w. This means that a long courtship followed by
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sharing the costs of raising offspring is worthwhile to both male and female birds.
The normal form of this game is given below.

Female
coy loose

Male faithful (v − r − w, v − r − w) (v − r, v − r)
philanderer (0, 0) (v, v − 2r)

(1) If v > 2r, find a pure strategy Nash equilibrium.
(2) If v < 2r, show that there is no pure strategy Nash equilibrium, and find a

mixed-strategy Nash equilibrium.

5.12.2. War and Peace. Two players each have one unit of Good Stuff. They
each have two strategies, remain peaceful (p) or attack (a). If both remain peaceful,
each gets to consume his stuff. If one attacks and the other remains peaceful, the
attacker takes the other’s stuff. If both attack, both incur a loss of ℓ > 0. The
normal form of this game is shown below.

Player 2
p a

Player 1 p (1, 1) (0, 2)
a (2, 0) (−ℓ,−ℓ)

(1) Use best response to find the pure-strategy Nash equilibria. (There are
two.)

(2) Find a mixed-strategy Nash equilibrium in which neither player uses a pure
strategy.

(3) Show that for the mixed-strategy Nash equilibrium, the payoff to each
player increases when the loss from conflict ℓ increases.

5.12.3. Product Development. Two companies are racing to be first to de-
velop a product. Company 1 can invest 0, 1, 2, 3, or 4 million dollars in this effort.
Company 2, which is a little bigger, can invest 0, 1, 2, 3, 4, or 5 million dollars. If
one company invests more, it will win the race and gain 10 million dollars by being
first to market. If the companies invest the same amount, there is no gain to either.
Total payoff to each company is the amount it did not invest, which it retains, plus
10 million if it is first to market. The normal form of this game is given below.

0 1 2 3 4 5
0 (4, 5) (4, 14) (4, 13) (4, 12) (4, 11) (4, 10)
1 (13, 5) (3, 4) (3, 13) (3, 12) (3, 11) (3, 10)
2 (12, 5) (12, 4) (2, 3) (2, 12) (2, 11) (2, 10)
3 (11, 5) (11, 4) (11, 3) (1, 2) (1, 11) (1, 10)
4 (10, 5) (10, 4) (10, 3) (10, 2) (0, 1) (0, 10)
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(1) Show that after eliminating weakly dominated strategies, each player has
three remaining strategies.

(2) Show that the reduced 3× 3 game has no pure strategy Nash equilibria.
(3) Find a mixed-strategy Nash equilibrium of the reduced game in which each

company uses all three of its remaining strategies.
(4) Show that in this mixed-strategy Nash equilibria, the expected payoffs are

4 to company 1 and 10 to company 2.

5.12.4. Smallville Bar. The town of Smallville has three residents. At night,
each has two choices: watch TV (t) or walk to the bar (b). The energy cost of
watching TV is 0, and the utility is also 0. The energy cost of walking to the bar is
1; the utility is 0 if no one else is at the bar, 2 if one other resident is at the bar, and
1 if both other residents are at the bar. (The residents of Smallville are sociable,
but not too sociable.) The payoffs are therefore as follows:

Resident 3 uses strategy t

Resident 2
t b

Resident 1 t (0,0,0) (0,−1,0)
b (−1,0,0) (1,1,0)

Resident 3 uses strategy b

Resident 2
t b

Resident 1 t (0,0,−1) (0,1,1)
b (1,0,1) (0,0,0)

(1) Use best response to find the pure strategy Nash equilibria.
(2) Suppose Resident 1 uses the mixed strategy xt + (1− x)b, Resident 2 uses

the mixed strategy yt + (1 − y)b, and Resident 3 uses the mixed strategy
zt+(1−z)b. As in Section 5.8, add the letters x, 1−x, etc. to the matrices
above in the appropriate places to help keep track of the notation.

(3) Find a Nash equilibrium in which no resident uses a pure strategy. (Answer:
(x, y, z) = (2

3
, 2
3
, 2
3
).)

(4) Find the expected payoff of Resident 1 at the Nash equilibrium. (It is 0.)

If the residents use the Nash equilibrium strategies of part (4), then their
expected utility is the same as the utility of watching TV, even though they go to
the bar two-thirds of the time.
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This problem is loosely based on a game theory classic, the El Farol Bar prob-
lem (http://en.wikipedia.org/wiki/El_Farol_Bar_problem). The El Farol Bar
is a real bar in Santa Fe, New Mexico.

5.12.5. Morning or Evening? Three firms (Firms 1, 2, and 3) can advertise
on TV in either the morning (m) or the evening (e). If more than one firm advertises
at the same time, their profits are 0. If exactly one firm advertises in the morning,
its profit is 1. If exactly one firm advertises in the evening, its profit is 2.

(1) Each firm has two strategies, m and e. Give the payoffs to each triple
of pure strategies. You should organize your answer by giving two 2 × 2
matrices; see Section 3.9.

(2) Use best response to find the pure strategy Nash equilibria. (Answer: every
triple of pure strategies except (m,m,m) and (e, e, e).)

(3) Suppose Firm 1 uses the mixed strategy xm+(1−x)e, Firm 2 uses the mixed
strategy ym+ (1− y)e, and Firm 3 uses the mixed strategy zm+ (1− z)e.
Show that the payoff functions are

π1(x, y, z) = 2(1− x)yz + x(1 − y)(1− z),

π2(x, y, z) = 2(1− y)xz + y(1− x)(1− z),

π3(x, y, z) = 2(1− z)xy + z(1− x)(1− y).

We will use these payoff functions to answer the remaining questions.
(4) Suppose one player uses the pure strategy m and one uses the pure strat-

egy e. Show that any mix of strategies by the third player yields a Nash
equilibrium. (For example, for any z with 0 ≤ z ≤ 1, (m, e, zm+ (1− z)e)
is a Nash equilibrium.)

(5) Show that there is no Nash equilibrium in which exactly one firm uses a
pure strategy. Suggestion: Suppose Firm 3 uses the pure strategy m, so
that z = 1. If there is a Nash equilibrium with 0 < x < 1 and 0 < y < 1,
then we must have

∂π1

∂x
(x, y, 1) = 0 and

∂π2

∂y
(x, y, 1) = 0.

(6) By setting appropriate partial derivatives of the payoff functions equal to 0,
find a Nash equilibrium in which no firm uses a pure strategy. Suggestion:
solve the system of equations

∂π1

∂x
(x, y, z) = 0,

∂π2

∂y
(x, y, z) = 0,

∂π3

∂z
(x, y, z) = 0.

5.12.6. Guess the Number. Bob (Player 1) picks a number from 1 to 3. Alice
(Player 2) tries to guess the number. Bob responds truthfully by saying “high,”
“low,” or “correct.” The game continues until Alice guesses correctly. Bob wins
from Alice a number of dollars equal to the number of guesses that Alice took.
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The game is determined by the first two rounds. Player 1 (Bob) has three
strategies: pick 1, pick 2, pick 3. Player 2 (Alice) has five reasonable strategies:

(12) Guess 1. If told it is low, guess 2.
(13) Guess 1. If told it is low, guess 3.
(2) Guess 2. If told it is high, guess 1. If told it is low, guess 3.
(31) Guess 3. If told it is high, guess 1.
(32) Guess 3. If told it is high, guess 2.

(1) Construct the payoff matrix. You should get the following answer:

12 13 2 31 32
1 (1,−1) (1,−1) (2,−2) (2,−2) (3,−3)
2 (2,−2) (3,−3) (1,−1) (3,−3) (2,−2)
3 (3,−3) (2,−2) (2,−2) (1,−1) (1,−1)

(2) Use best response to find the pure strategy Nash equilibria. (There are
none.)

(3) To look for mixed-strategy Nash equilibria, let σ1 = (p1, p2, p3) be a mixed
strategy for Player 1, and let σ2 = (q1, q2, q3, q4, q5) be a mixed strategy for
Player 2. Find a Nash equilibrium in which all Player 1’s strategies are
active, and only Player 2’s second, third, and fourth strategies are active.

(4) Determine whether there is a Nash equilibrium in which all Player 1’s strate-
gies are active, and only Player 2’s first, third, and fifth strategies are active.
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CHAPTER 6

Subgame perfect Nash equilibria and infinite-horizon games

We saw in Section 3.8 that when one converts a game in extensive form to
one in normal form, new Nash equilibria can appear that do not correspond to
the Nash equilibrium one finds by backward induction. The latter is special in
that it gives a strategy that makes sense to use at any point in the game tree. In
this chapter we give a name—subgame perfect Nash equilibria—and definition to
these special Nash equilibria of a game in extensive form. The definition is general
enough so that it will help us deal with games such as the one in Figure 1.6, where
the backward induction procedure we have used so far fails. This definition will also
help us investigate infinite horizon games, which give no starting point for backward
induction.

6.1. Subgame perfect Nash equilibria

Consider a game G in extensive form. A node c′ is called a successor of a node
c if there is a path in the game tree that starts at c and ends at c′.

Let h be a node that is not terminal and has no other nodes in its information
set. Assume:

• If a node c is a successor of h, then every node in the information set of c
is also a successor of h.

In this situation it makes sense to talk about the subgame H of G whose root is h.
H consists of the node h and all its successors, connected by the same moves that
connected them in G, and partitioned into the same information sets as in G. The
players and the payoffs at the terminal vertices are also the same as in G.

If G is a game with complete information, then any nonterminal node of G is
the root of a subgame of G.

Recall from Section 1.2 that in a game in extensive form, each node is at the
end of a unique path from the root node. This is usually interpreted to mean that
players remember the past. Thus you should think of a subgame as including the
memory of what happened before the subgame began.

Let si be one of Player i’s strategies in the game G. Recall that si is just a
plan for what move to make at every node labeled i in the game G. So of course si
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includes a plan for what move to make at every node labeled i in the subgame H .
Thus si contains within it a strategy that Player i can use in the subgame H . We
call this strategy the restriction of si to the subgame H , and label it siH .

Suppose the game G has n players, and (s1, . . . , sn) is a Nash equilibrium for
G. It is called a subgame perfect Nash equilibrium if, for every subgame H of G,
(s1H , . . . , snH) is a Nash equilibrium for H .

6.2. Big Monkey and Little Monkey 6

Recall the game of Big Monkey and Little Monkey from Section 1.5, with Big
Monkey going first.

(4, 4)                       (5, 3)(0, 0)                       (9, 1)

Big Monkey

Little MonkeyLittle Monkey

wait                     climb wait                     climb

wait                            climb

Figure 6.1. Big Monkey and Little Monkey.

Recall that Big Monkey has two possible strategies in this game, and Little
Monkey has four. When we find the payoffs for each choice of strategies, we get a
game in normal form.

Little Monkey
ww wc cw cc

Big Monkey w (0, 0) (0, 0) (9, 1) (9, 1)
c (4, 4) (5, 3) (4, 4) (5, 3)

We have seen (see Section 3.8) that there are three Nash equilibria in this game:
(w, cw), (c, ww), and (w, cc).

The equilibrium (w, cw), which is the one found by backward induction, is
subgame perfect. The other two are not.

The equilibrium (c, ww) is not subgame perfect because, in the subgame that
begins after Big Monkey waits, Little Monkey would wait. By switching to climb,
Little Monkey would achieve a better payoff. Little Monkey’s plan to wait if Big
Monkey waits is what we called in Sec. 1.6 a threat: it would hurt Big Monkey, at
the cost of hurting Little Monkey
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The equilibrium (w, cc) is not subgame perfect because, in the subgame that
begins after Big Monkey climbs, Little Monkey would climb. By switching to wait,
Little Monkey would achieve a better payoff. Little Monkey’s plan to climb if Big
Monkey climbs is what we called in Sec. 1.6 a promise: it would help Big Monkey,
at the cost of hurting Little Monkey. As we saw there, in this particular game, the
promise does not affect Big Monkey’s behavior. Little Monkey is promising that if
Big Monkey climbs, he will get a payoff of 5, rather than the payoff of 4 he would
normally expect. Big Monkey ignores this promise because by waiting, he gets an
even bigger payoff, namely 9.

6.3. Subgame perfect equilibria and backward induction

When we find strategies in finite extensive-form games by backward induction,
we are finding subgame perfect Nash equilibria. In fact, when we use backward
induction, we are essentially considering every subgame in the entire game.

Strategies in a subgame perfect Nash equilibrium make sense no matter where
in the game tree you use them. In contrast, at a Nash equilibrium that is not
subgame perfect, at least one of the players is using a strategy that at some node
tells him to make a move that would not be in his interest to make. For example,
at a Nash equilibrium where a player is using a strategy that includes a threat, if
the relevant node were reached, the strategy would tell the player to make a move
that would hurt him. The success of such a strategy depends on this node not being
reached!

There are some finite games in extensive form for which backward induction
does not work. Recall the game in Figure 6.2, which we discussed in Section 1.4.

1

2
(0, 0)

a              b

c                       d

(−1, 1)                       (1, 1)

Figure 6.2. Failure of backward induction.

The problem with this game is that at the node where Player 2 chooses, both
available moves give him a payoff of 1. Hence Player 1 does not know which move
Player 2 will choose if that node is reached. However, Player 1 certainly wants to
know which move Player 2 will choose before he decides between a and b!
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In this game Player 1’s strategy set is just S1 = {a, b} and Player 2’s strategy
set is just S2 = {c, d}. In normal form, the game is just

Player 2
c d

Player 1 a (0, 0) (0, 0)
b (−1, 1) (1, 1)

This game has two Nash equilibria, (a, c) and (b, d). Both are subgame perfect.

There is a way to find all subgame perfect Nash equilibria in any finite game
in extensive form with perfect information by a variant of backward induction. Do
backward induction as usual. If at any point a player has several best choices, record
each of them as a possible choice at that point, and separately continue the backward
induction using each of them. Ultimately you will find all subgame perfect Nash
equilibria

For example, in the game we are presently considering, we begin the backward
induction at the node where Player 2 is to choose, since it is the only node all of
whose successors are terminal. Player 2 has two best choices, c and d. Continuing
the backward induction using c, we find that Player 1 chooses a. Continuing the
backward induction using d, we find that Player 1 chooses b. Thus the two strategy
profiles we find are (a, c) and (b, d). Both are subgame perfect Nash equilibria.

For a finite game in extensive form with complete information, this more gen-
eral backward induction procedure never fails. Therefore every finite game in ex-
tensive form with complete information has at least one subgame perfect Nash equi-
librium.

For a two-player zero-sum finite game in extensive form with complete informa-
tion we know more (recall Section 5.5: any Nash equilibrium, and hence any subgame
perfect Nash equilibrium, yields the same payoffs to the two players; and Player 1’s
strategy from one subgame perfect Nash equilibrium, played against Player 2’s strat-
egy from another subgame perfect Nash equilibrium, also yields those payoffs. Such
strategies are “best” for the two players. This applies, for example, to chess: be-
cause of the rule that a game is a draw if a position is repeated three times, chess is
a finite game. The game tree has about 10123 nodes. Since the tree is so large, best
strategies for white (Player 1) and black (Player 2) are not known. In particular, it
is not known whether the best strategies yield a win for white, a win for black, or a
draw.

The notion of subgame-perfect Nash equilibrium is especially valuable for
infinite-horizon games, for which backward induction cannot be used directly. There
are liable to be many Nash equilibria. Looking for the ones that are subgame perfect
is a way of zeroing in on the (perhaps) most plausible ones. The remainder of this
chapter treats examples of infinite-horizon games.
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6.4. Duels and Truels

6.4.1. Duels. Two politicians, Newt and George, are competing for their party’s
presidential nomination. They take turns attacking each other. George is more
skilled and better financed. Each time he attacks Newt, he has an 80% chance of
knocking Newt out of the race. On the other hand, each time Newt attacks George,
he has a 50% chance of knocking George out of the race. The attacks continue until
one candidate is driven from the race. If Newt attacks first, what is the probability
that Newt is the survivor?

This problem is an example of a duel. It has several characteristics:

(1) The players take turns attacking.
(2) The duel could theoretically go on forever, if every attack fails to drive the

opponent from the race.

In other duels, the players might attack simultaneously, so that a round could result
in both players being driven from the race; this cannot happen when the players
take turns. There are also duels that are not allowed to go on forever; it could be
known in advance that the duel will end after a certain number of rounds if both
candidates survive that long.

Duels are not games. The players have no need to choose strategies. However,
we will treat this duel much like a game. We will represent it by a tree diagram; see
Figure 6.3. The terminal vertices are those where a player has just been eliminated.
At the terminal vertices, we assign a payoff of 1 to the surviving candidate and 0 to
the other candidate. We want to determine each candidate’s expected payoff, which
is just the probability the he is the ultimate survivor.

Let π1 denote Newt’s expected payoff. If neither candidate is eliminated in
the first two rounds, it will again be Newt’s turn to attack. Since the situation will
then be the same as it was at the start, Newt’s expected payoff at that point will
again be π1. This leads to the formula

π1 =
1

2
× 1 +

1

2
× (

4

5
× 0 +

1

5
× π1).

Solving this equation for π1 yields π1 =
5
9
.

Thus Newt is the survivor 5
9
of the. Half the time he eliminates George with

his first attack, and even if he fails, there is a chance he could eliminate George
later.

6.4.2. Truels. A truel is like a duel except there are three contestants. Each
time a contestant attacks, if he still has two surviving opponents, he must decide
which opponent to attack. There are several types of truels.

(1) The contestants can take turns attacking or attack simultaneously.
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N

attack

 (1, 0)  
G

Nature
      succeed              fail
prob=1/2                       prob=1/2

 (0,1)  

      succeed              fail
prob=4/5                       prob=1/5

Nature

attack

attack

N

Figure 6.3. Tree diagram for the Duel. Player 1 is Newt (N), Player
2 is George (G).

(2) The truel can be allowed to continue forever, or it can be required to end
after a certain number of rounds.

(3) When it is a contestant’s turn to attack and both opponents remain, he
may be required to attack an opponent, or he may be allowed to choose not
to attack at all.

A truel in which the contestants take turns ends when there is only one surviving
candidate. A truel in which the contestants attack simultaneously also ends if all
three candidates are eliminated.

Unlike a duel, a truel is a game, since the players have several available strate-
gies to choose from. As with a duel, when two candidates have been eliminated,
we assign a payoff of 1 to the surviving candidate and 0 to the others. Payoffs also
must be assigned to the case in which the game continues forever. Depending on
the context, it may make sense to assign equal payoffs to each surviving player, or
it may make sense to assign a payoff of 1 to each surviving player.

6.4.3. Analysis of a truel. Three politicians, Newt, George, and Ron, are
competing for their party’s presidential nomination. They take turns attacking each
other. When it is a candidate’s turn to attack, if both opponents remain in the race,
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he chooses one to attack, or he can choose to attack neither. If only one opponent
remains in the race, the candidate attacks him. When Newt attacks a candidate,
he has a 50% chance of knocking him out of the race. When George attacks a
candidate, he has an 80% chance of knocking him out of the race. Ron, however,
is a legendary supercandidate. When Ron attacks someone, Ron is sure to knock
him out of the race. The attacks continue until only one candidate is left. If Newt
attacks first, George second, and Ron third, what are each candidate’s chances of
winning?

We denote the initial state of the game by NGR. This means that it is Newt’s
turn; he will be followed by George, then Ron (if they are still in the race). Because
of the candidates’ order, the other possible states of the game with three players are
GRN and RNG. There are six possible two-candidate states (NG, NR, GN , GR,
RN , RG), and of course three possible one-candidate states, which correspond to
terminal vertices in the game tree. However, in drawing game trees, we will regard
the two-person states as terminal, since for each two-person state we can calculate
the expected payoff of each player. We did this for the two-person state NG when
we analyzed the duel between Newt and George. Here are the expected payoffs for
all two-person states; players 1, 2, and 3 are Newt, George, and Ron.

(π1, π2, π3)(NG) = (
5

9
,
4

9
, 0), (π1, π2, π3)(NR) = (

1

2
, 0,

1

2
)

(π1, π2, π3)(GN) = (
1

9
,
8

9
, 0), (π1, π2, π3)(GR) = (0,

4

5
,
1

5
)

(π1, π2, π3)(RN) = (0, 0, 1), (π1, π2, π3)(RG) = (0, 0, 1)

The payoffs for GN are calculated like those for NG. The payoffs for two-person
states involving Ron are easier to compute, since if he gets a turn he will certainly
eliminate his remaining opponent.

A player’s strategy is a plan for what to do each time he encounters the one
three-person state where it is his turn to attack. For example, Newt needs a plan for
each time the state NGR (“his” state) is encountered. A priori his planned move
could depend on all players’ previous moves. However, we shall assume that each
player plans the same move for every time his state is encountered. For example,
if Newt plans to attack Ron on his initial turn, and if the state NGR is arrived at
later in the game, Newt will attack Ron then too. It is reasonable to expect that
there will be a subgame perfect Nash equilibrium with strategies of this type.

Thus each player has only three strategies. For example, Newt can attack
George (G), attack Ron(R), or not attack (∅) whenever the state NGR is encoun-
tered.

Figure 6.4 shows partial game trees starting at the three-person states. From
these trees we see:

• In the situation NGR, Newt’s strategy R dominates his strategy G.
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• In the situation GRN , George’s strategy R dominates his strategy N .
• In the situation RNG, Ron’s strategy G dominates his strategy N .

In other words, if you are going to attack an opponent, you should attack the
stronger one. The reason is obvious: if you leave only the weaker of your opponents,
you have a better chance of surviving. We therefore eliminate one strategy for each
candidate, leaving two for each candidates.

NGR

attack G                 attack  R                          don’t attack

 (1/9,8/9, 0)  

      succeed              fail
prob=1/2                       prob=1/2

(0,0,1)

GRNNature

RN GRNGRN GN

Nature
      succeed              fail
prob=1/2                       prob=1/2

GRN

attack R                attack  N                      don’t attack

 (5/9,4/9, 0)  

      succeed              fail
prob=4/5                       prob=1/5

(0,0,1)

GRNNature

NG RNGRNG RG

Nature
      succeed              fail
prob=4/5                       prob=1/5

RNG

attack N                attack  G                      don’t attack

 (0,4/5,1/5)  (1/2,0,1/2)
NGRGR NR

Figure 6.4. Partial game trees for the Truel. Notation is explained
in the text.

Now we can regard this game as one in normal form with three candidates
and two strategies each. The payoffs are shown in the table below. The strategy
profile (∅, ∅, ∅) results in all candidates surviving forever, we need to assign payoffs
to this case. In this problem, the most reasonable payoffs to assign seem to be
(1
3
, 1
3
, 1
3
), since if no candidate is ever eliminated, each presumably has probability 1

3
of winning the election.
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The table also shows best responses. There is one pure-strategy Nash equilib-
rium. Newt, who starts the game, does not attack. The other two players each plan
to attack their stronger opponent, who is not Newt. By thus lying low, Newt gets
by far the best outcome of any player: with probability greater than half, he will be
the lone survivor.

Player 3 (Ron) attacks George

Player 2 (George)

R ∅

Player 1 (Newt) R ( 59
180

,
112

180
,

1

20
) (11

36
, 4
9
,
1

4
)

∅ (
49

90
,
16

45
,

1

10
) (

1

2
, 0,

1

2
)

Player 3 (Ron) does not attack

Player 2 (George)
R ∅

Player 1 (Newt) R (25
81
, 56
81
, 0) (1

9
,
8

9
, 0)

∅ (
5

9
,
4

9
, 0) (

1

3
, 1
3
, 1
3
)

Some of the payoffs are easy to check. For example, if the strategy profile is
(R, ∅, G), Newt begins by attacking Ron. With probability 1

2
, Newt eliminates Ron.

The situation is now GN , which results in the payoffs (1
9
, 8
9
, 0). On the other hand,

with probability 1
2
, Newt fails eliminate Ron. The situation is now GRN . Since

George use the strategy ∅, he does not attack, and the situation becomes RNG.
Since Ron uses the strategy G, he eliminates George, and the situation becomes
NR. The payoffs from NR are (1

2
, 0, 1

2
). Therefore

(π1, π2, π3)((R, ∅, G) =
1

2
(
1

9
,
8

9
, 0) +

1

2
(
1

2
, 0,

1

2
) = (

11

36
,
4

9
,
1

4
).

Other payoffs can be checked by solving an equation. For example, if the
strategy profile is (R,R, ∅), Newt agains begins by attacking Ron. With probability
1
2
, Newt eliminates Ron, leading to the payoffs (1

9
, 8
9
, 0) as before. With probability

1
2
, Newt fails eliminate Ron, leading to the situation GRN . Since George now uses

the strategy R, he attacks Ron. With probability 4
5
he eliminates Ron, leading to

the situation NG. This leads to the payoffs (5
9
, 4
9
, 0). With probability 2

9
, George

fails to eliminate Ron. The situation becomes RNG. Since Ron uses the strategy ∅,
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he does not attack, and the situation becomes RNG: we are back where we started.
Therefore

(π1, π2, π3)((R,R, ∅) = 1

2
(
1

9
,
8

9
, 0) +

1

2
(
4

5
(
5

9
,
4

9
, 0) +

1

5
(π1, π2, π3)).

The solution of this equation is (π1, π2, π3) = (25
81
, 56
81
, 0).

We remark that we have found a Nash equilibrium under the assumption that
each player is only allowed to use one of the three strategies we have described.
Further analysis would be required to show that the strategy profile we have found
remains a Nash equilibrium when other strategies are allowed, and to show that it
is subgame perfect.

6.5. The Rubinstein bargaining model

One dollar is to be split between two players. Player 1 goes first and offers to
keep a fraction x1 of the available money (one dollar). Of course, 0 ≤ x1 ≤ 1, and
Player 2 would get the fraction 1 − x1 of the available money. If Player 2 accepts
this proposal, the game is over, and the payoffs are x1 to Player 1 and 1 − x1 to
Player 2.

If Player 2 rejects the proposal, the money shrinks to δ dollars, 0 < δ < 1, and
it becomes Player 2’s turn to make an offer.

Player 2 offers a fraction y1 of the available money (now δ dollars) to Player
1. Of course, 0 ≤ y1 ≤ 1, and Player 2 would get the fraction 1− y1 of the available
money. If Player 1 accepts this proposal, the game is over, and the payoffs are y1δ
to Player 1 and (1− y1)δ to Player 2.

If Player 1 rejects the proposal, the money shrinks to δ2, and it becomes Player
1’s turn to make an offer.

Player 1 offers to keep a fraction x2 of the available money (now δ2 dollars)
and give the fraction 1 − x2 to Player 2. . . .Well, you probably get the idea. See
Figure 6.5.

The payoff to each player is the money he gets. If no proposal is ever accepted,
the payoff to each player is 0.

This game models a situation in which it is in everyone’s interest to reach an
agreement quickly. Think, for example, of labor negotiations during a strike: as the
strike goes on, the workers lose pay, and the company loses production. On the other
hand, you probably don’t want to reach a quick agreement by offering everything
to your opponent!

The numbering of the rounds of the game is shown in Figure 6.5.

A strategy for Player 1 consists of a plan for each round. For the even rounds,
he must plan what offer to make. For the odd rounds, he must plan which offers to
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2
a        r

(x1, 1−x1)

1 Round 0, amount=1

1
a        r

(y1δ, (1−y1)δ)
1

Round 1, amount=δ

2

a        r

(x2δ2, (1−x2)δ2)

2

Round 2, amount=δ2

2

Round 3, amount=δ3

offers 1−x1

offers y1

offers 1−x2

offers y2

Figure 6.5. The Rubinstein bargaining model.

accept and which to reject. Of course, his plan can depend on what has happened
up to that point.

Player 2’s strategies are similar. For the even rounds, he must plan which
offers to accept and which to reject. For the odd rounds, he must plan what offer
to make.

Notice that at the start of any even round, Player 1 faces exactly the same
situation that he faced at the start of the game, except that the available money
is less. Similarly, at the start of any odd round, Player 2 faces exactly the same
situation that he faced at the start of round 1, except that the available money is
less.

We will make two simplifying assumptions:

(1) Suppose a player has a choice between accepting an offer (thus terminating
the game) and rejecting the offer (thus extending the game), and suppose
the payoff the player expects from extending the game equals the offer he
was just made. Then he will accept the offer, thus terminating the game.

(2) There is a subgame-perfect Nash equilibrium with the following property:
if it yields a payoff of x to Player 1, then in the subgame that starts at
round 2, it yields a payoff of xδ2 to Player 1; in the subgame that starts at
round 4, it yields a payoff of xδ4 to Player 1; etc.
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With these assumptions, in the subgame perfect equilibrium of assumption
(2), if the game were to go to Round 2, the payoffs would be (xδ2, (1 − x)δ2). So
the game tree gets pruned to the one shown in Figure 6.6.

2
a        r

(x1, 1−x1)

1 Round 0, amount=1

1
a        r

(y1δ, (1−y1)δ)

Round 1, amount=δ

(xδ2, (1−x)δ2)
Round 2, amount=δ2

2

offers 1−x1

offers y1

Figure 6.6. Pruned Rubinstein bargaining model.

Let us continue to investigate the subgame perfect equilibrium of assumption
(2). Since it is subgame perfect, we should reason backward on the pruned game
tree to find the players’ remaining moves.

1. At round 1, Player 2 must make an offer. If he offers a fraction y∗1 of the
available amount δ chosen so that y∗1δ = xδ2, Player 1 will be indifferent between
accepting the offer and rejecting it. According to assumption 1, he will accept it.
Player 2 will get to keep δ − y∗1δ. If Player 2 offered more than y∗1, Player 1 would
accept, but Player 2 would get less than δ − y∗1δ. If Player 2 offered less than y∗1,
Player 1 would not accept, and Player 2 would end up with δ2 − xδ2. This is less
than δ − y∗1δ:

δ2 − xδ2 = δ2 − y∗1δ < δ − y∗1δ.

Thus Player 2’s best move is to offer the fraction y∗1 of the available amount δ chosen
so that y∗1δ = xδ2, i.e., y∗1 = xδ. Since this is his best move, it is the move he makes
at round 1 in our subgame perfect equilibrium. Player 1 accepts the offer.

2. At round 0, Player 1 must make an offer. If he offers a fraction 1 − x∗
1 of

the available amount 1 chosen so that 1−x∗
1 = (1−y∗1)δ, Player 2 will be indifferent

between accepting the offer and rejecting it. According to assumption 1, he will
accept it. Player one gets to keep x∗

1. Reasoning as before, we see that if Player 1
offers more or less than 1 − x∗

1, he ends up with less than x∗
1. Thus Player 1’s best

move is to offer the fraction 1− x∗
1, Player 2 accepts, and Player 1’s payoff is x∗

1.

3. From assumption 2, we conclude that x∗
1 = x,
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4. From the equations 1− x = 1− x∗
1 = (1− y∗1)δ and y∗1 = xδ, we obtain

1− x = (1− y∗1)δ = (1− xδ)δ = δ − xδ2,

so 1− δ = x− xδ2, so

(6.1) x =
1− δ

1− δ2
=

1

1 + δ
.

Then

(6.2) y∗1 = xδ =
δ

1 + δ
= 1− x.

Player 1’s payoff is higher. For δ close to 1 (i.e., when the money they are bargaining
about does not shrink very fast), both payoffs are close to 1

2
.

6.6. Repeated games

Let G be a game with players 1, . . . , n, strategy sets S1, . . . , Sn, and payoff
functions πi(s1, . . . , sn).

We define a repeated gameR with stage gameG and discount factor δ as follows.
The stage game G is played at times k = 0, 1, 2, . . . , with only pure strategies allowed.
A strategy for Player i is just a way of choosing which of his pure strategies si to
use at each time k. His choice of which strategy to use at time k can depend on all
the strategies use by all the players at times before k.

There will be a payoff to Player i from the stage game at each time k =
0, 1, 2, . . . . His payoff in the repeated game R is just

his payoff at time 0 + δ · his payoff at time 1 + δ2 · his payoff at time 2 + . . . .

A subgame of R is defined by taking the repeated game that starts at some
time k. You should think of a subgame as including the memory of the strategies
used by all players in the stage games at earlier times.

6.7. The Wine Merchant and the Connoisseur

A Wine Merchant sells good wine at $5 a bottle. Cost of this wine to the Wine
Merchant is $4, so he makes $1 profit on each bottle he sells. Instead of doing this,
the Wine Merchant could try to sell terrible wine at $4 a bottle. He can acquire
terrible wine for essentially nothing.

Bernard is a regular customer and a wine connoisseur. He values the good
wine at $6 a bottle, so when he buys it for $5, he feels he is ahead by $1. If he ever
tasted the terrible wine, he would value it at 0.

Bernard can either pay for his wine or steal it. If he steals the good wine, the
Wine Merchant will complain to everyone, which will result in a loss of reputation
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to Bernard worth $2. If Bernard steals the terrible wine, the Wine Merchant will
not bother to complain.

We think of this situation as a two-player game in which the Wine Merchant
has two strategies, sell good wine or sell bad wine. Bernard also has two strategies,
pay for his wine steal it.

Assuming Bernard wants one bottle of wine, we have the following game in
normal form.

Bernard
pay steal

Wine Merchant sell good (1, 1) (−4, 4)
sell bad (4,−4) (0, 0)

Explanation:

(1, 1) : The Wine Merchant makes $1 profit when he sells good wine, Bernard
gets a wine worth $6 for $5.

(−4, 4): The Wine Merchant loses a bottle of wine that cost him $4, Bernard
gets a wine worth $6 at the cost of a $2 blow to his reputation.

(4,−4): The Wine Merchant makes $4 profit when he sells bad wine, Bernard
has paid $4 for wine that is worth nothing to him.

(0, 0): The Wine Merchant loses a bottle of wine that cost him nothing,
Bernard gets a wine worth nothing.

The Wine Merchant has a strictly dominant strategy: sell bad wine. Bernard
also has a strictly dominant strategy: steal the wine. If both players use their nasty
dominant strategies, each gets a payoff of 0. On the other hand, if both players use
their nice, dominated strategies (The Wine Merchant sells good wine, Bernard pays
for it), both get a payoff of 1. This game is a prisoner’s dilemma.

To make this game easier to discuss, let’s call each player’s nice strategy c for
“cooperate”, and let’s call each player’s nasty strategy d for “defect.” Now we have
the following payoff matrix :

Bernard
c d

Wine merchant c (1, 1) (−4, 4)
d (4,−4) (0, 0)

Both players have the same strategy set, namely {c, d}.
We will take this game to be the stage game in a repeated game R.
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Recall that a player’s strategy in a repeated game is a way of choosing which
of his strategies to use at each time k. The choice can depend on what all players
have done at times before k.

We consider the trigger strategy in this repeated game, which we denote σ and
which is defined as follows. Start by using c. Continue to use c as long as your
opponent uses c. If your opponent ever uses d, use d at your next turn, and continue
to use d forever.

In other words, the Wine Merchant starts by selling good wine, but if his
customer steals it, he decides to minimize his losses by selling terrible wine in the
future. Bernard starts by buying from the Wine Merchant, but if the Wine Merchant
cheats him, he says to himself, “I’m not going to pay that cheater any more!”

Theorem 6.1. If δ ≥ 3
4
, then (σ, σ) is a Nash equilibrium.

Proof. If both players use σ, then both cooperate in every round. Therefore
both receive a payoff of 1 in every round. Taking into account the discount factor
δ, we have

π1(σ, σ) = π2(σ, σ) = 1 + δ + δ2 + . . . =
1

1− δ
.

Here we have used the formula for the sum of an infinite geometric series:

r + rδ + rδ2 + . . . =
r

1− δ
provided |δ| < 1.

Suppose Bernard switches to a different strategy σ′. (Because of the symmetry
of the game, the argument would be exactly the same for the Wine Merchant.)

Case 1. Bernard still ends up cooperating in every round. Then the Wine
Merchant, who is still using σ, will also cooperate in every round. The payoffs are
unchanged.

Case 2. Bernard first defects in round k. Then the Wine Merchant will co-
operate through round k, will defect in round k + 1, and will defect in every round
after that. Does using σ′ improve Bernard’s payoff?

The payoffs from the strategy profiles (σ, σ) and (σ, σ′) are the same through
round k − 1, so let’s just compare their payoffs to Bernard from round k on.

With (σ, σ), Bernard’s payoff from round k on is

δk + δk+1 + . . . =
δk

1− δ
.

With (σ, σ′), Bernard’s payoff in round k is 4: the payoff from stealing good wine.
From round k + 1 on, unfortunately, the Wine Merchant will defect (sell bad wine)
in every round. Bernard’s best response to this is to steal it, giving him a payoff of
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0. Therefore, taking into account the discount factor, Bernard’s payoff from round
k on is at most

4δk + 0(δk+1 + δk+2 + . . .) = 4δk.

From round k on, Bernard’s payoff from (σ, σ) is greater than or equal to his payoff
from (σ, σ′) provided

δk

1− δ
≥ 4δk or δ ≥ 3

4
.

�

Some people consider this way of analyzing repeated games to be game theory’s
most important contribution. It is said to show that cooperative behavior can
establish itself in a society without the need for an external enforcer. In particular,
it shows that cooperating in a prisoner’s dilemma, as long as the other player does,
is rational when the game is to be repeated indefinitely. Of course, it is necessary
for people to value the future sufficiently highly: that is what a lower bound for δ
means.

Instead of using a discount factor, one can think of δ as the probability that
the game will be repeated, given that it has just been played. The mathematics is
exactly the same. The interpretation now is that if the probability of the game’s
being repeated is high enough, then it is rational to use the cooperative strategy in
a prisoner’s dilemma.

Is (σ, σ) a subgame perfect Nash equilibrium? To answer this question, we
must be sure we understand what σ tells us to do in every conceivable situation,
including those in which σ has not been used correctly up to that point. For example,
suppose your opponents defects, so you begin defecting, but in round j you make
a mistake and accidentally cooperate. Should you go back to defecting in round
j + 1, or should you check whether your opponent perhaps cooperated in round j,
and base your decision on that? We have not defined σ carefully enough to answer
this question.

Let’s redefine the trigger strategy σ as follows. Start by using c. In round j,
if both you and your opponent have used c in all previous rounds, use c. Otherwise,
use d.

You should be able to convince yourself that with this precise definition, (σ, σ)
is a subgame perfect Nash equilibrium. Remember that a subgame is defined by
starting the game at some time, with the memory of all that has happened previously.
For any such subgame, you should convince yourself that if your opponent is using
the trigger strategy σ as we have just redefined it, you can do no better than to use
σ yourself.
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6.8. The Folk Theorem

Are there other Nash equilibria in the repeated game of Wine Merchant and
Connoisseur? The so-called Folk Theorem of Repeated Games says that there are
many. (In mathematics, a “folk theorem” is a theorem that lots of people seem to
know, but no one knows who first proved it.)

6.8.1. Payoff profiles. For a game in normal form with n players, let σ =
(σ1, . . . , σn) be a mixed strategy profile. The payoff profile associated with σ is
the n-tuple of numbers (π1(σ), . . . , πn(σ)). An n-tuple of numbers (v1, . . . , vn) is a
possible payoff profile for the game if it is the payoff profile associated with some
strategy profile σ.

Consider a two-player game in normal form:

Player 2
t1 t2

Player 1 s1 (a, b) (c, d)
s2 (e, f) (g, h)

If Player 1 uses the strategy σ1 = ps1 + (1− p)s2 with 0 ≤ p ≤ 1, and Player 2 uses
the strategy σ2 = qt1 + (1− q)t2 with 0 ≤ q ≤ 1, then the payoff profile associated
with the strategy profile (σ1, σ2) is

(6.3) pq(a, b) + p(1− q)(c, d) + (1− p)q(e, f) + (1− p)(1− q)(g, h).

The set of all possible payoff profiles for the game can be thought of as a set of
points in the plane. This set of points can be drawn as follows.

(1) Draw the line segment from (a, b) to (c, d). Think of it as parametrized by
q, 0 ≤ q ≤ 1, as follows: r(q) = q(a, b) + (1− q)(c, d).

(2) Draw the line segment from (e, f) to (g, h). Think of it as parametrized by
q, 0 ≤ q ≤ 1, as follows: s(q) = q(e, f) + (1− q)(g, h).

(3) For each q, draw the line segment from r(q) to s(q). This set of points is
parameterized by p, 0 ≤ p ≤ 1, as follows:

pr(q) + (1− p)s(q) = p
(

q(a, b) + (1− q)(c, d)
)

+ (1− p)
(

q(e, f) + (1− q)(g, h)
)

.

Compare (6.3).
(4) The union of all the lines you have drawn is the set of all possible payoff

profiles for the game.

Figure 6.7 shows an example.

6.8.2. Minimax payoffs. For a 2-player game in normal form, Player 1’s min-
imax payoff is the lowest payoff she ever gets when she makes her best response to
one of Player 2’s pure strategies. Player 1’s minimax payoff is the lowest that Player
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π1

π2

(a,b)

(c,d) (g,h)

(e,f)

Figure 6.7. A set of possible payoff profiles . Typical line segments
from r(q) to s(q) are red, and the set of all possible payoff profiles is
yellow.

2 can force Player 1 to accept when using pure strategies. Player 2’s minimax payoff
is defined analagously

To state the definition of minimax payoff symbolically, let si denote one of
Player 1’s pure strategies, and let tj denote an one of Player 2’s pure strategies.
Then Player 1’s minimax payoff is mintj maxsi π1(si, tj). Player 2’s minimax payoff
is minsi maxtj π2(si, tj).

For example, in the game of Wine Merchant and Connoisseur, if Bernard uses
c, the Wine Merchant’s best response is d, which gives him a payoff of 4. If Bernard
uses d, the Wine Merchant’s best response is again d, which gives him a payoff of 0.
The minimum of 4 and 0 is 0, so the Wine Merchant’s minimax payoff is 0. Bernard
can force the Wine Merchant to accept a payoff of 0 by using d, but he cannot force
the Wine Merchant to accept any lower payoff. This fact was used in Bernard’s
trigger strategy to encourage the Wine Merchant to use c. If the Wine Merchant
used d instead, Bernard would retaliate by using d, which would force the the Wine
Merchant to accept a payoff of 0. Since 0 is the Wine Merchant’s minimax payoff,
this is the worst punishment that Bernard can inflict.

6.8.3. The Folk Theorem. One version of the Folk Theorem says the follow-
ing.

Theorem 6.2. Let G be a two-player game in normal form, let m1 be Player 1’s
minimax payoff in G, and let m2 be Player 2’s minimax payoff in G. Let R be the
repeated game with stage game G and discount factor δ. Then:
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(1) At a Nash equilibrium of R, Player 1’s payoff in every round is at least m1,
and Player 2’s payoff in every round is at least m2.

(2) Let (v1, v2) be a possible payoff profile for G with v1 > m1 and v2 > m2.
Then there is a Nash equilibrium of R in which the average payoff profile is
(v1, v2), provided the discount factor δ is large enough.

The average payoff profile is defined by taking the average payoff profile for
the first k rounds, and then taking the limit as k → ∞.

To show (1), we will just consider Player 1’s payoff. Suppose we have arrived
at round k of the repeated game. Player 2’s strategy requires him to look at the
history so far and choose a certain pure strategy tj to use in round k. But then
Player 1 can use the following strategy for round k: look at the history so far and
choose the best response to tj . This will give Player 1 a payoff of at least m1 in
round j.

We will not show (2) in general; we will only consider the case in which Players
1 and 2 each have two pure strategies. Let σ1 and σ2 be the strategies such that
π1(σ1, σ2) = v1 and π2(σ1, σ2) = v2. Of course there are numbers p and q between 0
and 1 such that σ1 = ps1 + (1− p)s2 and σ2 = qt1 + (1− q)t2.

We will only consider the case in which p and q are rational. We write these
fractions as p = k

m
and q = ℓ

n
with k, ℓ, m, and n integers.

We first describe a strategy σ̃2 for Player 2 in the repeated game:

• First q ·mn rounds: use t1. Note that q ·mn = ℓ
n
·mn = ℓm, which is an

integer as it should be.
• Next (1− q) ·mn = mn− ℓm rounds: use t2.

We have described Player 2’s strategy for the first mn rounds. He does the same
thing for the next mn rounds, and in fact forever.

We now describe a strategy σ̃1 for Player 1 in the repeated game:

• First p · q ·mn rounds: use s1. Note that p · q ·mn = k
m
· ℓ
n
·mn = kℓ, which

is an integer as it should be.
• Next (1− p) · q ·mn = ℓm− kℓ rounds: use s2.
• Next p · (1 − q) ·mn rounds: use s1. Note that p · (1 − q) ·mn = kn − kℓ,
which is an integer as it should be.

• Next (1− p) · (1− q) ·mn = mn− kn− ℓm+ kℓ rounds: use s2.

We have described Player 1’s strategy for the first mn rounds. He does the same
thing for the next mn rounds, and in fact forever.

Player 1’s total payoff for the first mn rounds is

pqmnπ1(s1, t1)+(1−p)qmnπ1(s2, t1)+p(1−q)mnπ1(s1, t2)+(1−p)(1−q)mnπ1(s2, t2).
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To get Player 1’s average payoff for the first mn rounds, divide by mn:

pqπ1(s1, t1) + (1− p)qπ1(s2, t1) + p(1− q)π1(s1, t2) + (1− p)(1− q)π1(s2, t2) =

π1

(

ps1 + (1− p)s2, qt1 + (1− q)t2
)

= π1(σ1, σ2) = v1.

Similarly, Player 2’s average payoff for the first mn rounds is π2(σ1, σ2) = v2, so the
average payoff profile over the first mn rounds is (v1, v2). This plus the repetitive
character of σ1 and σ2 imply that the average payoff profile defined above is also
(v1, v2).

Now we define trigger strategies for Players 1 and 2 in the repeated game.
Player 1: Start by using σ̃1. If Player 2 ever deviates from his strategy σ̃2, use the
strategy si to which Player 2’s best response gives him payoff m2 < v2, and continue
to use it forever. Player 2: Start by using σ̃2. If Player 1 ever deviates from his
strategy σ̃1, use the strategy tj to which Player 1’s best response gives him payoff
m1 < v1, and continue to use it forever. The profile of these strategies is the desired
Nash equilibrium of the repeated game for sufficiently large δ.

Is the profile of these trigger strategies subgame perfect? Only if si and tj are
best responses to each other. If they are, then if we get to the point where both
players are using these strategies to punish the other, neither will be able to improve
himself by changing on his own. This is what happens in Prisoner’s Dilemma games
such as Wine Merchant and Connoisseur.

6.8.4. Wine Merchant and Connoisseur. For the game of Wine Merchant
and Connoisseur, Figure 6.8 shows the possible payoff profiles (v1, v2) with v1 > 0
and v2 > 0 (since 0 is the minimax payoff for both players). According to the Folk
Theorem, for any (v1, v2) in this set, there is a Nash equilibrium of the repeated
game that gives payoffs (v1, v2) in every round, provided the discount factor δ is
large enough.

6.9. Problems

6.9.1. Another Debate. Redo the problem analyzed in subsection 6.4.3 with
the assumption that Newt eliminates the candidate he attacks 20% of the time,
George eliminates the candidate he attacks 30% of the time, and Ron always elim-
inates the candidate he attacks. Find a pure-strategy Nash equilibrium, and give
each candidate’s probability of survival at the Nash equilibrium

6.9.2. A Truel with Simultaneous Attacks. In the problem analyzed in
subsection 6.4.3, suppose that the candidates attack simultaneously instead of taking
turns. The game now has just eight states: NGR (all candidates still competing);
NG, NR, and GN (two candidates left); N , G, and R (one candidate left); and
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(4,−4)

(0,0)

(1,1)

(−4,4) v
2

v
1

Figure 6.8. Possible payoff profiles for the game of Wine Merchant
and Connoisseur (yellow). Those with v1 > 0 and v2 > 0 are in orange.

O (no candidates left). The last four states correspond to terminal vertices. The
payoffs when no candidate is left are (0, 0, 0).

We assume that in each two-person state, each remaining candidate attacks
the other. In the three-person state, each candidate has three strategies: attack one
of the other candidates, or attack neither.

(1) Calculate the expected payoffs in each two-person state. After you have
done this, you can regard the two-person states as terminal.

(2) Calculate the expected payoffs from the strategy profile (∅, R,G) (Newt lies
low).

(3) Calculate the expected payoffs from the strategy profile (R,R,G) (the
weaker candidates gang up on the strongest).

6.9.3. Huey, Dewey, and Louie Split a Dollar. Huey (Player 1), Dewey
(Player 2), and Louie (Player 3) have a dollar to split.

Round 0: Huey goes first and offers to split the dollar into fractions a1 for
himself, b1 for Dewey, and c1 for Louie, with a1 + b1 + c1 = 1. If both accept, the
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game is over. If at least one rejects the offer, the dollar shrinks to δ, 0 < δ < 1, and
it is Dewey’s turn to offer.

Round 1: Dewey (Player 2) offers to split the dollar into fractions d1 for Huey,
e1 for himself, and f1 for Louie, with d1 + e1 + f1 = 1. If Huey and Louie both
accept, the game is over. If at least one rejects the offer, the dollar shrinks to δ2,
and it is Louie’s turn to offer.

Round 2: Louie (Player 3) offers to split the dollar into fractions g1 for Huey,
h1 for Dewey, and k1 for himself, with g1 + h1 + k1 = 1. If Huey and Dewey both
accept, the game is over. If at least one rejects the offer, the dollar shrinks to δ3,
and it is Huey’s turn to offer.

Round 3: Huey (Player 1) offers to split the dollar into fractions a2 for himself,
b2 for Dewey, and c2 for Louie, with a2 + b2 + c2 = 1. If Dewey and Louie both
accept, the game is over. If at least one rejects the offer, the dollar shrinks to δ4,
and it is Dewey’s turn to offer.

Etc.

A schematic game tree is shown in Figure 6.9.

We will make two simplifying assumptions:

(1) Suppose a player has a choice between accepting an offer and rejecting
the offer, and suppose the offer equals the payoff the player expects from
rejecting the offer. Then he will accept the offer.

(2) There is a subgame-perfect Nash equilibrium with the following property:
if it yields payoffs of x to Player 1, y to Player 2, and z to Player 3, then
in the subgame that starts at round 3, it yields payoffs δ3x to Player 1, δ3y
to Player 2, and δ3z to Player 3.

Because of assumption 2, we can prune the game tree to that in Figure 6.10.

(1) Explain why g1 = δx and h1 = δy.
(2) Explain why d1 = δg1 and f1 = δk1.
(3) Explain why b1 = δe1 and c1 = δf1.
(4) Explain why b1 = y and c1 = z.
(5) Parts (c) and (d) yield the two equations y = δe1 and z = δf1. Parts (a)

and (b) yield four more equations. We also have the three equations

x+ y + z = 1, d1 + e1 + f1 = 1, g1 + h1 + k1 = 1.

In total we have nine equations in the nine unknowns x, y, z, d1, e1, f1,
g1, h1, k1. Check that the following is a solution of these nine equations.
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1

2,3

2

1,3

3

1,2

1

2,3

(δ3a2,δ
3b2,δ

3c2)

(δd1,δe1,δf1)

(δ2g1,δ
2h1,δ

2k1)

offer fractions (a1,b1,c1)
 

(a1,b1,c1) offer fractions (d1,e1,f1)
 

offer fractions (g1,h1,k1)
 

offer fractions (a2,b2,c2)
 

offer fractions (d2,e2,f2)
 

2

Round 0     Amount = 1

Round 4     Amount = δ4

Round 3     Amount = δ3

Round 2     Amount = δ2

Round 1     Amount = δ

accept               at least one rejects

accept               at least one rejects

accept               at least one rejects

accept               at least one rejects

Figure 6.9. Huey, Dewey, and Louie split a dollar.

(Actually, it’s the only solution.)

x = e1 = k1 =
1

1 + δ + δ2
,

y = f1 = g1 =
δ

1 + δ + δ2
,

z = d1 = h1 =
δ2

1 + δ + δ2
.

6.9.4. Iran and Iraq. There are two oil-producing countries, Iran and Iraq.
Both can operate at either of two production levels: low (2 million barrels per day)
or high (4 million barrels per day). Depending on their decisions, total output will
be 4, 6, or 8 million barrels per day. The price per barrel in the three cases will be
$100, $60, or $40, respectively. Cost of production is $8 per barrel for Iran and $16
per barrel for Iraq. The matrix shows profit per day in millions of dollars:
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1

2,3

2

1,3

3

1,2

1
(δ3x,δ3y,δ3z)

(δd1,δe1,δf1)

(δ2g1,δ
2h1,δ

2k1)

offer fractions (a1,b1,c1)
 

(a1,b1,c1) offer fractions (d1,e1,f1)
 

offer fractions (g1,h1,k1)
 

Round 0     Amount = 1

Round 2     Amount = δ2

Round 1     Amount = δ

accept               at least one rejects

accept               at least one rejects

accept               at least one rejects

Figure 6.10. Pruned game tree.

Iraq
low high

Iran low (184, 168) (104, 176)
high (208, 88) (128, 96)

(1) Explain the numbers in the matrix .
(2) Find a discount factor δ0 such that for δ ≥ δ0, it is a Nash equilibrium for

both countries to use the following trigger strategy. Start by producing at
the low level. If the other country produces at the high level even once,
produce at the high level forever.

Remark: You will find a discount factor δ1 such that for δ ≥ δ1, Iran cannot
improve its payoff; and a second discount factor δ2 such that for δ ≥ δ2, Iraq cannot
improve its payoff. That means that for δ ≥ max(δ1, δ2), neither country can improve
its payoff.

6.9.5. Should You Contribute? This problem is related to the Global Warm-
ing Game (Sec. 2.5). A group of ten student plays the following game. Each student
is given one dollar. Each student then simultaneously puts a portion of his dollar
into a pot. The game organizer counts the total amount in the pot, multiplies by
five, and splits this amount equally among the ten students.
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The ith student’s strategy is a real number xi, 0 ≤ xi ≤ 1, which represents
the amount that student chooses to put in the pot. A strategy profile is therefore a
10-tuple (x1, x2, . . . , x10) with 0 ≤ xi ≤ 1 for each i.

(1) Find the ith player’s payoff function πi(x1, x2, . . . , x10). (The answer is

πi(x1, x2, . . . , x10) = 1− xi +
1

2
(x1 + x2 + . . .+ x10);

you should explain this.)
(2) Show that each player has a strictly dominant strategy: whatever the other

players do, contribute nothing. (For example, consider Player 1. Given any
choices (x2, . . . , x10) by the other players, Player 1 maximizes his payoff by
choosing x1 = 0.) Therefore the only Nash equilibrium is (0, 0, . . . , 0), at
which each player’s payoff is 1.

(3) Suppose the game is repeated every day. Consider the following strategy
σx, where 0 < x ≤ 1: “I will contribute x dollars on day 0. If every other
player contributes at least x dollars on day k, I will contribute x dollars
on day k + 1. If any player contributes less than x dollars on day k, I will
contribute nothing on every subsequent day.” Show that if δ ≥ 1

9
, then it

is a Nash equilibrium for every player to use the strategy σx with the same
x. (In other words, (σx, σx, . . . , σx) is a Nash equilibrium.)

6.9.6. Tit for Tat 2. We saw tit for tat in a game repeated twice in problem
3.11.7. In the infinitely repeated game of Wine Merchant and Connoisseur, or in any
Prisoner’s Dilemma, tit for tat is the following strategy. Start by using c. Thereafter
do whatever your opponent did in the previous round.

Suppose that in Wine Merchant and Connoisseur, both players use tit for tat.
We will find the payoffs, and we will check whether various alternative strategies by
one of the players improve his payoff.

(1) “If both players use tit for tat, their payoffs are the same as when both
players use the trigger strategy of Section 6.7.” Explain.

(2) Suppose Player 2 uses tit for tat, but Player 1 uses the following variant:
“Start by using d. Thereafter do whatever your opponent did in the previous
round.” Find δ0 such that for δ ≥ δ0, Player 1 does not improve his payoff
by using this variant.

(3) Suppose Player 2 uses tit for tat, but Player 1 uses d in every round. Find
δ0 such that for δ ≥ δ0, Player 1 does not improve his payoff by using this
strategy.

(4) The previous two problems suggest that for δ sufficiently large, it is a Nash
equilibrium of the repeated game for both players to use tit for tat. This is
true, but we shall not complete the argument. Instead, show the following:
it is not a subgame perfect Nash equilibrium of the repeated game for both
players to use tit for tat. Suggestion: Suppose in period 0, Player 1 uses d
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and Player 2 uses c. Consider the subgame that begins with period 1, with
the memory of what happened in period 0. What happens if both players
use tit for tat in the subgame? What happens if Player 1 uses tit for tat in
the subgame, but Player 2 “forgives” Player 1 by using c in round 1 and tit
for tat thereafter? Find δ0 such that for δ > δ0, the second outcome gives
Player 2 a better result than the first in the subgame.

Tit for tat has the drawback that, if one player defects, even by accident or
for reasons beyond his control, the players become trapped in a cycle of repeated
defections as in part (2) of this problem. Israeli-Palestinian relations (Section 2.4)
have been plagued by such cycles of repeated revenge-taking.

An alternative to tit for tat is “forgiving tit for tat,” which is tit for tat
except that, with some probability, a player responds to a defection by forgiving it
and cooperating. Part (4) of this problem shows how forgiving tit for tat can be
advantageous.

For more information, see the Wikipedia page on tit for tat
http://en.wikipedia.org/wiki/Tit_for_tat.
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CHAPTER 7

Symmetries of games

In some games, players or strategies are interchangeable in some way. Nash
discussed such games in the same paper [8] in which he proved his theorem on
existence of Nash equlibria (Theorem 5.1). Nash showed that among the Nash
equilibria of such games are some particularly simple ones. Finding such Nash
equilibria can be much easier than finding all Nash equilibria.

In this chapter we mainly discuss games in which all players are interchange-
able. In the last section we discuss some other situations.

7.1. Interchangeable players

We have seen several examples of games in normal form in which the players
are interchangeable:

• Prisoner’s Dilemma
• Stag Hunt
• Chicken
• Battle of the Sexes
• Water Pollution
• Tobacco Market
• Cournot Duopoly

For each of these games except Chicken and Battle of the Sexes, we found at least
one pure-strategy Nash equilibrium in which every player used the same strategy.

Recall from Subsection 3.2.3 the payoffs in Chicken:

Teenager 2
straight swerve

Teenager 1 straight (−2,−2) (1,−1)
swerve (−1, 1) (0, 0)

There are two Nash equilibria: (straight, swerve) and (swerve, straight). In both of
these Nash equilibria, of course, the players use different strategies.

Let’s look for a mixed strategy equilibrium

(p straight + (1− p) curve, q straight + (1− q) curve),
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with 0 < p < 1 and 0 < q < 1. From the Fundamental Theorem,

p(−2) + (1− p)(1) = p(−1) + (1− p)(0),

q(−2) + (1− q)(1) = q(−1) + (1− q)(0).

The two equations are the same; this is a consequence of the symmetry of the game.
The solution is (p, q) = (1

2
, 1
2
). Thus there is a mixed strategy Nash equilibrium in

which both players use the same mixed strategy.

If you did problem 5.12.5, you saw an example with three interchangeable
players in which every pure-strategy profile was a Nash equilibrium except the profiles
in which all players used the same strategy. There again you found a mixed-strategy
Nash equilibrium in which every player used the same mixed strategy.

A game in normal form in which the players are interchangeable is called
symmetric. In such a game, all players, of course, have the same strategy set.

In order to give a formal definition of a symmetric game, we begin by dis-
cussing permutations of sequences. As is common in mathematics, we will identify
a sequence of n objects with the ordered n-tuple of those objects.

A permutation of a sequence is a reordering of the sequence. For example,
we might just switch the first two entries in the sequence; or we might write the
sequence in reverse order; or we might switch the first two entries and then switch the
second two entries, so that the sequence (1, 2, 3, 4, 5, . . . , n) becomes the sequence
(2, 3, 1, 4, 5, . . . , n); or we might move all entries in the sequence except the first
forward one spot and put the first entry last, so that the sequence (1, 2, 3, . . . , n)
becomes (n, 1, 2, 3, . . . , n− 1).

A permutation should be thought of as a mapping from sequences to sequences.
For example, if f is the permutation of sequences of length four that switches the
first two entries, here is the result of applying f to various sequences of the letters
in the set A = {a, b, c, d}:

f(a, b, c, d) = (b, a, c, d), f(c, a, d, b) = (a, c, d, b), f(a, a, c, d) = (a, a, c, d),

Note that if the first two entries are equal, f fixes the sequence, i.e., takes the
sequence to itself.

The set of all sequences of length four of letters in the set A is just the set
A× A× A× A. Thus a permutation f of sequences of length four gives a function

f : A×A×A×A → A×A× A× A.

Now consider a game with n players, each of whom has the same strategy set
S. A mixed strategy profile (σ1, . . . , σn) leads to a payoff vector (π1, . . . , πn). Now
apply a permutation to the sequence of strategies in the strategy profile, yielding
a new strategy profile and a new payoff vector. If, for every permutation of every

168



strategy profile, the new payoff vector is obtained from the previous payoff vector
by the same permutation, then the game is symmetric.

It is enough to check that for every permutation of every pure strategy pro-
file, the new payoff vector is obtained from the previous payoff vector by the same
permutation. If this is true for all pure strategy profiles, it is also true for all mixed
strategy profiles.

As an example, consider the game of Chicken. The strategy profile (straight,
swerve) gives the payoffs (1,−1). Now switch the two strategies, which gives (swerve,
straight). The payoffs are (−1, 1). This vector if obtained by switching the entries
in (1,−1). This works for every pure strategy profile, so Chicken is a symmetric
game. (There are only two ways to permute a sequence of two objects: (i) don’t do
anything, and (ii) switch the objects.)

For a two-player game, the definition of symmetric reduces to the following.
Let S denote the set of (pure) strategies available to either player. Then we require

• For all s and t in S, π1(s, t) = π2(t, s).

In other words, if one player uses s and the other uses t, the player who uses s gets
a certain payoff. It doesn’t matter whether he is Player 1 or Player 2.

The following result was proved by Nash in [8].

Theorem 7.1. In a symmetric game in which the (pure) strategy set is finite, there
is a mixed-strategy Nash equilibrium in which every player uses the same mixed
strategy.

One can take advantage of this theorem by looking for such Nash equilibria
instead of more general equilibria.

We note one other fact about symmetric games.

• Suppose a symmetric game has a Nash equilibrium in which it is not the case
that all players use the same mixed strategy. Then other Nash equilibria
can be found by interchanging the roles of the players.

We have seen this phenomenon in the games of Chicken and Water Pollution,
and in problems 5.12.4 and 5.12.5.

7.2. Reporting a Crime

In 1964 a young woman named Kitty Genovese was murdered outside her
home in Queens, New York. According to a New York Times article written two
weeks later, 38 of her neighbors witnessed the murder, but none of them called
the police. While the accuracy of the article has since been called into question
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(http://en.wikipedia.org/wiki/Kitty_genovese), at the time it horrified the
country.

Here is a model that has been proposed for such events. A crime is observed by
n people. Each wants the police to be informed but prefers that someone else make
the call. We will suppose that each person receives a payoff of v as long as at least
one person calls the police; if no one calls the police, each person receives a payoff
of 0. Each person who calls the police incurs a cost of b. We assume 0 < b < v.

We view this as a game with n players. Each has two strategies: call the police
(c) or don’t call the police (d). The total payoffs are:

• If at least one person calls the police: v to each person who does not call,
v − b to each person who calls.

• If no one calls the police: 0 to everyone.

You can easily check that there are exactly n pure strategy Nash equilibria.
In each of them, exactly one of the n people calls the police.

Motivated by Theorem 7.1, we shall look for a mixed strategy Nash equilibrium
(σ, . . . , σ) in which all players use the same strictly mixed strategy σ = (1−p)c+pd,
0 < p < 1.

Let’s consider Player 1. By the Fundamental Theorem, each of her pure strate-
gies gives her the same expected payoff when Players 2 through n use their mixed
strategies:

π1(c, σ, . . . , σ) = π1(d, σ, . . . , σ).

Now π1(c, σ, . . . , σ) = v − b, since the payoff to a player who calls is v − b no
matter what the other players do. On the other hand,

π1(d, σ, . . . , σ) =

{

0 if no one else calls,

v if at least one other person calls.

The probability that no one else calls is pn−1, so the probability that at least one
other person calls is 1− pn−1. Therefore

π1(d, σ, . . . , σ) = 0 · pn−1 + v · (1− pn−1) = v(1− pn−1).

Therefore
v − b = v(1− pn−1),

so

p =

(

b

v

)
1

n−1

.

Since 0 < b
v
< 1, p is a number between 0 and 1.

What does this formula mean? Notice first that as n → ∞, p → 1, so 1−p → 0.
Thus, as the size of the group increases, each individual’s probability of calling the
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police declines toward 0. However, it is more important to look at the probability
that at least one person calls the police. This probability is

1− pn = 1−
(

b

v

)
n

n−1

.

As n increases, n
n−1

= 1 + 1
n−1

decreases toward 1, so
(

b
v

)
n

n−1 increases toward b
v
,

so 1 −
(

b
v

)
n

n−1 decreases toward 1 − b
v
. Thus, as the size of the group increases, the

probability that the police are called decreases.

For a large group, the probability that the police are called is approximately
1− b

v
. Anything that increases b (the perceived cost of calling the police) or decreases

v (the value to people of seeing that the police get called) will decrease the likelihood
that the police are called.

7.3. Sex Ratio

Most organisms that employ sexual reproduction come in two types: male and
female. In many species, the percentages of male and female offspring that survive to
actually reproduce are very different. Nevertheless, in most species, approximately
half of all births are male and half are female. What is the reason for this? This
puzzle goes back to Darwin.

One can find an answer by focussing on the number of grandchildren of each
female.

Suppose a cohort of males and females is about to reproduce. We think of this
as a game in which the players are the females, a female’s strategy is her fraction of
male offspring, and a female’s payoff is her number of grandchildren.

7.3.1. Many many females. There are lots of players! For a first pass at
analyzing this situation, we will imagine that one female has a fraction u of male
offspring, 0 ≤ u ≤ 1, and the females as a group have a fraction v of male offspring,
0 ≤ v ≤ 1. We imagine the group is so large that what our one female does has no
appreciable effect on v. For each v we will calculate our female’s best response set
B(v). Motivated by the notion of Nash equilibrium, we ask, for what values of v
does the set B(v) include v?

Notation:

• σm = fraction of males that survive to reproduce.
• σf = fraction of females that survive to reproduce.
• c = number of offspring per female.
• r = number of offspring per male.
• y = number of females.
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Then we have:

Female 1 All Females
Sons uc vcy
Daughters (1− u)c (1− v)cy
Surviving sons σmuc σmvcy
Surviving daughters σf (1− u)c σf(1− v)cy

Let f(u, v) denote the number of grandchildren of female 1. Then we have

f(u, v) = surviving sons · offspring per son

+ surviving daughters · offspring per daughter = σmuc · r + σf(1− u)c · c.
We can calculate r as follows. For the population as a whole,

surviving sons · offspring per son = surviving daughters · offspring per daughter,

i.e.,
σmvcy · r = σf(1− v)cy · c.

Therefore r =
σf (1−v)

σmv
c. Substituting this value into our formula for f(u, v), we

obtain

f(u, v) = σmuc
σf(1− v)

σmv
c+σf (1−u)c2 = σfc

2

(

1 + u
1− 2v

v

)

, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Notice

∂f

∂u
(u, v) =











+ if 0 < v < 1
2
,

0 if v = 1
2
,

− if v > 1
2
,

Therefore female 1’s best response to v is u = 1 if 0 < v < 1
2
; any u if v = 1

2
; and

u = 0 if v > 1
2
. Only in the case v = 1

2
does female 1’s best response include v.

For Darwin’s views on sex ratios, see
http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Sex/D71SexRatio.html. For fur-
ther discussion of sex ratios, see the Wikipedia page
http://en.wikipedia.org/wiki/Fisher’s_principle.

7.3.2. Not so many females. Suppose there are n females. The ith female’s
strategy is a number ui, 0 ≤ ui ≤ 1, that represents the fraction of male offspring
she has. Her payoff is her number of grandchildren. Motivated by our work in the
previous subsection, we will now derive a formula for the payoff.

We continue to use the notation:

• σm = fraction of males that survive to reproduce.
• σf = fraction of females that survive to reproduce.
• c = number of offspring per female.
• r = number of offspring per male.
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Let

v =
1

n
(u1 + . . .+ un).

Then we have:

Female i All Females
Sons uic vcn
Daughters (1− ui)c (1− v)cn
Surviving sons σmuic σmvcn
Surviving daughters σf (1− ui)c σf (1− v)cn

The formula for r is unchanged. We therefore have

πi(u1, . . . , un) = σfc
2

(

1 + ui

1− 2v

v

)

.

We will look for a Nash equilibrium at which 0 < ui < 1 for every i. Then for
every i, we must have ∂πi

∂ui
(u1, . . . , un) = 0, i.e.,

0 =
∂πi

∂ui

= σfc
2

(

1 · 1− 2v

v
+ ui

d

dv

(

1− 2v

v

)

∂v

∂ui

)

= σfc
2

(

1− 2v

v
− ui

1

v2
1

n

)

= σfc
2nv − 2nv2 − ui

nv2
.

Hence, for every i, ui = nv− 2nv2. Therefore all ui are equal; denote their common
value by u. Then v = u, so

0 =
nu− 2nu2 − u

nu2
=

n− 2nu− 1

nu
.

Therefore u = n−1
2n

= 1
2
− 1

2n
. For n large, u is very close to 1

2
.

This game is symmetric, and in the Nash equilibrium we have found, every
player uses the same strategy. Could we have assumed from the beginning that,
because of Theorem 7.1, there must be a Nash equilibrium in which all the ui are
equal? No; Theorem 7.1 does not apply. This is not a game with a finite pure
strategy set. Instead, the ith player has an interval 0 ≤ ui ≤ 1 of pure strategies.

7.4. Other symmetries of games

Nash actually proved a result about symmetries of games that is more general
than Theorem 7.1. In this section we will describe two more situations to which
Nash’s general result applies.
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7.4.1. More about permutations. We begin by studying permutations a lit-
tle more. Two important facts about permutations are:

(1) Permutations can be composed: one permutation followed by a second per-
mutation gives a third permutation. If you think of a permutation as a
function from a product space to itself, as we did in Section 7.1, then you
compose permutations exactly the way you compose functions.

(2) A permutation has an inverse, i.e., a way of undoing it. For example, the
inverse of switching the first two numbers followed by switching the second
and third numbers is to switch the second and third numbers, followed by
switching the first two. (Try it!)

The collection of all ways of permuting a sequence of n objects such as (1, . . . , n) is
called Sn, the symmetric group of order n. A subgroup of Sn is a nonempty subset
H of Sn that is closed under composition and taking inverses:

(1) if f1 ∈ H and f2 ∈ H then f2 ◦ f1 ∈ H;
(2) if f ∈ H then f−1, the inverse of f , is in H.

Let i denote the trivial permutation, i.e., the one that doesn’t move anything. Since
f−1 ◦ f = i, i is in every subgroup of Sn.

Important subgroups of Sn can have as few as two elements. For example, let
f be the permutation in Sn that rewrites a sequence in reverse order. f is its own
inverse, since doing f twice to a sequence gives back the original sequence. Therefore
the set H = {i, f} is a subgroup of Sn.

7.4.2. Symmetries of the players. Let G be an n-player game in normal
form. We do not require that all players have the same strategy set, but there may
be subsets of the players with the same strategy set. More precisely, we assume that
the players can be divided into k types; all players of the same type have the same
strategy set. In Section 7.1 we considered the case where there was just one type.

We say that a permutation f of (1, 2, . . . , n) respects the types in the game G
if for every i = 1, . . . , n, f moves i to the position of a player of the same type as
Player i. The subset of Sn consisting permutations that respect the types in G is a
subgroup of Sn that we denote SG.

As in Section 7.1, we apply permutations of (1, 2, . . . , n) to mixed strategy
profiles (σ1, . . . , σn). However, the only permutations of (1, 2, . . . , n) that it makes
sense to use are those in SG. For example, if f is the permutation of 1, . . . , n that
switches 1 and 2, then

f(σ1, σ2, σ3, . . . , σn) = (σ2, σ1, σ3, . . . , σn).

174



This makes sense if σ1 is a mixed strategy of Player 2 and σ2 is a mixed strategy of
Player 1. This is true when Players 1 and 2 are of the same type, i.e., when f is in
SG.

Let H be a subgroup of SG. Suppose that when we apply any permutation in
H to any mixed strategy profile (σ1, . . . , σn), the payoff vector for the new strategy
profile is obtained by applying the same permutation to the payoff vector for the old
strategy profile. Then we say that the game is invariant under the symmetry group
H of its players.

Theorem 7.2. Suppose a game is invariant under a symmetry group H of its play-
ers. Then it has a Nash equilibrium (s∗1, . . . , s

∗
n) that is fixed by every permutation

in H. In other words, if we apply any permutation in H to (s∗1, . . . , s
∗
n), the result

is again (s∗1, . . . , s
∗
n).

For example, suppose a game has seven players who come in two types. Play-
ers 1 through 4 are of the first type, and Players 5 through 7 are of the second type.
Within a type, the players are interchangeable. Let’s translate this informal de-
scription into the language of symmetry groups. SG is the subgroup of S7 consisting
of permutations of (1, . . . , 7) that can be described as a permutation of (1, 2, 3, 4)
followed by a permutation of (5, 6, 7). When we say that players of each type are
interchangeable, we mean that the game is invariant under the full symmetry group
SG of its players. Then Theorem 7.2 implies that it has a Nash equilibrium that
is fixed by every permutation in SG. The only strategy profiles that are fixed by
every permutation in SG are those for which the first four players all use the same
strategy, and the last three players all use the same strategy. Therefore there is a
Nash equilibrium of this type.

7.4.3. Symmetries of the strategies. In this subsection we discuss permut-
ing individual players’ strategies without permuting the players. We consider an
n-player game in normal form in which the ith player has a strategy set Si with
ki pure strategies: Si = {si1, si2, . . . siki}. We let L denote the (long) sequence of
strategies in S1 followed by strategies in S2 followed by . . . followed by strategies in
Sn. This is a sequence of k = k1 + k2 + · · ·+ kn elements. Let H be a subgroup of
Sk consisting of permutations that can be expressed as a permutation of S1 followed
by a permutation of S2 followed by . . . followed by a permutation of Sn. In other
words, for each i = 1, . . . , n, a permutation in H takes a strategy of Player i to the
location of another strategy of Player i.

Each such permutation f can be used to define a function f̃ from the set of
pure strategy profiles S1 × S2 × · · · × Sn to itself as follows. Let (s1, s2, . . . , sn) be
a profile of pure strategies. Suppose f takes s1 to the location of another strategy
s′1 in S1, s2 to the location of another strategy s′2 in S2, . . . , sn to the location of
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another strategy s′n in Sn. Then

f̃(s1, s2, . . . , sn) = (s′1, s
′
2, . . . , s

′
n).

In fact f also induces a mapping of mixed strategy profiles, which we will still
call f̃ . For example, suppose f puts s11 in the s13 location, and puts s12 in the
s14 location. Consider a mixed strategy profile (σ1, . . . , σn) with σ1 = p1s11 + p2s12.
Then

f̃(σ1, . . . , σn) = (σ′
1, . . . , σ

′
n) where σ′

1 = p1s13 + p2s14.

Suppose that every permutation f inH induces a mapping f̃ of S1×S2×· · ·×Sn

such that each pure strategy profile (s1, s2, . . . , sn) has the same payoff vector as

f̃(s1, s2, . . . , sn). Then we say that the game is invariant under the symmetry group
H of its strategies. In this case it is also true that every mixed strategy profile
(σ1, . . . , σn) has the same payoff vector as f̃(σ1, . . . , σn).

Theorem 7.3. Suppose a game is invariant under a symmetry group H of its strate-
gies. Then it has a mixed strategy Nash equilibrium (σ∗

1, . . . , σ
∗
n) that is fixed by every

permutation in H. In other words, for any permutation f in H, f̃(σ∗
1, . . . , σ

∗
n) =

(σ∗
1 , . . . , σ

∗
n).

In examples, this theorem implies that a game has a Nash equilibrium in which
certain probabilities are equal.

7.4.4. Colonel Blotto revisited. To see what Theorem 7.3 means, consider
the game of Colonel Blotto vs. the People’s Militia from Section 5.7. The payoff
matrix is reproduced below.

People’s Militia
30 21 12 03

40 (4,−4) (2,−2) (1,−1) (0, 0)
31 (1,−1) (3,−3) (0, 0) (−1, 1)

Col. Blotto 22 (−2, 2) (2,−2) (2,−2) (−2, 2)
13 (−1, 1) (0, 0) (3,−3) (1,−1)
04 (0, 0) (1,−1) (2,−2) (4,−4)

You can see a symmetry in this payoff matrix: if you flip the matrix of payoff
vectors around a horizontal line through the middle, then flip the positions of the
payoff vectors around a vertical line though the middle, the matrix of payoff vectors
is unchanged. In other words, if we “reverse” both players strategies, the payoffs
don’t change.

To express this symmetry in Nash’s language, let L denote the sequence of
strategies in Col. Blotto’s strategy set S1 = {40, 31, 22, 13, 04}, followed by strategies
in the People’s Militia’s strategy set S2 = {30, 21, 12, 03}, written in that order:

L = (40, 31, 22, 13, 04; 30, 21, 12, 03).
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The semicolon is there just to divide the two players’ strategies. Now consider the
permutation f of the numbers 1 to 9 that reverses the order of the first five numbers
and reverses the order of the last four numbers. f is its own inverse, so H = {i, f}
is a subgroup of S9. Moreover, f can be thought of as a permutation of S1 (the first
five places) followed by a permutation of S2 (the last four places).

We have

f(L) = f(40, 31, 22, 13, 04; 30, 21, 12, 03) = (04, 13, 22, 31, 40; 03, 12, 21, 30).

This shows the position to which f takes each strategy. We use it to define a
permutation f̃ of S1 × S2. For example, since f takes 40 to the position of 04 and
takes 12 to the position of 21, we have f̃(40, 12) = (04, 21).

To check that this game is invariant under the symmetry group H of its strate-
gies, we must check that the payoff vectors associated to (40, 12) and f̃(40, 12) =
(04, 21) are the same. You can easily check that this is correct. Of course, we must
also check 19 similar equations.

The checks all work because of the visual symmetry in the payoff matrix that
we noted earlier. One way to express this is to write the payoff matrix with the
strategies written in their new order:

People’s Militia
03 12 21 30

04 (4,−4) (2,−2) (1,−1) (0, 0)
13 (1,−1) (3,−3) (0, 0) (−1, 1)

Col. Blotto 22 (−2, 2) (2,−2) (2,−2) (−2, 2)
31 (−1, 1) (0, 0) (3,−3) (1,−1)
40 (0, 0) (1,−1) (2,−2) (4,−4)

The checks we have to do amount to checking that this payoff matrix is identical to
the first. You can see that they are.

Since our game is invariant under the symmetry group H = {i, f} of its strate-
gies, Theorem 7.3 says that it has a mixed strategy Nash equilibrium

(σ1, σ2) = (p140 + p231 + p322 + p413 + p504, q130 + q221 + q312 + q403)

that is fixed by the extension of f̃ to mixed strategy profiles. Now

f̃(σ1, σ2) = f̃(p140 + p231 + p322 + p413 + p504, q130 + q221 + q312 + q403)

= (p104 + p213 + p322 + p431 + p540, q103 + q212 + q321 + q430).

For (σ1, σ2) to be fixed by f̃ we must have p1 = p5, p2 = p4, q1 = q4, and q2 = q3.
Thus Theorem 7.3 tells us that there is a Nash equilibrium of the form

(7.1) (σ1, σ2) = (a40 + b31 + c22 + b13 + a04, d30 + e21 + e12 + d03).
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We found such a Nash equilibrium in Section 5.7 after considerable work:

a =
4

9
, b = 0, c =

1

9
, d =

1

18
, e =

4

9
.

You could find this Nash equilibrium more easily by assuming there is one of the
form (7.1) with all strategies active except Col. Blotto’s 31 and 13, so that b = 0.
Write down the usual equations. Many will be redundant and can be dropped. You
should wind up with just two equations to determine a and c, and two to determine
d and e. There is still an inequality check to do at the end (actually two, but one is
redundant).

7.5. Problems

7.5.1. The Princeton Bar. This problem is based on a scene in the movie
“A Beautiful Mind.” n men walk into a bar. In the bar is one extremely attractive
woman and many attractive women. Each man has two possible pure strategies:

• s: Approach one of the attractive women. (The safe strategy.)
• r: Approach the extremely attractive woman. (The risky strategy.)

The payoffs are:

• a > 0 to each man who uses strategy s. (There are many attractive women
in the bar; the strategy of approaching one of them will succeed.)

• If there is a unique man who uses strategy r, his payoff is b > a. If more than
one man uses strategy r, they all have payoff 0. (The extremely attractive
woman doesn’t enjoy being pestered and leaves.)

(1) Find all pure strategy Nash equilibria of this n-player game.
(2) Find a mixed strategy Nash equilibrium in which all n men use the same

mixed strategy ps+ (1− p)r.
(3) In the Nash equilibrium of part (b), for large n, what is the approxi-

mate probability that at least one man approaches the extremely attractive
woman?

7.5.2. The Sneaky Cat 1. A cat is considering sneaking up on a bird. The
cat has two strategies: hightail it out of there and look for something else to eat
(h), or sneak up on the bird (s).

The bird has two strategies: trust that the cat will not try to sneak up on it
(t), or watch out for the cat (w). If the cat stalks the bird and the bird does not
watch out, the cat will get the bird.

Let 1 be the value to the cat of eating the bird and the cost to the bird of
being eaten. Let r be the cost to the cat of stalking the bird, and let c be the cost
to the bird of watching out for the cat. We get the following payoffs:
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Bird
t w

Cat h (0, 0) (0,−c)
s (1− r,−1) (−r,−c)

We assume 0 < r < 1 and c > 0. Notice that 0 is the bird’s best payoff.

(1) Show that if c > 1, (s, t) is a Nash equilibrium.
(2) Show that if 0 < c < 1, there are no pure strategy Nash equilibria.
(3) For 0 < c < 1, find a mixed strategy Nash equilibrium.

7.5.3. The Sneaky Cat 2. Now suppose there is one cat and a flock of n birds.
The cat still has the strategies s and h. Each bird has the strategies t and w. The
payoffs in this (n+ 1)-player game are as follows:

• Cat uses h: 0 to the cat, 0 to each bird that uses t, −c to each bird that
uses w.

• Cat uses s, all birds use t: 1 − r to the cat (the cat gets a bird if no birds
watch out, but the other birds fly off), − 1

n
to each bird (each bird has

probability 1
n
of being the unlucky one).

• Cat uses s, at least one bird uses w: −r to the cat (if at least one bird is
watching out, all birds fly off, and the cat goes hungry), 0 to each bird that
uses t, −c to each bird that uses w.

(1) Assume 0 < c < 1
n
. Show that there are no pure strategy Nash equilibria.

(Consider the following cases: (i) cat uses h, all birds use t; (ii) cat uses h,
at least one bird uses w; (iii) cat uses s, all birds use t; (iii) cat uses s, at
least one bird uses w.)

(2) Assume 1
n
r

n−1

n < c < 1
n
. Find a Nash equilibrium in which the cat uses s,

and all birds use the mixed strategy τ = qt + (1 − q)w, 0 < q < 1. (In
order for (s, τ, τ, . . . , τ) to be a Nash equilibrium, we need: (i) if bird 1, for
example, uses instead one of the pure strategies t or w, his expected payoff
is the same; (ii) if the cat uses instead the pure strategy h, his payoff does
not go up. Use (i) to find q, then check (ii).)

(3) For 0 < c < 1
n
r

n−1

n , find a Nash equilibrium in which the cat uses the mixed
strategy σ = ph+ (1− p)s, 0 < p < 1, and all birds use the mixed strategy
τ = qt+ (1− q)w, 0 < q < 1.

The fact that there is a Nash equilibrium in which all birds use the same
strategy is a consequence of Theorem 7.2.

7.5.4. Colonel Blotto continued. Use the method proposed in the last para-
graph of Subsection 7.4.4 to find the symmetric Nash equilibrium of the Colonel
Blotto game.
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CHAPTER 8

Alternatives to the Nash Equilibrium

In this chapter we consider three points of view that lead to alternatives to
the Nash equilibrium. The notion of a correlated equilibrium relies on social rules to
direct players to appropriate actions. Epistemic game theory formalizes how players’
beliefs about each other lead them to actions. Finally, the notion of evolutionary
stability was introduced by biologists to describe strategy profiles in populations
that resist invasion by organisms using other strategies. The invaders may come
from elsewhere, or they may arise within the population by mutation.

8.1. Correlated equilibrium

Two drivers arrive at an intersection, Driver 1 from the south and Driver 2
from the east. Each has two strategies: go and stop. If one goes and one stops, we
will take the payoffs to be −1 to the driver who stops for time lost waiting, and 0
to the driver who goes, since he does not lose any time. If both stop, we take the
expected payoff to each to be −2; one will eventually go first. If both go, there is
the possibility of a serious accident; we take the expected payoff to each to be −4.
We obtain the following payoff matrix:

Driver 2
go stop

Driver 1 go (−4,−4) (0,−1)
stop (−1, 0) (−2,−2)

This game is a variant of Chicken: the best response to other player’s strategy is
the opposite strategy. There are two pure-strategy Nash equilibria, (go, stop) and
(stop, go). The first is better for Player 1, the second is better from Player 2.

In practice, this problem is solved by a traffic light or a driving rule. A traffic
light signals green to one driver and red to the other, telling each which to do. A
driving rule says, for example, that the driver on the right has the right-of-way. If
this is the rule, Driver 2 goes. Either rule has the following property: if the other
driver follows the rule, you get your best payoff by also following the rule.

To generalize this example, we consider a game in normal form with public
signals. This is a game in normal form with n players and, in addition, a set of
public signals ωk. Each public signal ωk occurs with probability αk; each αk is
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positive, and the sum of the αk’s is 1. Each player observes the signal ωk and
chooses one of his mixed strategies in response. Thus the jth player has a response
function from the set of signals to his set of mixed strategies. We denote the strategy
chosen by the jth player in response to the signal ωk by σj(ωk). An ordered n-tuple
of response functions is said to be a correlated equilibrium if for each signal ωk, the
strategy profile (σ1(ωk), . . . , σn(ωk)) is a Nash equilibrium.

Traffic lights and driving rules are both covered by this framework. The traffic
light has two signals: ω1, which is green north-south and red east-west, and ω2,
which is red north-south and green east-west. For the correlated equilibrium that
obtains in practice, Driver 1 chooses go in response to ω1 and stop in response to
ω2; Driver 2 chooses the opposite. With the traffic rule described above, there is
just one signal, namely the rule. Driver 1 chooses stop in response, and Driver 2
chooses go.

Another game that has a nice solution when public signals are added is Battle
of the Sexes (Subsection 3.2.4). For example, suppose Alice and Bob have an agree-
ment that weekdays are for concerts and weekends are for wrestling. Then the day
of the week serves as a public signal that allows them to coordinate their behavior.

In general, some players may be unable to distinguish among some signals. If,
for example, Player 1 is unable to distinguish between signals ω1 and ω2, then his
response function is required to assign the same response to both signals. Instead
of requiring that the players’ responses to each signal form a Nash equilibrium, we
require that each player’s response to each signal be a best response to his best
estimate the other players’ responses. We denote Player i’s best estimate of Player
j’s response when the signal is ωk by τij(ωk). Of course, if Player i is unable to
distinguish between the signals ωk and ωk′, we must have τij(ωk) = τij(ωk′) for every
j.

A collection of signals that Player i is unable to distinguish is called an infor-
mation set of Player i. For example, suppose that Player 1 has an information set
consisting of signals ω1 and ω2. If signal ω1 is sent, then Player 1 does not know
whether signal ω1 or signal ω2 was sent, so he does not know whether the other
players have observed signal ω1 or signal ω2. From Player 1’s point of view, another
Player j has observed signal ω1 with probability α1

α1+α2

and signal ω2 with probability
α2

α1+α2

. Thus, from Player 1’s point of view, Player j will use the mixed strategy

σj(ω1) with probability α1

α1+α2

, and σj(ω2) with probability α2

α1+α2

. Thus Player 1’s
best estimate of Player j’s response when the signal is ω1 is

τ1j(ω1) = τ1j(ω2) =
α1

α1 + α2
σj(ω1) +

α2

α1 + α2
σj(ω2).

In a correlated equilibrium with signal ω1, Player 1’s strategy σ1(ω1) is required to
be a best response to (τ12(ω1), . . . , τ1n(ω1)), and analogously for the other players.

182



Response functions to signals are sometimes thought of as social norms. In a
correlated equilibrium, if the other players follow the social norm, the best you can
do is also to follow it.

A difficulty with the Nash equilibrium is deciding what strategy to use when
there are several equally plausible Nash equilibria. Public signals and correlated
equilibria are a solution to this problem. Of course, another solution is mixed
strategies. However, correlated equilibria are often much better for both players. In
the Driver Game, for example, if the traffic light gives each signal with probability
1
2
, then the expected payoff to each player from the given correlated equilibrium is

−1
2
. On the other hand, in the mixed-strategy Nash equilibrium, each player goes

with probability 2
5
and stops with probability 3

5
. The expected payoff to each player

is −8
5
.

8.2. Epistemic game theory

Epistemic game theory is the branch of game theory that emphasizes the be-
liefs that players have about their opponents. For a two-player game, one way to
formalize players’ beliefs and their consequences is as follows.

Consider a two-player game in normal form, in which Player 1’s strategy set is
S = {s1, . . . , sn} and Player 2’s strategy set is T = {t1, . . . , tm}. A belief of Player
1 about Player 2 is a finite list of mixed strategies τj that Player 2 might play,
together with an assignment of probabilities qj > 0 to each τj on the list. Similarly,
a belief of Player 2 about Player 1 is a finite list of mixed strategies σi that Player 1
might play, together with an assignment of probabilities pi > 0 to each σi on the list.
Given the players’ beliefs, each player chooses a mixed strategy that maximizes his
own expected payoff given his own beliefs. Thus Player 1 selects a mixed strategy
σ∗ such that

∑

qjπ1(σ
∗, τj) ≥

∑

qjπ1(σ, τj) for all mixed strategies σ of Player 1,

and Player 2 selects a mixed strategy τ ∗ such that
∑

piπ2(σi, τ
∗) ≥

∑

piπ2(σi, τ) for all mixed strategies τ of Player 2.

Equivalently, Player 1 chooses a best response σ∗ to the mixed strategy
∑

qjτj of
Player 2, and Player 2 chooses a best response to the mixed strategy

∑

piσi of Player
1. The payoffs are then those that result from the strategy profile (σ∗, τ ∗).

For example, consider Rosenthal’s Centipede Game from Section 1.8. A strat-
egy for Player 1 (Mutt) is a plan, for each node that is labeled with his name,
whether to cooperate or defect should that node be reached. For determining pay-
offs, the only relevant fact about Mutt’s strategy is the first node at which he plans
to defect. Thus we shall let si denote the strategy, first defect at Mutt’s ith node,
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where i = 1, . . . , 98. Similarly, for Player 2 (Jeff), we shall let tj denote the strategy,
first defect at Jeff’s jth node, where j = 1, . . . , 98.

As we discussed in Section 1.15, in Rosenthal’s Centipede Game, each player’s
belief about the other is related to how many steps of backward induction he ex-
pects the other to do. Suppose, for example, that each Player expects the other to
cooperate for 95 turns before defecting, i.e., Player 1 believes Player 2 will use his
strategy t96 with probability 1, and Player 2 believes Player 1 will use his strategy
s96 with probability 1. The best response to t96 is s96, and the best response to s96
is t95. Thus the strategy profile that is played is (s96, t95). Player 1’s belief turns
out to be wrong and Player 2’s to be right. The game ends when Jeff defects on his
95th turn (Mutt was planning to defect on his next turn but doesn’t get to). The
payoffs are 95 to Mutt and 98 to Jeff.

For another example, consider the Traveler’s Dilemma (problem 2.14.6). Let
si = ti = report expenses of i + 1 dollars, i = 1, 2, 3, 4. Suppose each salesman
expects the other to report expenses of $3 with probability .4 and $4 with probability
.6. Then Salesman 1 must choose his mixed strategy σ =

∑

pisi to maximize the
expression

π1(σ, .4t2 + .6t3) = π1(p1s1 + p2s2 + p3s3 + p4s4, .4t2 + .6t3)

= p1(.4 · 4 + .6 · 4) + p2(.4 · 3 + .6 · 5) + p3(.4 · 1 + .6 · 4) + p4(.4 · 1 + .6 · 2)
= 4p1 + 4.2p2 + 2.8p3 + 2p4

subject to the constraints pi ≥ 0 and
∑

pi = 1. Because of the constraints, this
expression is maximum when p2 = 1 and the other pi = 0. Thus Salesman 1 uses
his strategy s2, i.e., he reports expenses of $3. Salesman 2 does the same. Payoffs
are $3 to each salesman.

8.3. Evolutionary stability

Evolutionary game theory focuses on populations that repeatedly play games,
rather than on individuals.

We consider a symmetric two-player game G in normal form in which the
strategy set S is finite: S = {s1, . . . , sn}. We recall that symmetry means

π2(si, sj) = π1(sj, si).

An evolutionary game is a population of many individuals who play the game
G with each other. An individual uses a mixed strategy τ =

∑

qisi with (of course)
all qi ≥ 0 and

∑

qi = 1. We will say that the individual is of type τ . If τ is a pure
strategy, say τ = si, we will say that the individual is of type i.

184



The population taken as a whole uses strategy s1 with probability p1, . . . ,
strategy sn with probability pn; all pi ≥ 0 and

∑

pi = 1. We say that the state of
the population is σ and write σ =

∑

pisi.

If an individual of type i plays this game against a random individual from a
population of type σ, his expected payoff is just the expected payoff to an individual
who uses the pure strategy si against another individual using the mixed strategy
σ:

π1(si, σ) =
n
∑

j=1

π1(si, sj)pj.

If an individual of type τ plays this game against a random individual from a
population of type σ, his expected payoff is just the expected payoff to an individual
who uses the mixed strategy τ against another individual using the mixed strategy
σ:

(8.1) π1(τ, σ) =
n
∑

i=1

qiπ1(si, σ) =
n
∑

i, j=1

qiπ1(si, sj)pj.

Let σ1 and σ2 be population states, σ1 =
∑

p1isi, σ2 =
∑

p2isi, and let
0 < ǫ < 1. Then we can define a new population state

(1− ǫ)σ1 + ǫσ2 =
∑

(

(1− ǫ)p1i + ǫp2i
)

si.

If τ is a mixed strategy, one can easily show from (8.1) that

(8.2) π1(τ, (1− ǫ)σ1 + ǫσ2) = (1− ǫ)π1(τ, σ1) + ǫπ1(τ, σ2).

Suppose, in a population with state σ, we replace a fraction ǫ of the population,
0 < ǫ < 1, with individuals of type τ . The new population state is (1− ǫ)σ + ǫτ .

We will say that a population state σ is evolutionarily stable if for every τ 6= σ
there is a number ǫ0 > 0 such that if 0 < ǫ < ǫ0 then

(8.3) π1

(

σ, (1− ǫ)σ + ǫτ
)

> π1

(

τ, (1− ǫ)σ + ǫτ
)

.

This definition says that if a population of type σ is invaded by a small number of
individuals of any other type τ , or if individuals of another type τ join the population
because of a mutation, then individuals of type σ will have a better expected payoff
against a random member of the mixed population than will individuals of type τ .
Thus the invaders or mutants should die out.

Theorem 8.1. A population state σ is evolutionarily stable if and only if for all
τ 6= σ,

(1) π1(σ, σ) ≥ π1(τ, σ).
(2) If π1(τ, σ) = π1(σ, σ) then π1(σ, τ) > π1(τ, τ).
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The first condition says that (σ, σ) is a mixed strategy Nash equilibrium of the
symmetric two-player game that is played in the evolutionary game. Therefore σ is
a best response to σ. The second condition says that if τ is another best response
to σ, then σ is a better response to τ than τ is to itself.

Proof. Assume σ is evolutionarily stable. Let τ 6= σ. Then for all sufficiently
small ǫ > 0, (8.3) holds. Therefore, for all sufficiently small ǫ > 0,

(8.4) (1− ǫ)π1(σ, σ) + ǫπ1(σ, τ) > (1− ǫ)π1(τ, σ) + ǫπ1(τ, τ).

Letting ǫ → 0, we obtain (1). If π1(τ, σ) = π1(σ, σ), (8.4) becomes

ǫπ1(σ, τ) > ǫπ1(τ, τ).

Dividing by ǫ we obtain (2).

To prove the converse, assume that for all τ 6= σ, (1) and (2) are true. Consider
a particular τ different from σ. Since (1) holds, there are two possibilities.

(i) π1(σ, σ) > π1(τ, σ). Then it is easy to see that for small ǫ > 0, (8.4) is true.
(ii) π1(σ, σ) = π1(τ, σ). Then (2) implies that π1(σ, τ) > π1(τ, τ). But then

(8.4) holds for 0 < ǫ < 1.

Combining (i) and (ii), we see that σ is evolutionarily stable. �

One consequence of Theorem 8.1 is

Theorem 8.2. If (σ, σ) is a strict Nash equilibrium of a symmetric two-player game,
then σ is an evolutionarily stable state of the corresponding evolutionary game.

The reason is that for any Nash equilibrium, (1) holds; and for a strict Nash
equilibrium, (2) is irrelevant. Of course, strict Nash equilibria use only pure strate-
gies, so such populations consist entirely of individuals of one pure type i.

Another consequence of Theorem 8.1 is

Theorem 8.3. If σ is an evolutionarily stable state in which all pure strategies
are active, then for all τ 6= σ, (τ, τ) is not a Nash equilibrium of the symmetric
two-player game. Hence there are no other evolutionarily stable states.

Proof. According to Theorem 5.3, for such a σ we have that for all i, π1(si, σ) =
π1(σ, σ). Let τ =

∑

qisi. Then

π1(τ, σ) =

n
∑

i=1

qiπ1(si, σ) =

n
∑

1=1

qiπ1(σ, σ) = π1(σ, σ).

Therefore, since σ is evolutionarily stable, Theorem 8.1 (2) implies that for τ 6= σ,
π1(σ, τ) > π1(τ, τ). Therefore (τ, τ) is not a Nash equilibrium of the symmetric
two-player game. �
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The same argument shows:

Theorem 8.4. Let σ =
∑

pisi be an evolutionarily stable state, and let I = {i :
pi > 0}. Let τ 6= σ, τ =

∑

qisi, be a population state for which the the set of i’s such
that qi > 0 is a subset of I. Then (τ, τ) is not a Nash equilibrium of the symmetric
two-player game. Hence there are no other evolutionarily stable states in which the
set of active strategies is a subset of the set of active strategies in σ.

8.4. Evolutionary stability with two pure strategies

Consider an evolutionary game based on a symmetric two-player game in nor-
mal form with just two pure strategies. The payoff matrix must have the form

Player 2
s1 s2

Player 1 s1 (a, a) (b, c)
s2 (c, b) (d, d)

Theorem 8.5. Suppose a 6= c and b 6= d. There are four cases.

(1) a > c and d < b: strategy s1 strictly dominates strategy s2. There is one
Nash equilibrium, (s1, s1). It is symmetric and strict, so the population
state s1 is evolutionarily stable.

(2) a < c and d > b: strategy s2 strictly dominates strategy s1. There is one
Nash equilibrium, (s2, s2). It is symmetric and strict, so the population
state s2 is evolutionarily stable.

To describe the other two cases, let

(8.5) p =
d− b

(a− c) + (d− b)
, so 1− p =

a− c

(a− c) + (d− b)
.

(3) a > c and d > b: each strategy is the best response to itself. There are three
Nash equilibria: (s1, s1), (s2, s2), and (σ, σ) with σ = ps1 + (1 − p)s2 and
p given by (8.5). The first two are symmetric and strict, so the population
states s1 and s2 are evolutionarily stable. The population state σ is not
evolutionarily stable.

(4) a < c and d < b: each strategy is the best response to the other strategy.
There are three Nash equilibria: (s1, s2), (s2, s1), and (σ, σ) with σ = ps1 +
(1− p)s2 and p given by (8.5). Only the last is symmetric. The population
state σ is evolutionarily stable.

Case 3 includes Stag Hunt. Case 4 includes Chicken.

Proof. You can find the pure strategy Nash equilibria by circling best re-
sponses.
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To find mixed strategy Nash equilibria (σ, τ) with σ = ps1 + (1 − p)s2, τ =
qs1 + (1− q)s2, we first add the probabilities to the payoff matrix:

Player 2
q 1− q
s1 s2

Player 1 p s1 (a, a) (b, c)
1− p s1 (c, b) (d, d)

At least one player has two active strategies; suppose it is Player 2. Then if Player
2 uses either pure strategy s1 or pure strategy s2, he gets the same expected payoff
when Player 1 uses σ. Therefore

pa+ (1− p)b = pc+ (1− p)d so d− b =
(

(a− c) + (d− b)
)

p.

Since d− b 6= 0 by assumption, we must have (a− c) + (d− b) 6= 0 in order to solve
for p. Then p is given by (8.5). In cases 1 and 2, this value of p is not between 0
and 1, so it cannot be used. In cases 3 and 4, on the other hand, 0 < p < 1, so both
of Player 1’s strategies are active. Then we can calculate q the same way. We find
that q = p.

Now that we have a symmetric Nash equilibrium (σ, σ) in cases 3 and 4, we
check whether the corresponding population state σ is evolutionarily stable. Since
(σ, σ) is a Nash equilibrium, σ satisfies (1) of Theorem 8.1. Since both pure strategies
are active in σ, by Theorem 5.3, every τ satisfies π1(τ, σ) = π1(σ, σ), so (2) must be
checked for every τ 6= σ. For τ = qs1 + (1− q)s2, we calculate

π1(σ, τ)− π1(τ, τ) = paq + pb(1 − q) + (1− p)cq + (1− p)d(1− q)

−
(

qaq + qb(1 − q) + (1− q)cq + (1− q)d(1− q)
)

= (p− q)
(

aq + b(1 − q)− cq − d(1− q)
)

= (p− q)
(

b− d+
(

(a− c) + (d− b)
)

q
)

= (p− q)
(

(a− c) + (d− b)
)

(

b− d

(a− c) + (d− b)
+ q

)

= −(p− q)
(

(a− c) + (d− b)
)

(

d− b

(a− c) + (d− b)
− q

)

= −(p− q)2
(

(a− c) + (d− b))
)

.

If τ 6= σ, then q 6= p, so (p− q)2 > 0. Thus we see that in case 3 (a − c and d − b
both positive), π1(σ, τ)−π1(τ, τ) < 0 for all τ 6= σ, so σ is not evolutionarily stable;
and in case 4 (a− c and d− b both negative), π1(σ, τ)− π1(τ, τ) > 0 for all τ 6= σ,
so σ is evolutionarily stable. �

In case 3, the population state σ is the opposite of evolutionarily stable: if τ
is any invading population type, σ does worse against τ than τ does against itself.
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8.4.1. Stag Hunt. Consider an evolutionary game based on Stag Hunt (Sub-
section 3.2.2). The payoff matrix is reproduced below.

Hunter 2
stag hare

Hunter 1 stag (2, 2) (0, 1)
hare (1, 0) (1, 1)

In Theorem 8.5, we are in case 3. There are two symmetric pure-strategy
strict Nash equilibria, (stag, stag) and (hare, hare). Both pure populations, all stag
hunters and all hare hunters, are evolutionarily stable. There is also a symmetric
mixed-strategy Nash equilibrium in which each player uses the strategy stag half the
time and the strategy hare half the time. However, the corresponding population
state is not evolutionarily stable.

8.4.2. Stag Hunt variation. Suppose in the game of Stag Hunt, a hunter who
hunts the stag without help from the other hunter has a 1

4
chance of catching it.

(Previously we assumed he had no chance of catching it.) Then the payoff matrix
becomes

Hunter 2
stag hare

Hunter 1 stag (2, 2) (1, 1)
hare (1, 1) (1, 1)

The corresponding evolutionary game is not covered by Theorem 8.5, because d =
b = 1. There are two symmetric pure-strategy Nash equilibria, (stag, stag) and
(hare, hare). However, only (stag, stag) is a strict Nash equilibrium. Indeed, the
strategy hare is now weakly dominated by the strategy stag. There are no mixed
strategy Nash equilibria.

By Theorem 8.2, the pure population consisting of all stag hunters is evolu-
tionarily stable.

What about the pure population consisting of all hare hunters? Since π1(s1, s2) =
π1(s2, s2) = 1, when we check (2) of Theorem 8.1, among the strategies τ that
must be checked is the pure strategy, hunt stags. However, π1(s2, s1) = 1 and
π1(s1, s1) = 2, i.e., if some stag hunters invade the population of hare hunters, they
do better against themselves than the hare-hunters do against them. Thus a pure
population of hare hunters is not evolutionarily stable.

8.4.3. Hawks and Doves. Consider a population of animals that fight over
food, territory, or mates. We will consider two possible strategies:

• Hawk (h): fight until either you are injured or your opponent retreats.
• Dove (d): display hostility, but if your opponent won’t retreat, you retreat.
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Let

• v = value of what you are fighting over.
• w = cost of injury.
• t = cost of protracted display.

We assume v, w, and t are all positive, and v < w. The payoff matrix is

Animal 2
h d

Animal 1 h (v−w
2
, v−w

2
) (v, 0)

d (0, v) (v
2
− t, v

2
− t)

In Theorem 8.5, we are in case 4. Thus there are no symmetric pure-strategy
Nash equilibria, and there is a mixed-strategy Nash equilibrium (σ, σ), σ = ph +
(1−p)d; you can check that p = v+2t

w+2t
. The population state σ evolutionarily stable.

The payoff to Animal 1 at the Nash equilibrium is can be computed by calcu-
lating π1(d, σ):

π1(d, σ) = p · 0 + (1− p)
(v

2
− t
)

=

(

1− v + 2t

w + 2t

)

(v

2
− t
)

.

From this expression we see that for fixed v and t, as w, the cost of injury, increases,
the expected payoff increases. The reason is that as w increases, p, the probability
that the Hawk strategy is used, decreases. When w is only a little bigger than v, p is
close to 1, so the Hawk strategy is used a lot, and injuries frequently occur. Perhaps
paradoxically, injuries are minimized at the Nash equilibrium when the animals are
very powerful and very willing to fight, so that the expected result of fighting is very
costly injuries.

For other ways that have evolved to minimize fighting among animals, see
problem 8.6.2 and Section 10.11.

For more information about Hawks and Doves, the Wikipedia page
http://en.wikipedia.org/wiki/Hawk-dove_game.

8.5. Sex Ratio

Recall the sex ratio pseudo-game analyzed in Subsection 7.3.1. There was no
actual game. There was, however, a situation very close to that considered in this
chapter. The female population as a whole produced a fraction v of male offspring
and a fraction 1 − v of female offspring. The number v can be regarded as the
population state. An individual female produced a fraction u of male offspring and
a fraction 1 − u of female offspring. The number u can be regarded as the type of
an individual. The payoff to this individual π1(u, v) is her number of grandchildren.
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We derived the formula

π1(u, v) = σfc
2

(

1 + u
1− 2v

v

)

.

In this situation, our analog of a Nash equilibrium was the pair (1
2
, 1
2
), in the sense

that if the population state was 1
2
(i.e., females as a whole have 1

2
male offspring),

an individual could do no better than by choosing also to have 1
2
male offspring.

Is this population state evolutionarily stable? We saw that for any individual
type u, we have

π1(u,
1

2
) = π1(

1

2
,
1

2
) = σfc

2.

Thus we must check (2) of Theorem 8.1 for every u. We have

π1(
1

2
, u)− π1(u, u) = σfc

2

(

1 +
1

2

1− 2u

u

)

− σfc
2

(

1 + u
1− 2u

u

)

= σfc
2(
1

2
− u)

1− 2u

u
=

2σfc
2

u
(
1

2
− u)2.

Since this is positive for u 6= 1
2
, the population state 1

2
is evolutionarily stable.

8.6. Problems

8.6.1. Two Fishermen. In a certain fishing village, two fishermen own nets
that are put out in the evening. The two share the catch equally whether or not
they help put out the nets. The value of the expected catch is v, and the cost to
each fisherman of putting out the nets if they do it together is c2. However, if one
fisherman puts out the nets by himself, his cost is c1, and the cost to the other
fisherman is 0. Assume that v

2
> c1 > c2. The normal form of this game is shown

in the following payoff matrix .

Fisherman 2
help don’t help

Fisherman 1 help (v
2
− c2,

v
2
− c2) (v

2
− c1,

v
2
)

don’t help (v
2
, v
2
− c1) (0, 0)

(1) Use best response to find pure-strategy Nash equilibria.
(2) Use Theorem 8.5 to find the mixed strategy Nash equilibrium and the evo-

lutionarily stable state of the corresponding evolutionary game.

8.6.2. Hawks, Doves, and Property Owners. In the game of Hawks and
Doves (Section 8.4.3), let’s add a new strategy, Property Owner: when you meet
another animal, if he was there first, use the Dove strategy, but if you were there
first, use the Hawk strategy.

In this problem, assume v, w, and t are all positive.
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(1) Explain why the following payoff matrix is plausible:

Animal 2
h d p

h (v−w
2
, v−w

2
) (v, 0) (3v−w

4
, v−w

4
)

Animal 1 d (0, v) (v
2
− t, v

2
− t) (v

4
− t

2
, 3v

4
− t

2
)

p (v−w
4

, 3v−w
4

) (3v
4
− t

2
, v
4
− t

2
) (v

2
, v
2
)

(2) Show that if v < w, then p is an evolutionarily stable state of the corre-
sponding evolutionary game. (This state is in fact often observed in nature.
For example, birds typically build their own nests and are willing to defend
them. However, no fighting occurs, because other birds do not try to take
their nest.)

(3) Show that if v = w, then (p, p) is a Nash equilibrium, but p is not an
evolutionarily stable state.

8.6.3. A correlated equilibrium in the game of Hawks and Doves. Con-
sider the game of Hawks and Doves in Section 8.4.3 with v < w. When two animals
meet, they both observe which of them arrived first. This is a public signal. The
animal that arrives first uses h, and the other animal uses d. Explain why this is a
correlated equilibrium. Assuming each animal arrives first half the time, show that
the expected payoff to each animal in the correlated equilibrium is greater than the
expected payoff to each animal in the mixed-strategy Nash equilibrium. (This is a
traditional explanation of why societies have property rights.)
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CHAPTER 9

Differential equations

In Chapter 10 we will investigate how strategies in evolutionary games change
over time, with more successful strategies displacing less successful ones. Our study
will use differential equations, the branch of mathematics that deals with quantities
that change continuously in time. This chapter introduces the point of view and
tools of differential equations that will be needed.

9.1. Differential equations and scientific laws

Suppose x(t) = (x1(t), . . . , xn(t) is a moving point in R
n. At time t, its velocity

vector is ẋ(t) = (ẋ1(t), . . . , ẋn(t). (Note that we use a dot to indicate derivative with
respect to t.) The velocity vector is usually drawn with its tail at the point x(t).

For example, suppose x(t) = (cos t, sin t), a moving point in R
2. The point

x(t) runs around the circle of radius 1, centered at the origin. We have ẋ(t) =
(− sin t, cos t). Therefore x(0) = (1, 0), ẋ(0) = (0, 1), x(π

2
) = (0, 1), and ẋ(π

2
) =

(−1, 0). These facts are illustrated in Figure 9.1.

x1

x2

t=0

t=π/2

1

Figure 9.1.

Often a scientific law tells us: if you know x, a point that represents the state
of the system, at some time, then you know ẋ, how x is changing, at that time. In
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other words, the velocity vector ẋ is a function of the state x, i.e., ẋ = f(x) or

ẋ1 = f1(x1, . . . , xn),(9.1)

...(9.2)

ẋn = fn(x1, . . . , xn).(9.3)

An equation of the form ẋ = f(x) is a first-order autonomous ordinary differential
equation:

• first-order: there are only first derivatives, not higher derivatives;
• autonomous: the derivative only depends on the state of the system x, not
on the time t;

• ordinary: there are only ordinary derivatives, not partial derivatives.

When a differential equation ẋ = f(x) on R
n with n > 1 is written in the form

(9.1)–(9.3), it is sometimes called a system of differential equations.

To use the scientific law or differential equation to make a prediction of what
will happen (i.e., to predict x(t)), we need to solve an initial value problem:

ẋ = f(x), x(t0) = x0.

In other words, given the differential equation ẋ = f(x) and the state of the system
at time t0, x(t0) = x0, we need to find a function x(t) such that x(t0) = x0 and, at
every time t, ẋ(t) = f(x(t)).

For example, the system

ẋ1 = −x2,(9.4)

ẋ2 = x1,(9.5)

with the initial condition (x1(0), x2(0)) = (1, 0), has the solution (x1(t), x2(t)) =
(cos t, sin t). To check that this is indeed a solution of the system, just substitute
ẋ1(t) and ẋ2(t) into the left side, and substitute x1(t) and x2(t) into the right side:

− sin t = − sin t,

cos t = cos t.

The following theorem gathers some fundamental facts about differential equa-
tions:

Theorem 9.1. Let U be an open set in R
n, let f : U → R

n be a continuously
differentiable function, and let x0 ∈ U . Then:

(1) The initial value problem

ẋ = f(x), x(t0) = x0,

has a unique solution.
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(2) If x(t) stays bounded and stays away from the boundary of U as t increases
(respectively decreases), then x(t) is defined for t0 ≤ t < ∞ (respectively
−∞ < t ≤ t0).

When we consider differential equations ẋ = f(x), we will always assume that
f is continuously differentiable, so that this theorem applies.

The set U on which the differential equation is defined is called phase space.

A point x0 at which f(x0) = 0 is an equilibrium of ẋ = f(x). If x0 is an
equilibrium of ẋ = f(x), then the unique solution of the initial value problem

ẋ = f(x), x(t0) = x0,

is x(t) = x0 for −∞ < t < ∞. To prove this, just check that the formula for x(t)
gives a solution of the initial value problem, and recall that solutions are unique.

9.2. The phase line

Example. A population increases with growth rate 5% per year. The rate of
change of the population is the growth rate times the population. Therefore, if x =
population and t = time in years, then ẋ = .05x. The solution with x(0) = x0 is
x = x0e

.05t. Notice:

• All solutions approach 0 as t → −∞.
• The solution with x(0) = 0 is x(t) = 0 for −∞ < t < ∞.

In general, the solution of ẋ = rx, r a constant, with x(0) = x0 is x = x0e
rt.

If r > 0, all solutions approach 0 as t → −∞. If r < 0, all solutions approach 0 as
t → ∞.

One way to see this geometrically is by drawing the phase line, which is the
x-axis with dots where equilibria are located and arrows to show where solutions are
increasing and decreasing. See Figure 9.2. Where ẋ > 0, x(t) is increasing; where
ẋ < 0, x(t) is decreasing (shown by the arrows).

Example. A population x has growth rate r
(

1− x
n

)

; r and n are positive
constants. (This time growth rate is expressed as a number rather than as a percent.)
Notice that the growth rate is positive for 0 < x < n and negative for x > n. The
number n is the carrying capacity of the environment. The rate of change of the
population is the growth rate times the population, so ẋ = rx

(

1− x
n

)

. The phase
line is shown in Figure 9.3.

The region x > 0 is called the basin of attraction of the equilibrium x = n: if
a solution starts in that region, it approaches the equilibrium x = n as t → ∞.

195



x=rx

x

x
.

.

r>0

x=rx

x

x
.

.

r<0

Figure 9.2. Phase lines for ẋ = rx. The graph of ẋ = rx helps to
draw the phase line.

x=rx(1−x/n)

x

x .
.

n

Figure 9.3. Phase line for ẋ = rx
(

1− x
n

)

. The graph of ẋ =

rx
(

1− x
n

)

helps to draw the phase line.

9.3. Vector fields

Geometrically, the differential equation ẋ = f(x), with x ∈ R
n and f a function

from an open set U in R
n to R

n, defines a vector field on U . The vector f(x) at the
point x is drawn with its tail at x.

If you sketch a few vectors for the system (9.4)–(9.5), you will quickly see
that solutions should wind around the origin in the counterclockwise direction. The
solution (x1(t), x2(t)) = (cos t, sin t) that we found does exactly that. We next give
a more complicated example.

Example. Let x be the population of a prey species and y the population of
a predator species. We assume that the growth rate of x is a − by and the growth
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rate of y is −c+ ex, where a, b, c and e are positive constants. The system is then

ẋ = x(a− by),(9.6)

ẏ = y(−c+ ex).(9.7)

To sketch the vector field, we first find the nullclines, which are the curves
where ẋ = 0 or ẏ = 0:

• ẋ = 0 if x = 0 or y = a
b
(two lines).

• ẏ = 0 if y = 0 or x = c
e
(two lines).

Wherever an ẋ = 0 nullcline meets a ẏ = 0 nullcline, there is an equilibrium.
The equilibria divide the nullclines into open curves. On each such curve:

• For an ẋ = 0 nullcline, the vectors are vertical. Check a point to see whether
the vectors point up or down.

• For a ẏ = 0 nullcline, the vectors are horizontal. Check a point to see
whether the vectors point right or left.

The nullclines divide the plane into open regions on which ẋ and ẏ do not change
sign. The signs of ẋ and ẏ in a region can be determined by checking one point in the
region. These signs determine whether the vectors in that region point northeast,
northwest, southwest, or southeast.

x

y

a/b

c/e

Figure 9.4. Nullclines, equilibria, and vector field for (9.6)–(9.7).

The vector field for the system (9.6)–(9.7) is shown in Figure 9.4. Only the
first quadrant (x ≥ 0, y ≥ 0) is physically relevant. The populations are in equilib-
rium at (x, y) = (0, 0) (not very interesting) and (x, y) =

(

c
e
, a
b

)

. In the open first
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quadrant (x > 0, y > 0), solutions appear to go around the equilibrium
(

c
e
, a
b

)

in
the counterclockwise direction, but it is impossible to tell from the picture whether
they spiral in, spiral out, or rejoin themselves to form time-periodic solutions.

9.4. Functions and differential equations

Consider the differential equation ẋ = f(x) on R
n. Let x(t) be a solution. Let

V : Rn → R be a function. Then V (x(t)) gives the value of V along the solution as
a function of t. The rate of change of V is

V̇ =
∂V

∂x1
(x(t)) ẋ1(t) + . . .+

∂V

∂xn

(x(t)) ẋn(t) = ∇V (x(t)) · ẋ(t),

where ∇V (x) =
(

∂V
∂x1

(x), . . . , ∂V
∂xn

(x)
)

is the gradient of V at the point x, and ·
represents dot product.

This formula has many uses.

9.4.1. Invariant curves. Suppose that V = c implies V̇ = 0. Then any solu-
tion with V = c at some time t0 has V (t) = c for all time. In other words, the set
V = c is invariant: if you start on it, you stay on it.

For example, in the predator-prey system (9.6)–(9.7), note that if x = 0, then
ẋ = 0. This implies that the line x = 0 (the y-axis) is invariant. In other words, if
the prey population starts at 0, it stays at 0. Note that in this case the predator
population decays to 0, since there is nothing for the predators to eat.

In the predator-prey system note also that if y = 0, then ẏ = 0, so the line
y = 0 is invariant. In other words, if the predator population starts at 0, it stays at
0. In this case the prey population increases without bound.

9.4.2. First integrals. Suppose V̇ = 0 everywhere. Then all sets V = constant
are invariant. In this case V is called a first integral of the differential equation.

For a differential equation on R
2 such as the predator-prey system (9.6)–(9.7),

one can try to find a first integral by the following procedure: Divide the equation
for ẏ by the equation for ẋ, yielding an equation of the form dy

dx
= g(x, y). Try to

solve this differential equation to obtain a general solution of the form G(x, y) = c.
Then the function G is a first integral.

Let’s try this for (9.6)–(9.7). Dividing (9.7) by (9.6), we obtain

dy

dx
=

y(−c+ ex)

x(a− by
.
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This system can be solved by separation of variables. Some algebra yields

a− by

y
dy =

−c+ ex

x
dx or

(

a

y
− b

)

dy =
(

− c

x
+ e
)

dx.

We integrate both sides and add an arbitrary constant k to one side. In the open
first quadrant, where x and y are positive, we obtain

a ln y − by + k = −c ln x+ ex or ex− c lnx+ by − a ln y = k.

Hence the function V (x, y) = ex− c ln x+ by−a ln y is a first integral for (9.6)–(9.7)
in the open first quadrant.

Note that Vx = e− c
x
and Vy = b− a

y
. The function V has a critical point where

Vx = 0 and Vy = 0. This occurs at (x, y) =
(

c
e
, a
b

)

, which we recall is an equilibrium
of (9.6)–(9.7). Actually, V has a local minimum at that point. We can check this
by checking that VxxVyy − V 2

xy > 0 and Vxx > 0 at that point:

Vxx =
c

x2
, Vyy =

a

y2
, Vxy = 0 so VxxVyy − V 2

xy =
ac

x2y2
.

Therefore at any point in the first quadrant (in particular the point in question),
VxxVyy − V 2

xy > 0 and Vxx > 0.

Since V has a local minimum at
(

c
e
, a
b

)

, level curves of V near that point are
closed. (The same conclusion would hold if V had a local maximum there, but
it would not hold at a saddle point.) The level curves of V are invariant under
(9.6)–(9.7). Thus in Figure 9.4, near the equilibrium

(

c
e
, a
b

)

, solutions go around the
equilibrium counterclockwise, ending exactly where they started, then go around
again: they are time-periodic.

Actually, all solutions in the open first quadrant rejoin themselves, but we will
not show this.

An orbit of a differential equation is the curve traced out by a solution. A
phase portrait of ẋ = f(x) is a sketch of phase space that shows important orbits
and typical orbits, together with arrows on the orbits that indicate the direction of
movement. The phase lines of Figures 9.2 and 9.3 are phase portraits. In each case
there are exactly three orbits: (−∞, 0), {0}, and (0,∞). The phase portrait of the
predator-prey system (9.6)–(9.7) is shown in Figure 9.5. To draw the phase portrait,
we have used our knowledge that orbits in the open first quadrant are closed.

9.4.3. Stability and Lyapunov functions. An equilibrium x0 of ẋ = f(x) is
stable if solutions that start near x0 stay near x0 in future time. More precisely, x0

is stable if for each ǫ > 0 there exists δ > 0 such that if ‖x1 − x0‖ < δ, then the
solution x(t) with x(0) = x1 satisfies

(9.8) ‖x(t)− x0‖ < ǫ for all t ≥ 0.
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x

a/b

c/e

Figure 9.5. Phase portrait of the predator-prey system (9.6)–(9.7).
Nullclines that are not orbits are dashed. Compare Figure 9.4.

An equilibrium x0 of ẋ = f(x) is asymptotically stable if solutions that start
near x0 stay near x0 in future time, and in addition approach x0 as t → ∞. More
precisely, x0 is asymptotically stable if for each ǫ > 0 there exists δ > 0 such that if
‖x1 − x0‖ < δ, then (1) the solution x(t) with x(0) = x1 satisfies (9.8), and (2) x(t)
approaches x0 as t → ∞.

Asymptotically stable equilibria are states that one expects to observe persist-
ing in the natural world. If some perturbation takes the system a small distance away
from an asymptotically stable equilibrium, the system returns to the equilibrium.

In Figure 9.3, the equilibrium n is asymptotically stable (and hence stable).
The equilibrium 0 is not stable (and hence not asymptotically stable). In Figure
9.5, the equilibrium

(

c
e
, a
b

)

is stable but not asymptotically stable. The equilibrium
(0, 0) is not stable (and hence not asymptotically stable).

Suppose x0 is an equilibrium of ẋ = f(x), U is an open set in R
n that contains

x0, and V : U → R is a continuously differentiable function such that V (x0) = 0
and V (x) > 0 for x 6= x0.

Theorem 9.2 (Lyapunov’s Theorem). (1) If V̇ ≤ 0 for all x, then x0 is stable.
(2) If V̇ < 0 for all x 6= x0, then x0 is asymptotically stable.

The function V is called a Lyapunov function in the first case, and a strict
Lyapunov function in the second case.

We remark that at the point x0, V̇ is always 0.
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Example. For constants a and r, consider the system

ẋ = −rx− ay,

ẏ = ax− ry.

There is an equilibrium at the origin. Let V (x, y) = x2 + y2. The function V (x, y)
satisfies V (0, 0) = 0 and V (x, y) > 0 for (x, y) 6= (0, 0). We calculate

V̇ =
∂V

∂x
ẋ+

∂V

∂y
ẏ = 2x(−r − ay) + 2y(ax− ry) = −2r(x2 + y2).

By Theorem 9.2, the origin is stable if r = 0 and is asymptotically stable if r > 0.
In the case r = 0, V is actually a first integral.

9.5. Linear differential equations

A linear differential equation is a system of the form

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn,(9.9)

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn,(9.10)

...

ẋn = an1x1 + an2x2 + · · ·+ annxn,(9.11)

with all the aij ’s constants.

Let

x =









x1

x2
...
xn









, ẋ =









ẋ1

ẋ2
...
ẋn









, A =









a11 a12 . . . a1n
a21 a22 . . . a2n

...
an1 an2 . . . ann









.

Then the system (9.9)–(9.11) can be written as the single matrix differential equation
ẋ = Ax (matrix product).

In the case n = 1, (9.9)–(9.11) reduces to ẋ = ax, with x ∈ R and a a constant.
The solution with x(0) = x0 is x = x0e

at.

With this example in mind, it is reasonable to ask whether the matrix differ-
ential equation ẋ = Ax has any solutions of the form x = x0e

λt. (Here x and x0

are in R
n, λ is a constant, and x0 should be a nonzero vector to get an interesting

result.) To answer this question, we substitute x = x0e
λt into both sides of ẋ = Ax

and obtain

λeλtx0 = Aeλtx0 or λx0 = Ax0 or (A− λI)x0 = 0.
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Here I is the n× n identity matrix.

I =









1 0 0 . . . 0
0 1 0 . . . 0

...
0 0 0 . . . 1









,

which has the property Ix = x for any x ∈ R
n.

The equation (A − λI)x0 = 0 has solutions other than x0 = 0 if and only if
det(A− λI) = 0. The numbers λ such that det(A− λI) = 0 are called eigenvalues
of A. Corresponding vectors x0 such that (A − λI)x0 = 0 are called eigenvectors.
Eigenvalues and eigenvectors may be complex. The equation det(A−λI) = 0 turns
out to be a polynomial equation of degree n (the characteristic equation of A), so
there are exactly n eigenvalues, counting multiplicity.

Example. Consider the linear system

ẋ = y,(9.12)

ẏ = x.(9.13)

Written as a matrix equation, it is
(

ẋ
ẏ

)

=

(

0 1
1 0

)(

x
y

)

.

The characteristic equation is

det

((

0 1
1 0

)

− λ

(

1 0
0 1

))

= det

(

−λ 1
1 −λ

)

= λ2 − 1 = 0.

Therefore the eigenvalues are λ = ±1.

To find eigenvectors for the eigenvalue λ = −1, we look for solutions to the

equation (A− (−1)I)x0 = 0, with A =

(

0 1
1 0

)

:

((

0 1
1 0

)

− (−1)

(

1 0
0 1

))(

x
y

)

=

(

0
0

)

or

(

1 1
1 1

)(

x
y

)

=

(

0
0

)

.

The solutions of this equation are all multiples of the vector

(

−1
1

)

. These are the

eigenvectors for the eigenvalue −1. If x(0) = x0 is a nonzero multiple of

(

1
−1

)

,

then x(t) = e−tx0, so x(t) is a positive multiple of x0 for all t, x(t) → 0 as t → ∞,
and ‖x(t)‖ → ∞ as t → −∞.
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Similarly, for the eigenvalue λ = 1, the eigenvectors are all multiples of the

vector

(

1
1

)

. If x(0) = x0 is a nonzero multiple of

(

1
1

)

, then x(t) = etx0, so x(t) is

a positive multiple of x0 for all t, x(t) → 0 as t → −∞, and ‖x(t)‖ → ∞ as t → ∞.

Using this information the phase portrait of the linear system (9.12)–(9.13)
can be sketched; see Figure 9.6. The line y = −x consists of eigenvectors for the
eigenvalue −1; on it the direction of movement is toward the origin. The line y = x
consists of eigenvectors for the eigenvalue 1; on it the direction of movement is away
from the origin. Other initial conditions can be regarded as a linear combination of
(

−1
1

)

and

(

1
1

)

. As t increases, the component in the

(

−1
1

)

direction decreases,

while the component in the

(

1
1

)

direction increases.

x

y

Figure 9.6. Phase portrait of the linear system (9.12)–(9.13).

Of course, the phase portrait of (9.12)–(9.13) could also be sketched by first
sketching nullclines. Alternatively, it could be sketched by finding a first integral,
for example x2 − y2.

The linear differential equation ẋ = Ax is called hyperbolic if all eigenvalues of
A have nonzero real part. There are three cases:

• All eigenvalues have negative real part: all solutions approach the origin as
t → ∞. The origin is asymptotically stable.

• All eigenvalues have positive real part: all solutions approach the origin as
t → −∞. The origin is asymptotically stable for ẋ = −Ax.

• Counting multiplicity, k eigenvalues have negative real part and n−k eigen-
values have positive real part. Then there are subspaces Es of dimension k
and Eu of dimension n− k such that:

– a solution x(t) of ẋ = Ax approaches the origin as t → ∞ if and only
if x(0) ∈ Es;
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– a solution x(t) of ẋ = Ax approaches the origin as t → −∞ if and only
if x(0) ∈ Eu.

Es and Eu are called the stable subspace and the unstable subspace respectively of
ẋ = Ax.

If an eigenvalue is 0, there are other equilibria besides the origin. If a pair of
eigenvalues is pure imaginary, there are closed orbits. (For example, the eigenvalues
of the linear system (9.4)– (9.5) are ±i.) We will not discuss these nonhyperbolic
cases in detail.

9.6. Linearization

Suppose ẋ = f(x) has an equilibrium at x0. To study solutions near x0, we
make the substitution x = x0 + y. Then small y corresponds to x near x0. We
obtain ẏ = f(x0 + y). By Taylor’s Theorem

ẏ = f(x0) +Df(x0)y + . . . = Df(x0)y + . . .

because x0 is an equilibrium. Here Df(x0) is the n×n matrix whose ij-entry is ∂fi
∂xj

evaluated at the point x0.

The linearization of the differential equation ẋ = f(x) at the equilibrium x0 is
the linear differential equation ẏ = Df(x0)y. We can determine the phase portrait
of ẏ = Df(x0)y by finding eigenvalues and eigenvectors.

The equilibrium x0 is called hyperbolic if the linear differential equation ẏ =
Df(x0)y is hyperbolic.

Theorem 9.3 (Linearization Theorem). If x0 is a hyperbolic equilibrium of ẋ =
f(x), then the phase portrait of ẋ = f(x) near x0 looks just like the phase portrait
of ẏ = Df(x0)y near the origin.

The meaning of this theorem is as follows:

• If all eigenvalues of Df(x0) have negative real part, then x0 is an asymp-
totically stable equilibrium of ẋ = f(x). The equilibrium x0 is called an
attractor.

• If all eigenvalues of Df(x0) have positive real part, then x0 is an asymp-
totically stable equilibrium of ẋ = −f(x). In other words, for ẋ = f(x), all
solutions that start near x0 stay near x0 in backward time, and approach
x0 as t → −∞. The equilibrium x0 is called a repeller.

• If Df(x0) has k eigenvalues with negative real part and n − k eigenvalues
with positive real part (0 < k < n), then there are “surfaces” W s of di-
mension k and W u of dimension n − k through x0 such that the following
is true. If x(t) is a solution of ẋ = f(x) that starts near x0, then
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– x(t) stays near x0 in forward time and approaches x0 as t → ∞ if and
only if x(0) ∈ W s;

– x(t) stays near x0 in backward time and approaches x0 as t → −∞ if
and only if x(0) ∈ W u.

The equilibrium x0 is called a saddle. The “surfaces” W s and W u are
called the stable manifold and the unstable manifold of x0 respectively. (A
manifold is a generalization of a surface. A one-dimensional manifold is
a curve, and a two-dimensional manifold is a surface.) W s and W u are
tangent at x0 to the stable and unstable subspaces respectively of ẏ =
Df(x0)y, translated to x0.

Like the existence of a first integral, this theorem is often helpful in completing
phase portraits.

Example. In the predator-prey system (9.6)–(9.7), let us add the assumption
that if the prey population exceeds an environmental carrying capacity, its growth
rate will become negative. A reasonable model that incorporates this assumption is

ẋ = x(a− by − δx),(9.14)

ẏ = y(−c+ ex),(9.15)

with a, b, c, e, and δ positive constants.

Nullclines, equilibria, and the vector field are shown shown in Figure 9.7 (first
quadrant only) under the assumption ae− cδ > 0.

x

y

a/b

c/e a/δ

Figure 9.7. Nullclines, equilibria, and vector field of (9.14)–(9.15)
in the first quadrant, assuming ae− cδ > 0.
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As with Figure 9.4, we cannot tell whether solutions that wind around the
equilibrium in the interior of the first quadrant spiral in, spiral out, or close up.
It is also possible that the solutions don’t spiral at all; they could approach the
equilibrium directly from a little north of west or a little south of east. The phase
portrait near the equilibrium

(

a
δ
, 0
)

may also be unclear to you.

To examine the equilibria more closely, we use linearization. First, rewrite
(9.6)–(9.7) a little:

ẋ = f1(x, y) = ax− bxy − δx2,

ẏ = f2(x, y) = −cy + exy,

Now calculate

(9.16)

(

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)

=

(

a− by − 2δx −bx
ey −c + ex

)

There are three equilibria, namely (0, 0),
(

a
δ
, 0
)

, and
(

c
e
, ae−cδ

be

)

. At these three
equilibria, the matrix (9.16) is, respectively,

(

a 0
0 −c

)

,

(

−a −ab
δ

0 ae−cδ
δ

)

, and

(

− cδ
e

− bc
e

ae−cδ
b

0

)

Therefore:

• At (0, 0) the eigenvalues are a > 0 and −c < 0. This equilibrium is a saddle.
• At

(

a
δ
, 0
)

the eigenvalues are −a < 0 and ae−cδ
δ

> 0. This equilibrium is
also a saddle.

• At
(

c
e
, ae−cδ

be

)

the eigenvalues turn out to be

−cδ

2e
±
(

c2δ2

4e2
− c(ae− cδ)

e

)
1

2

.

Both have negative real part, so this equilibrium is an attractor. For small
δ both eigenvalues are complex.

A phase portrait for small δ that is consistent with all our information is shown
in Figure 9.8. However, more complicated phase portraits are also possible. For
example, the could be a single closed orbit that surrounds the interior equilibrium.
Inside the closed orbit, solutions would spiral toward the equilbrium; outside the
closed orbit, solutions would spiral toward itself.

206



x

y

a/b

c/e a/δ

Figure 9.8. A possible phase portrait of (9.14)–(9.15), with small δ,
in the first quadrant.
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CHAPTER 10

Evolutionary dynamics

In this chapter we look at how strategies might change over time. As in our
study of evolutionary stability (Sections 8.3–8.5), the context is population biology,
but the ideas also apply to social dynamics.

10.1. Replicator system

As in Sections 8.3–8.5, we consider an evolutionary game based on a symmetric
two-player game in normal form with finite strategy set S = {s1, . . . , sn}. There is a
population that uses strategy s1 with probability p1, . . . , strategy sn with probability
pn; all pi ≥ 0 and

∑

pi = 1. The population state is σ =
∑

pisi.

When an individual of type i plays the game against a randomly chosen indi-
vidual from a population with state σ, his expected payoff is π1(si, σ). When two
randomly chosen individuals from a population with state σ play the game, the
expected payoff to the first is π1(σ, σ).

In this chapter we will explicitly regard the population state σ as changing
with time. Thus we will write σ(t) =

∑

pi(t)si.

It is reasonable to expect that if π1(si, σ) > π1(σ, σ), then individuals using
strategy i will in general have an above average number of offspring. Thus pi(t)
should increase. On the other hand, if π1(si, σ) < π1(σ, σ), we expect pi(t) to
decrease.

In fact, it is reasonable to suppose that the growth rate of pi is proportional
to π1(si, σ)− π1(σ, σ). For simplicity we will assume that the constants of propor-
tionality are all one.

With these assumptions we obtain the replicator system:

(10.1) ṗi =
(

π1(si, σ)− π1(σ, σ)
)

pi, i = 1, . . . , n.

The replicator system can also be used in social situations in which successful
strategies spread because they are seen to be successful and hence are adopted by
others. In this case, it is reasonable to expect that if π1(si, σ) > π1(σ, σ), then
strategy i, because it is seen to be more successful than average, will be adopted by
more members of the society, so pi will increase. If we suppose that the growth rate
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of pi is proportional to π1(si, σ)−π1(σ, σ), and that the constants of proportionality
are all one, we again get the replicator system.

The replicator system is a differential equation on R
n. The physically relevant

subset of Rn is the simplex

Σ = {(p1, . . . , pn) : all pi ≥ 0 and
∑

pi = 1}.

Σ can be decomposed as follows. For each nonempty subset I of {1, . . . , n}, let

ΣI = {(p1, . . . , pn) : pi > 0 if i ∈ I, pi = 0 if i /∈ I, and
∑

pi = 1}.

Then Σ is the disjoint union of the ΣI , where I ranges over all nonempty subsets of
{1, . . . , n}. The ΣI are called the strata of Σ. See Figure 10.1.

p1

p2

p3

Σ{1}
Σ{2}

Σ{3}

Σ{1,2}

Σ{1,3}

Σ{2,3}

Σ{1,2,3}

Figure 10.1. The simplex Σ with n = 3 and its decomposition into strata.

Let |I| denote the size of the set I. The dimension of the stratum ΣI is
|I| − 1. For example, Σ{1,...,n}, the interior of Σ, has dimension n − 1, and for each
i ∈ {1, . . . , n}, Σ{i} is a point (which has dimension 0).

Theorem 10.1. The replicator system has the following properties.

(1) If pi = 0 then ṗi = 0.

(2) Let S(p1, . . . , pn) =
∑

pi. If S = 1 then Ṡ = 0.
(3) Each stratum ΣI is invariant.
(4) Each stratum Σ{i} is an equilibrium.
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Proof. (1) follows immediately from (10.1).

To show (2), just note that if
∑

pi = 1, then

Ṡ =
∑

ṗi =
∑

(

π1(si, σ)− π1(σ, σ)
)

pi

=
∑

piπ1(si, σ)−
∑

piπ1(σ, σ) = π1(σ, σ)− π1(σ, σ) = 0.

To prove (3), let

AI = {(p1, . . . , pn) : pi = 0 if i /∈ I and
∑

pi = 1}.
ΣI ⊂ AI , and from (1) and (2), AI is invariant. Let p(t) be a solution of the
replicator system with p(0) ∈ ΣI . Then p(t) stays in AI . Thus the only way p(t)
can leave ΣI is if some pi(t), i ∈ I, becomes 0. If this happens, p(t) enters AJ where
J is some proper subset of I. Since AJ is invariant, this is impossible.

To prove (4), just note that each Σ{i} is a single point and is invariant, so it
must be an equilibrium. �

For a subset I of {1, . . . , n}, let GI be the reduced game derived from G by
eliminating, for both players, all strategies si except those with i ∈ I. The closure
of the stratum ΣI , denoted cl(ΣI), is just ΣI together with all its boundary points.
Equivalently, it is the union of ΣI and all ΣJ with J ⊂ I. An important fact is that
the restriction of the replicator system to cl(ΣI) is just the replicator system for the
evolutionary game based on the reduced game GI . We will see this in examples.

Let

D = {(p1, . . . , pn−1) : pi ≥ 0 for i = 1, . . . , n− 1, and
n−1
∑

i=1

pi ≤ 1}.

Then

Σ = {(p1, . . . , pn) : (p1, . . . , pn−1) ∈ D and pn = 1−
n−1
∑

i=1

pi}.

Instead of studying the replicator system on Σ, one can instead take the space to be
D and use only the first n−1 equations of the replicator system. In these equations,
one must of course let pn = 1−∑n−1

i=1 pi.

For n = 2, the set D is simply the line segment 0 ≤ p1 ≤ 1. The endpoints
p1 = 0 and p1 = 1 are always equilibria. Since p1 = 1 is an equilibrium, ṗ1 always
has 1− p1 as a factor.

For n = 3, the set D is the triangle {(p1, p2) : p1 ≥ 0, p2 ≥ 0, and p1+p2 ≤ 1}.
The vertices (0, 0), (1, 0), and (0, 1) are equilibria, and the lines p1 = 0, p2 = 0, and
p1 + p2 = 1 are invariant. Since the line p1 + p2 = 1 is invariant, we must have
ṗ1 + ṗ2 = 0 whenever p1 + p2 = 1.
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Notice that D is divided into strata that correspond to those of Σ.

10.2. Evolutionary dynamics with two pure strategies

As in Subsection 8.4, consider an evolutionary game based on a symmetric
two-player game in normal form with just two pure strategies. The payoff matrix
has the form

Player 2
s1 s2

Player 1 s1 (a, a) (b, c)
s2 (c, b) (d, d)

A population state is σ = p1s1 + p2s2. We have

π1(s1, σ) = p1a + p2b, π1(s2, σ) = p1c+ p2d,

π1(σ, σ) = p1π1(s1, σ) + p2π1(s2, σ) = p21a + p1p2(b+ c) + p22d.

Therefore the replicator system is

ṗ1 =
(

π1(s1, σ)− π1(σ, σ)
)

p1 =
(

p1a + p2b−
(

p21a + p1p2(b+ c) + p22d
))

p1,

ṗ2 =
(

π1(s2, σ)− π1(σ, σ)
)

p2 =
(

p1c+ p2d−
(

p21a + p1p2(b+ c) + p22d
))

p2.

As explained in the previous section, we only need the first equation, in which we
substitute p2 = 1− p1:

ṗ1 =
(

p1a+ (1− p1)b−
(

p21a+ p1(1− p1)(b+ c) + (1− p1)
2d
))

p1

= p1(1− p1) (p1a + b− p1(b+ c)− (1− p1)d)

= p1(1− p1)
(

b− d+
(

(a− c) + (d− b)
)

p1
)

= p1(1− p1)
((

(a− c) + (d− b)
)

p1 − (d− b)
)

In the second line of the calculation, we moved the p1 that was at the right to the
left, and we factored out 1 − p1. To accomplish the factoring, we first grouped p1a
and −p21a. The other terms already had 1 − p1 as a factor. You will find this idea
useful at other points in this chapter.

There are equilibria at p1 = 0, p1 = 1, and

p1 = p∗1 =
d− b

(a− c) + (d− b)
,

provided the latter is between 0 and 1. The first two factors are positive between 0
and 1, so the sign of ṗ1 there depends on the third factor. The phase portraits are
shown in Figure 10.2; compare Theorem 8.5.
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p1
0 1

(4) a<c and d<b

p1
*

p1
0 1

(3) a>c and d>b

p1
*

p1
0 1

(2) a<c and d>b

p1
0 1

(1) a>c and d<b

Figure 10.2. Dynamics of the replicator equation

ṗ1 = p1(1− p1)
((

(a− c) + (d− b)
)

p1 − (d− b)
)

.

In cases 1 and 2, there is a strictly dominant strategy; the population
evolves toward everyone using it. Case 3 includes Stag Hunt. Case 4
includes Chicken.

10.3. Microsoft vs. Apple

In the early days of personal computing, people faced the following dilemma.
You could buy a computer running Microsoft Windows, or one running the Apple
operating system. Either was reasonably satisfactory, although Apple’s was better.
However, neither type of computer dealt well with files produced by the other. Thus
if your coworker used Windows and you used Apple, not much got accomplished.

We model this situation as a symmetric two-player game in normal form. The
strategies are buy Microsoft (m) or buy Apple (a). The payoffs are given by the
following matrix.

Player 2
m a

Player 1 m (1, 1) (0, 0)
a (0, 0) (2, 2)

We are in case 3 of Theorem 8.5, a game like Stag Hunt. There are two pure-
strategy strict Nash equilibria, (m,m) and (a, a). Both m and a are evolutionarily
stable states. There is also a symmetric mixed strategy Nash equilibrium (σ∗, σ∗)
with σ∗ = 2

3
m+ 1

3
a.

The Nash equilibria (m,m) and (a, a) are easy to understand intuitively.
Clearly if your coworker is using Microsoft, you should use it too. Since, for each
player, Microsoft is the best response to Microsoft, (m,m) is a Nash equilibrium.
The same reasoning applies to (a, a).

The mixed strategy Nash equilibrium is harder to understand. One feels that it
does not correspond to any behavior one would ever observe. Even if for some reason
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people picked computers randomly, why would they choose the worse computer with
higher probability?

To resolve this mystery, we imagine a large population of people who randomly
encounter each other and play this two-player game. People observe which strategy,
buy Microsoft or buy Apple, is on average producing higher payoffs. They will tend
to use the strategy that they observe produces the higher payoff.

Let a state of the population be σ = p1m + p2a, and let p = (p1, p2). It is
consistent with our understanding of the situation to assume that p(t) evolves by
the replicator system. We have

π1(m, σ) = p1, π1(a, σ) = 2p2, π1(σ, σ) = p1π1(m, σ) + p2π1(a, σ) = p21 + 2p22,

so the replicator system is

ṗ1 =
(

π1(m, σ)− π1(σ, σ)
)

p1 =
(

p1 − (p21 + 2p22)
)

p1,

ṗ2 =
(

π1(a, σ)− π1(σ, σ)
)

p2 =
(

2p2 − (p21 + 2p22)
)

p2.

We only need the first equation, in which we substitute p2 = 1− p1:

ṗ1 =
(

p1 −
(

p21 + 2(1− p1)
2
)

)

p1 = (1− p1)
(

p1 − 2(1− p1)
)

p1 = (1− p1)(3p1 − 2)p1.

The phase portrait on the interval 0 ≤ p1 ≤ 1 is shown below.

p1

0 12/3

Figure 10.3. Graph of ṗ1 = (1− p1)(3p1 − 2)p1 and phase portrait.

Alternatively, we could get this phase portrait by observing that we are in case
3 of Figure 10.2.

We see that there are attracting equilibria at p1 = 0 (everyone uses Apple)
and p1 = 1 (everyone uses Microsoft) as expected. The equilibrium at p1 = 2

3
is

unstable. It separates the basin of attraction of p1 = 0 from the basin of attraction
of p1 = 1. The location of this equilibrium now makes intuitive sense: the basin of
attraction of p1 = 0, in which everyone uses the better computer Apple, is larger
than the basin of attraction of p1 = 1, in which everyone uses the worse computer
Microsoft. Nevertheless, if initially more than 2

3
of the population uses Microsoft,

eventually everyone uses Microsoft, even though it is worse.

214



10.4. Hawks and Doves revisited

We consider again the game of Hawks and Doves from Subsection 8.4.3. The
payoff matrix is reproduced below.

Animal 2
h d

Animal 1 h (v−w
2
, v−w

2
) (v, 0)

d (0, v) (v
2
− t, v

2
− t)

We recall that there are no symmetric pure-strategy Nash equilibria, and that if
p∗1 = v+2t

w+2t
and σ∗ = p∗1h + (1 − p∗1)d, then (σ∗, σ∗) is a symmetric mixed-strategy

Nash equilibrium.

Now think of σ = p1h + p2d as a population state of an evolutionary game.
We recall that σ∗ is an evolutionarily stable state.

We have

π1 (h, σ) = p1
v − w

2
+ p2v, π1 (d, σ) = p2

(v

2
− t
)

,

π1 (σ, σ) = p1π1 (h, σ) + p2π1 (d, σ) = p21
v − w

2
+ p1p2v + p22

(v

2
− t
)

.

Hence the replicator system is

ṗ1 = (π1 (h, σ)− π1 (σ, σ)) p1 =

(

p1
v − w

2
+ p2v −

(

p21
v − w

2
+ p1p2v + p22

(v

2
− t
)

))

p1,

ṗ2 = (π1 (d, σ)− π1 (σ, σ)) p2 =

(

p2

(v

2
− t
)

−
(

p21
v − w

2
+ p1p2v + p22

(v

2
− t
)

))

p2.

Again we only need the first equation, in which we substitute p2 = 1− p1:

ṗ1 =

(

p1
v − w

2
+ (1− p1) v −

(

p21
v − w

2
+ p1 (1− p1) v + (1− p1)

2
(v

2
− t
)

))

p1

= (1− p1)

(

p1
v − w

2
+ (1− p1) v − (1− p1)

(v

2
− t
)

)

p1

= (1− p1)
(v

2
+ t− p1

(w

2
+ t
))

p1 =
1

2
(1− p1) (v + 2t− p1 (w + 2t)) p1

The phase portrait on the interval 0 ≤ p1 ≤ 1 is shown below. In this case, if the
population is initially anything other than p1 = 0 or p1 = 1, the population tends
toward the state σ∗.

Alternatively, we could get this phase portrait by observing that we are in case
4 of Figure 10.2.
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p1
0 1(v+2t)/(w+2t)

Figure 10.4. Graph of ṗ1 =
1
2
(1− p1)(v + 2t− p1(w + 2t))p1 and phase portrait.

10.5. Orange-throat, Blue-throat, and Yellow-striped Lizards

The side-blotched lizard, which lives in the deserts of western North America,
has three types of males:

• Orange-throats are aggressive, keep large harems of females, and defend
large territories.

• Blue-throats are also aggressive, keep just one female, and defend small
territories.

• Yellow-stripes are sneaky. They do not keep females or defend a territory.
Instead they sneak into other males’ territories and mate with their females.

Field reports indicate that populations of side-blotched lizards cycle: mostly orange-
throats one generation, mostly yellow-stripes the next, mostly blue-throats the next,
then back to mostly orange-throats. (Fore more information on side-blotched lizards,
see theWikipedia article http://en.wikipedia.org/wiki/Side-blotched_lizard.)

Let’s consider a competition between two different types of male side-blotched
lizards:

• Orange-throats vs. Yellow-stripes. The orange-throats are unable to defend
their large territories against the sneaky yellow-stripes. The yellow-stripes
have the advantage.

• Yellow-stripes vs. blue-throats. The blue-throats are able to defend their
small territories against the yellow-stripes. The blue-throats have the ad-
vantage.

• Blue-throats vs. orange-throats. Neither type of male bothers the other.
The orange-throats, with their larger harems, produce more offspring.

This simple analysis shows why the population should cycle.

To be more precise, we’ll consider a game in which the players are two male
side-blotched lizards. Each has three possible strategies: orange-throat (O), yellow-
striped (Y ), and blue-throat (B). The payoffs are 0 if both use the same strategies;
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otherwise we assign a payoff of 1 or −1 to the lizard that does or does not have the
advantage according to our analysis. The payoff matrix is therefore

Lizard 2
O Y B

O (0, 0) (−1, 1) (1,−1)
Lizard 1 Y (1,−1) (0, 0) (−1, 1)

B (−1, 1) (1,−1) (0, 0)

This game is symmetric. You can check that there is no pure-strategy Nash
equilibrium. There is one mixed strategy Nash equilibrium (σ∗, σ∗) with σ∗ = 1

3
O+

1
3
Y + 1

3
B. (This game is just rock-paper-scissors in disguise.) However, this Nash

equilibrium is not an evolutionarily stable state of the corresponding evolutionary
game.

Let’s calculate the replicator system of the evolutionary game. Let σ = p1O+
p2Y + p3B. Then

π1(O, σ) = −p2 + p3, π1(Y, σ) = p1 − p3, π1(B, σ) = −p1 + p2.

Therefore

π1(σ, σ) = p1π1(O, σ) + p2π1(Y, σ) + p3π1(B, σ)

= p1(−p2 + p3) + p2(p1 − p3) + p3(−p1 + p2) = 0.

Hence the replicator system is

ṗ1 = (π1(O, σ)− π1(σ, σ))p1 = (−p2 + p3)p1,

ṗ2 = (π1(Y, σ)− π1(σ, σ))p2 = (p1 − p3)p2,

ṗ3 = (π1(B, σ)− π1(σ, σ))p1 = (−p1 + p2)p3.

We only need the first and second equations, in which we substitute p3 = 1−(p1+p2):

ṗ1 = (1− p1 − 2p2)p1,(10.2)

ṗ2 = (−1 + 2p1 + p2)p2.(10.3)

The simplex Σ in R
3 corresponds to the region

D = {(p1, p2) : p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ 1}
in R

2.

Let’s analyze the system (10.2)–(10.3) on D.

1. Invariance of the boundary of D. This is just a check on our work. Note
that if p1 = 0 then ṗ1 = 0; if p2 = 0 then ṗ2 = 0; and if p1 + p2 = 1 then

ṗ1 + ṗ2 = (1− p1)p1 − 2p2p1 + (−1 + p2)p2 + 2p1p2

= (1− p1)p1 + (−1 + p2)p2 = p2p1 − p1p2 = 0.
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2. To find all equilibria of the replicator system, we solve simultaneously the
pair of equations

ṗ1 = (1− p1 − 2p2)p1 = 0, ṗ2 = (−1 + 2p1 + p2)p2 = 0.

We find that the equilibria are (p1, p2) = (0, 0), (0, 1), (1, 0), and (1
3
, 1
3
).

3. Nullclines: We have ṗ1 = 0 on the lines 1 − p1 − 2p2 = 0 and p1 = 0, and
we have ṗ2 = 0 on the lines −1 + 2p1 + p2 = 0 and p2 = 0. See Figure 10.5.

p1

p2

1−p1−2p2=0

−1+2p1+p2=0

Figure 10.5. Vector field for the system (10.2)–(10.3) on D.

4. From the figure it appears that solutions circle around the equilibrium (1
3
, 1
3
).

We cannot, however, tell from the figure if solutions spiral toward the equilibrium,
spiral away from the equilibrium, or form closed curves. It is also possible that
solutions approach the equilibrium directly from a little north of west or a little
south of east.

The vector field on each side of the triangle represents the replicator equation
for a reduced game in which one strategy has been eliminated. For example, on the
left side of the triangle, p1 = 0, so strategy 1 is missing. The payoff matrix for the
reduced game is the one given earlier in this section, with the first row and first
column crossed out. The remaining 2 × 2 matrix falls into case 2 of Figure 10.2:
strategy B strictly dominates strategy Y . On the left side of the triangle, (p1, p2)
approaches (0, 0). When p1 = p2 = 0, p3 = 1, i.e., the population is all blue-throats.

5. We can try to get more information by linearizing the system (10.2)–(10.3)
at the equilibrium (1

3
, 1
3
). The linearization of (10.2)–(10.3) has the matrix
(

1− 2p1 − 2p2 −2p1
2p2 −1 + 2p1 + 2p2

)

.

At (p1, p2) = (1
3
, 1
3
), the matrix is

(

−1
3

−2
3

2
3

1
3

)

.
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The characteristic equation is λ2 + 1
3
= 0, so the eigenvalues are ± 1√

3
i. Since they

are pure imaginary, we still don’t know what the solutions do.

6. Fortunately, the system (10.2)–(10.3) has the first integral V (p1, p2) =
ln p1 + ln p2 + ln(1− p1 − p2). Check:

V̇ =
ṗ1
p1

+
ṗ2
p2

+
−ṗ1 − ṗ2
1− p1 − p2

=
ṗ1
p1

+
ṗ2
p2

− ṗ1 + ṗ2
1− p1 − p2

=
(1− p1 − 2p2)p1

p1
+

(−1 + 2p1 + p2)p2
p2

− (1− p1)p1 + (−1 + p2)p2
1− p1 − p2

= (1− p1 − 2p2) + (−1 + 2p1 + p2)−
(1− p1 − p2)(p1 − p2)

1− p1 − p2
= (1− p1 − 2p2) + (−1 + 2p1 + p2)− (p1 − p2) = 0.

One can check using the second derivative test that V has a local maximum at its
critical point (1

3
, 1
3
). Therefore level curves of V (p1, p2) surround this point. In other

words, solutions near the equilibrium (1
3
, 1
3
) form closed curves around it. In fact all

solutions in the interior of D form closed curves around this point.

We conclude that we expect the populations of the different types of side-
blotched lizards to oscillate.

Suppose a solution of (10.2)–(10.3) returns to its initial value after time T , i.e.,

the solution has period T . The average of pi along the solution is just 1
T

∫ T

0
pi(t) dt.

It turns out that on any solution, the average values of p1 and p2 are just
their values at the interior equilibrium, namely 1

3
and 1

3
. We can show this by the

following caculation.

Rewrite (10.2)–(10.3) as

ṗ1
p1

= 1− p1 − 2p2,(10.4)

ṗ2
p2

= −1 + 2p1 + p2.(10.5)

Along a solution, both sides of these equations are functions of t. Integrate both
sides of both equations from t = 0 to t = T .

ln p1(T )− ln p1(0) = T −
∫ T

0

p1(t) dt− 2

∫ T

0

p2(t) dt,(10.6)

ln p2(T )− ln p2(0) = −T + 2

∫ T

0

p1(t) dt+

∫ T

0

p2(t) dt.(10.7)

However, T is the period of the solution, so ln p1(T )− ln p1(0) = 0, and ln p2(T )−
ln p2(0) = 0. Now it is a matter of simple algebra to show that 1

T

∫ T

0
p1(t) dt =

1
T

∫ T

0
p2(t) dt =

1
3
.
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10.6. Equilibria of the replicator system

In this section we derive some general facts about equilibria of the replicator
system.

Theorem 10.2. Let p ∈ Σ. Then p is an equilibrium of the replicator system if and
only if (σ, σ) satisfies condition (1) of the Fundamental Theorem of Nash Equilibria
(Theorem 5.2).

In other words, if p ∈ ΣI , then p is an equilibrium of the replicator system if
and only if all π1(si, σ) with i ∈ I are equal.

For example, if only one strategy is active at σ (i.e., one pi = 1 and the others
are 0), then p is automatically an equilibrium of the replicator system. Of course,
we already noted this in Theorem 10.1 (4).

Note that if all pi > 0, then condition (2) of Theorem 5.2 for a Nash equilibrium
is irrelevant. Hence, if all pi > 0, then p is an equilibrium of the replicator system
if and only if (σ, σ) is a Nash equilibrium of the game.

Proof. Let p ∈ ΣI .

(1) Suppose p is an equilibrium of the replicator system. If i ∈ I, then pi > 0,
so we see from (10.1) that π1(si, σ) = π1(σ, σ). Hence all π1(si, σ) with i ∈ I are
equal.

(2) Suppose π1(si, σ) = K for all i ∈ I, i.e., for all i such that pi > 0. We have

π1(σ, σ) =

n
∑

i=1

piπ1(si, σ) =
∑

i∈I
piπ1(si, σ) =

∑

i∈I
piK = K.

Hence if pi > 0 then π1(si, σ) = π1(σ, σ). Now we see from (10.1) that p is an
equilibrium of the replicator system. �

Theorem 10.3. Let p∗ ∈ ΣI be an equilibrium of the replicator system. Suppose
(σ∗, σ∗) does not satisfy condition (2) of Theorem 5.2, i.e., suppose there is an i /∈ I
such that π1(si, σ

∗) > π1(σ
∗, σ∗). Let J be a subset of {1, . . . , n} that includes both i

and I. Then no solution p(t) of the replicator system that lies in ΣJ approaches p∗

as t → ∞.

Proof. By assumption, π1(si, σ
∗) − π1(σ

∗, σ∗) > 0. Hence if, σ is close to σ∗,
i.e., if the point p is close to the point p∗, then π1(si, σ) − π1(σ, σ) > 0. Therefore,
if p is close to p∗ and p ∈ ΣJ , so pi > 0, then ṗi = pi(π1(si, σ)− π1(σ, σ)) is positive.
Hence any solution p(t) that lies in ΣJ and comes close to p∗ has pi(t) increasing
when it is near p∗. Since p∗i = 0, clearly p(t) does not approach p∗ as t increases. �

The proof of Theorem 10.3 has a nice interpretation. It says that if we in-
troduce into the population σ∗ a small number of animals using strategy i, which
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does better against σ∗ than σ∗ does against itself, then the use of strategy i in the
population will increase.

Theorem 10.4. Let p∗ ∈ Σ. Suppose σ∗ is an evolutionarily stable state. Then p∗

is an asymptotically stable equilibrium of the replicator system.

The proof uses the following fact.

Lemma 10.5. Assume

• xi > 0 for i = 1, . . . , n.
• pi > 0 for i = 1, . . . , n.
• ∑ pi = 1.

Then ln(
∑

pixi) >
∑

pi ln xi unless x1 = · · · = xn.

Given this fact, we shall prove Theorem 10.4 assuming all p∗i > 0. Define a
function W with domain Σ{1,...,n} by W (p1, . . . , pn) =

∑

p∗i ln
pi
p∗i
. Then W (p∗) = 0.

For p 6= p∗,

W (p) =
∑

p∗i ln
pi
p∗i

< ln

(

∑

p∗i
pi
p∗i

)

= ln
(

∑

pi

)

= ln 1 = 0.

Let V = −W . Then V (p∗) = 0, and, for p 6= p∗, V (p) > 0. We can write
V (p) = −∑ p∗i (ln pi − ln p∗i ). Then for p 6= p∗,

V̇ = −
∑

p∗i
1

pi
ṗi = −

∑ p∗i
pi

(π1 (si, σ)− π1 (σ, σ)) pi = −
∑

p∗i (π1 (si, σ)− π1 (σ, σ))

= −
∑

p∗iπ1 (si, σ) +
∑

p∗iπ1 (σ, σ) = −π1 (σ
∗, σ) + π1 (σ, σ) < 0.

The last inequality follows from the assumption that σ∗ is an evolutionarily stable
state with all p∗i > 0. In this case, for all σ 6= σ∗, π1 (σ

∗, σ) > π1 (σ, σ).

Therefore V is a strict Liapunov function, so p∗ is asymptotically stable.

10.7. Cooperators, Defectors, and Tit-for-tatters

As far as we know, human beings have always lived in groups and cooperated
in hunting and other activities. Cooperation is also observed in other species. Can
evolutionary game theory help explain this?

Let’s consider the symmetric version of the cooperation dilemma discussed at
the end of Section 2.4. Each player can help the other, conferring a benefit b > 0
on the other player at a cost a > 0 to himself. We assume b > a. The players have
two strategies: cooperate by helping (c), or defect by not helping (d). The payoff
matrix is
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Player 2
c d

Player 1 c (b− a, b− a) (−a, b)
d (b,−a) (0, 0)

Defect is the strictly dominant strategy for both players. However, since b > a, the
game is a Prisoner’s Dilemma: if both cooperate, both are better off than if both
defect.

If we form the replicator equation for the corresponding evolutionary game as
in Section 10.2, we will see that the cooperators die out, and only defectors are left.
(We are in case 2 of Figure 10.2.) Thus the benefits of cooperation alone are not
sufficient to explain why it exists.

Now let us imagine that when two random players from a population meet,
they play the game twice, using one of three strategies:

• c: always cooperate.
• d: always defect.
• t: tit-for-tat: cooperate the first time; the second time, do what the other
player did the first time.

The payoff matrix for the twice-repeated-game (compare problem 3.11.7) is

Player 2
c d t

c (2b− 2a, 2b− 2a) (−2a, 2b) (2b− 2a, 2b− 2a)
Player 1 d (2b,−2a) (0, 0) (b,−a)

t (2b− 2a, 2b− 2a) (−a, b) (2b− 2a, 2b− 2a)

We assume b > 2a. Then 2b − 2a > b, so this game has, in addition to the pure-
strategy Nash equilibrium (d, d), the the pure-strategy Nash equilibrium (t, t). Both
are symmetric.

To simplify our study of the replicator system, we shall only consider the case
b = 3 and a = 1. The payoff-matrix for the twice-repeated game becomes

Player 2
c d t

c (4, 4) (−2, 6) (4, 4)
Player 1 d (6,−2) (0, 0) (3,−1)

t (4, 4) (−1, 3) (4, 4)

This game has the symmetric Nash equilibria (d, d),
(

1
2
d+ 1

2
t, 1

2
d+ 1

2
t
)

, and (p1c +

p3t, p1c + p3t) with p1 + p3 = 1 and 0 ≤ p1 ≤ 1
3
; p1 = 0 gives the Nash equilibrium

(t, t) that we saw above.
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The replicator system, using only p1 and p2, turns out to be

ṗ1 = −2(p1 + p2)p1p2,(10.8)

ṗ2 =
(

−1 + 3p1 + 3p2 − 2p1p2 − 2p22
)

p2.(10.9)

You will be asked to check this in problem 10.13.4. We study this system on the
region

D = {(p1, p2) : p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ 1}.
1. Invariance of the boundary of D. If p1 = 0 then ṗ1 = 0, and if p2 = 0

then ṗ2 = 0. As a check on our work, we should also check that if p1 + p2 = 0 then
ṗ1 + ṗ2 = 0. However, in this problem it is useful to find all numbers c such that if
p1 + p2 = c then ṗ1 + ṗ2 = 0. If p1 + p2 = c, then

ṗ1 + ṗ2 = −2(p1 + p2)p1p2 +
(

− 1 + 3(p1 + p2)− 2(p1 + p2)p2
)

p2

= (−2cp1 − 1 + 3c− 2cp2)p2 = (−2c2 + 3c− 1)p2 = −(2c− 1)(c− 1)p2.

This expression is identically 0 if c = 1
2
or c = 1.

2. To find the equilibria we solve simultaneously the equations ṗ1 = 0 and
ṗ2 = 0. We find that the equililbria are (0, 1),

(

0, 1
2

)

, and the line segment consisting
of points (p1, 0) with 0 ≤ p1 ≤ 1.

3. Nullclines. We have ṗ1 = 0 on the lines p1 = 0, p2 = 0, and p1+ p2 = 0. We
can ignore the last since it meets D only at the origin. We have ṗ2 = 0 on the line
p2 = 0, and on a curve that we will not study in detail. Note that ṗ1 < 0 everywhere
in the interior of D.

4. Linearization shows that (0, 1) is an attractor and
(

0, 1
2

)

is a saddle. The
equilibria on the line segment (p1, 0), 0 ≤ p1 ≤ 1, all have at least one eigenvalue
equal to 0. The other eigenvalue is 3p1 − 1, so it is negative for 0 ≤ p1 < 1

3
, 0 for

p1 =
1
3
, and positive for 1

3
< p ≤ 1.

Because of the line segment of nonhyperbolic equilibria, the phase portrait
cannot be completely drawn by the methods we have learned. It is given in Figure
10.7.

Note that the invariant line p1 + p2 = 1
2
, which we found in step 1, is the

stable manifold of the saddle (0, 1
2
). Population states above this line are in the

basin of attraction of the equilibrium (0, 1), which represents a population of all
defectors. These population states have p1 + p2 > 1

2
, so p3 = 1 − p2 − p2 < 1

2
. In

other words, if initially tit-for-tatters comprise less than half the population, the
strategies c (cooperate) and t (tit for tat) eventually die out, and only defectors
remain.

Initial conditions below the line p1 + p2 =
1
2
, which represent populations that

are predominantly tit-for-tatters, lead to one of the equilibria (p1, 0) with 0 ≤ p1 <
1
3
.

The corresponding population states are p1c + (1 − p1)t with 0 ≤ p1 < 1
3
. In these
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Figure 10.6. Phase portrait of the system (10.8)–(10.9).

population states, the strategy d (defect) has died out, and only tit-for-tatters and a
smaller number of cooperators remain. Apparently a large number of tit-for-tatters
is required to eliminate defectors and prevent them from re-entering the population.
Some members of the population can turn the other cheek should someone try to
take advantage of them, but not too many! The tit-for-tatters use the strategy, do
unto others as they just did unto you.

Let us compare our results to our previous theoretical work. First we discuss
the reduced games that are played on the boundary of D. On the line p1 + p2 = 1,
we have p3 = 0, so the reduced game has no tit-for-tatters. For this reduced game,
defect is the dominant strategy, so solutions tend toward all defectors. On the
line p1 = 0, cooperators are absent, and we have the reduced game obtained by
eliminating the first row and first column of the 3 × 3 payoff matrix. This reduced
game is of Stag Hunt type. Therefore, on the line p1 = 0, a repelling equilibrium
separates the basins of attraction of two attracting equilibria. Finally, on the line
p2 = 0, defectors are absent, and we have the reduced game obtained by eliminating
the second row and second column of the 3× 3 payoff matrix. In the resulting 2× 2
payoff matrix, all payoffs are equal, so all strategy profiles are Nash equilibria of the
reduced game. This explains the line segment of equilibria of the replicator system.

Finally we discuss evolutionary stability. The Nash equilibria of the full game
correspond to the population states d, 1

2
d + 1

2
t, and p1c + (1 − p1)t, 0 ≤ p1 ≤ 1

3
.

The strategy profile (d, d) is a strict Nash equilibrium, so the population state d
is evolutionarily stable by Theorem 8.2, and hence the corresponding equilibrium
(0, 1) in D is asymptotically stable by Theorem 10.4. The population state 1

2
d+ 1

2
t
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corresponds to the equilibrium (0, 1
2
), which is not evolutionarily stable because it

separates equilibria of a reduced game of Stag Hunt type. None of the population
states p1c + (1 − p1)t, 0 < p1 ≤ 1

3
, can be evolutionarily stable. The reason is that

they all have the same active strategies; however, according to Theorem 8.4, if one
were evolutionarily stable, there could be no other symmetric Nash equilibria with
the same active strategies. Finally, the pure population state t is not evolutionarily
stable, since it can be invaded by cooperators. Thus the only evolutionarily stable
population state is d, and it corresponds to the only asymptotically stable equilib-
rium. However, the set of equilibria (p1, 0), 0 ≤ p1 <

1
3
, enjoys a kind of asymptotic

stability: for each point in the set, if an initial condition is close enough to that
point, then the solution approaches the set.

10.8. Dominated strategies and the replicator system

In this section we prove two results relating iterated elimination of dominated
strategies to the replicator system. Since the games we consider have two players
and are symmetric, whenever we eliminate a strategy, we shall eliminate it for both
players.

Theorem 10.6. In a two-player symmetric game, suppose strategy si is strictly
dominated by strategy sj. Let I be a subset of {1, . . . , n} that contains both i and j,
and let p(t) be a solution of the replicator system in ΣI . Then pi(t) → 0 as t → ∞.

Proof. Since strategy si is strictly dominated by strategy sj, we have that
for every pure strategy sk, π1 (si, sk) < π1 (sj, sk). Then for any population state
σ =

∑

pksk, we have

π1 (si, σ) = π1

(

si,
∑

pksk

)

=
∑

pkπ1 (si, sk)

<
∑

pkπ1 (sj, sk) = π1

(

sj,
∑

pksk

)

= π1 (sj, σ) .

Therefore, for each p ∈ Σ, if σ is the corresponding population state, then π1 (si, σ)−
π1 (sj, σ) < 0.

Now π1 (si, σ)− π1 (sj , σ) depends continuously on p, and Σ is a compact set
(closed and bounded). Therefore there is a number ǫ > 0 such that π1 (si, σ) −
π1 (sj, σ) ≤ −ǫ for every p ∈ Σ.

Let p (t) be a solution of the replicator system in ΣI . Then pi (t) > 0 and
pj (t) > 0 for all t. Therefore we can define the function V (t) = ln pi (t) − ln pj (t).
We have

V̇ =
1

pi
ṗi −

1

pj
ṗj =

1

pi
(π1 (si, σ)− π1 (σ, σ)) pi −

1

pj
(π1 (sj, σ)− π1 (σ, σ)) pj

= π1 (si, σ)− π1 (sj, σ) ≤ −ǫ.
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Then for t > 0,

V (t)− V (0) =

∫ t

0

V̇ dt ≤
∫ t

0

−ǫ dt = −ǫt.

Therefore V (t) → −∞ as t → ∞.

But 0 < pj (t) < 1, so ln pj (t) < 0, so − ln pj (t) > 0. Since V (t) = ln pi (t)−
ln pj (t) approaches −∞ and− ln pj (t) is positive, it must be that ln pi (t) approaches
−∞. But then pi (t) approaches 0. �

We note that Theorem 10.6 does not hold when one strategy weakly dominates
another. For example, in the game of Cooperators, Defectors, and Tit-tor-tatters
in the previous section, tit-for-tat weakly dominates cooperate, but solutions in the
interior of the simplex do not necessarily lead to cooperate dying out.

Theorem 10.7. In a two-player symmetric game, suppose that when we do iterated
elimination of strictly dominated strategies, the strategy sk is eliminated at some
point. Let p(t) be a solution of the replicator system in Σ{1,...,n}. Then pk(t) → 0 as
t → ∞.

Proof. For simplicity, we will assume that only one strategy is eliminated before
sk. Let that strategy be si, eliminated because it is strictly dominated by a strategy
sj . Then sk is strictly dominated by some strategy sl once si is eliminated. This
means that π1(sk, sm) < π1(sl, sm) for every m other than i.

Let Σ̃ denote the subset of Σ on which pi = 0. Then for every p ∈ Σ̃, π1(sk, σ) <

π1(sl, σ). Since Σ̃ is compact, there is a number ǫ > 0 such that π1(sk, σ)−π1(sl, σ) ≤
−ǫ for all p ∈ Σ̃.

By continuity, there is a number δ > 0 such that if p ∈ Σ and 0 ≤ pi < δ, then
π1(sk, σ)− π1(sl, σ) ≤ − ǫ

2
.

Let p(t) be a solution of the replicator system in Σ{1,...,n}. By the previous
theorem, pi(t) → 0 as t → ∞. Therefore, for t greater than or equal to some t0,
0 < pi(t) < δ. Let V (t) = ln pk(t)− ln pl(t). Then for t ≥ t0,

V̇ =
1

pk
ṗk −

1

pl
ṗl =

1

pk
(π1(sk, σ)− π1(σ, σ))pk −

1

pl
(π1(sl, σ)− π1(σ, σ))pl

= π1(sk, σ)− π1(sl, σ) ≤ − ǫ

2
.

Therefore, for t > t0,

V (t)− V (t0) =

∫ t

t0

V̇ dt ≤
∫ t

t0

− ǫ

2
dt = − ǫ

2
t.

Therefore V (t) → −∞ as t → ∞.

As in the proof of the previous theorem, we can conclude that pk(t) → 0 as
t → ∞. �
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10.9. Asymmetric evolutionary games

Consider an asymmetric two-player game G in normal form. Player 1 has
the finite strategy set S = {s1, . . . , sn}. Player 2 has the finite strategy set T =
{t1, . . . , tm}. If Player 1 uses the pure strategy si and Player 2 uses the pure strategy
tj , the payoff to Player 1 is π1(si, tj), and the payoff to Player 2 is π2(si, tj).

Suppose there are two populations, one consisting of individuals like Player
1, the other consisting of individuals like Player 2. When an individual from the
first population encounters an individual from the second population, they play the
game G.

Taken as a whole, the first population uses strategy s1 with probability p1,
. . . , strategy sn with probability pn; all pi ≥ 0 and

∑

pi = 1. Let σ =
∑

pisi be
the state of the first population. Similarly, taken as a whole, the second population
uses strategy t1 with probability q1, . . . , strategy tm with probability qm; all qj ≥ 0
and

∑

qj = 1. Let τ =
∑

qjtj be the state of the second population.

When an individual of type i from the first population plays the game against
a randomly chosen individual from the second population, whose state is τ , his
expected payoff is that of an individual using strategy si against one using the
mixed strategy τ , namely

π1(si, τ) =

m
∑

j=1

qjπ1(si, tj).

Similarly, when an individual of type j from the second population plays the game
against a randomly chosen individual from the first population, whose state is σ, his
expected payoff is

π2(σ, tj) =

n
∑

i=1

piπ2(si, tj).

When two randomly chosen individuals from the two populations play the
game, the expected payoff to the first is

π1(σ, τ) =
n
∑

i=1

piπ1(si, τ) =
n
∑

i=1

m
∑

j=1

piqjπ1(si, tj).

Similarly, the expected payoff to the second is

π2(σ, τ) =
m
∑

j=1

qjπ2(σ, tj) =
m
∑

j=1

n
∑

i=1

qjpiπ2(si, tj) =
n
∑

i=1

m
∑

j=1

piqjπ2(si, tj).

We combine the two population states σ and τ into a total population state
(σ, τ), and we will regard (σ, τ) as changing with time. Reasoning as in Section 10.1,
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we obtain the replicator system:

ṗi = (π1(si, τ)− π1(σ, τ))pi, i = 1, . . . , n;(10.10)

q̇j = (π2(σ, tj)− π2(σ, τ))qj , j = 1, . . . , m.(10.11)

Let

Σn = {(p1, . . . , pn) : all pi ≥ 0 and
∑

pi = 1},

Σm = {(q1, . . . , qm) : all qj ≥ 0 and
∑

qj = 1},

The system (10.10)–(10.11) should be considered on Σn × Σm.

Let

Dn−1 = {(p1, . . . , pn−1) : pi ≥ 0 for i = 1, . . . , n− 1, and

n−1
∑

i=1

pi ≤ 1},

Dm−1 = {(q1, . . . , qm−1) : qj ≥ 0 for j = 1, . . . , m− 1, and

m−1
∑

j=1

qj ≤ 1}.

Instead of studying an asymmetric replicator system on Σn × Σm, one can in-
stead take the space to be Dn−1 × Dm−1, and use only the differential equations
for ṗ1, . . . , ṗn−1 and q̇1, . . . , q̇m−1. In these equations, one must of course let pn =
1−∑n−1

i=1 pi and qm = 1−∑m−1
j=1 qj

A total population state (σ∗, τ ∗) is a Nash equilibrium provided

π1(σ
∗, τ ∗) ≥ π1(σ, τ

∗) for all σ,

π2(σ
∗, τ ∗) ≥ π2(σ

∗, τ) for all τ.

However, the notion of evolutionarily stable state for symmetric games does not
have an analogue for asymmetric games, since individuals from the same population
cannot play the game against each other.

Many results about the replicator system for symmetric games also hold for
the replicator system for asymmetric games:

(1) A population state (σ, τ) is an equilibrium of the replicator system if and
only if it satisfies the equality conditions for a Nash equilibrium .

(2) A point on the boundary of Σn × Σm that satisfies the equality conditions
for a Nash equilibrium, but does not satisfy one of the inequality conditions,
attracts no solution in in which the strategy corresponding to the unsatisfied
inequality condition is present.

(3) If a strategy is eliminated in the course of iterated elimination of strictly
dominated strategies, then for any solution in the interior of Σn×Σm, that
strategy dies out.
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An important difference, however, is that for asymmetric replicator systems, it is
known that equilibria in the interior of Σn × Σm are never asymptotically stable.

10.10. Big Monkey and Little Monkey 7

As in Subsection 3.1, suppose Big Monkey and Little Monkey decide simulta-
neously whether to wait or climb. We have a game in normal form with the following
payoff matrix, repeated from Subsection 3.1, except that we have changed the order
of climb and wait.

Little Monkey
q1 q2

climb wait
Big Monkey p1 climb (5, 3) (4, 4)

p2 wait (9, 1) (0, 0)

We now imagine a population of Big Monkeys and a population of Little Monkeys.
Let s1 = t1 = climb, s2 = t2 = wait, σ = p1s1 + p2s2, τ = q1t1 + q2t2, so p2 = 1− p1
and q2 = 1− q1. The monkeys randomly encounter a monkey of the other type and
play the game.

We could write differential equations for ṗ1, ṗ2, q̇1, and q̇2, but we only need
those for ṗ1 and q̇1, so I will omit the other two. Using p2 = 1− p1 and q2 = 1− q1,
we obtain

ṗ1 = (π1(s1, τ)− π1(σ, τ))p1

= ((5q1 + 4(1− q1))− (5p1q1 + 4p1(1− q1) + 9(1− p1)q1))p1

= p1(1− p1)(5q1 + 4(1− q1)− 9q1) = p1(1− p1)(4− 8q1)

q̇1 = (π2(σ, t1)− π2(σ, τ))q1

= ((3p1 + 1(1− p1))− (3p1q1 + 4p1(1− q1) + 1(1− p1)q1))q1

= q1(1− q1)(3p1 + (1− p1)− 4p1) = q1(1− q1)(1− 2p1)

We consider this system on

D1 ×D1 = {(p1, q1) : 0 ≤ p1 ≤ 1 and 0 ≤ q1 ≤ 1}.
See Figure 10.7

1. Invariance of the boundary of D1 ×D1. This is just a check on our work.
Note that if p1 = 0 or p1 = 1, then ṗ1 = 0; and if q1 = 0 or q1 = 1, then q̇1 = 0.

2. To find all equilibria of the replicator system, we solve simultaneously the
pair of equations ṗ1 = 0 and q̇1 = 0. We find that the equilibria are (p1, q1) =
(0, 0), (0, 1), (1, 0), (1, 0), and

(

1
2
, 1
2

)

.

3. Nullclines: We have ṗ1 = 0 on the lines p1 = 0, p1 = 1, and q1 =
1
2
; and we

have q̇1 = 0 on the lines q1 = 0, q1 = 1, and p1 =
1
2
See Figure 10.7.
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p1

q1

11/2

1

1/2

Figure 10.7. Vector field for the evolving monkeys.

4. It appears that the corner equilibria are attractors or repellers and the
interior equilibrium is a saddle. This is correct and can be checked by linearization.
The phase portrait is given in Figure 10.8.

p1

q1

1

1

Figure 10.8. Phase portrait for the evolving monkeys.
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The stable manifold of the saddle separates the basin of attraction of the
point (0, 1), where Big Monkey waits and Little Monkey climbs, from the basin of
attraction of the point (1, 0), where Big Monkey climbs and Little Monkey waits.
Thus we expect to observe the population in one or the other of these pure states,
but we can’t guess which without knowing where the population started.

Each side of the square represents a reduced game in which one of the monkeys
has chosen a definite strategy. The other monkey’s strategy evolves toward its best
response.

10.11. Hawks and Doves with Unequal Value

Two animal species dispute a food source, but the source is more valuable to
Species 2 than to Species 1. When an animal from Species 1 meets an animal from
Species 2 near the food source, each has the two possible strategies Hawk and Dove
from the game of Hawks and Doves in Subsection 8.4.3. The payoffs are given by
the following matrix :

Species 2
h d

Species1 h (v1−w
2

, v2−w
2

) (v1, 0)
d (0, v2) (v1

2
, v2

2
)

In this matrix , vi is the value of the food source to an animal of Species i. The cost
of injury w is assumed to be the same for both species. We assume v1 < v2 < w.
For simplicity we have taken the cost of protracted display t to be 0.

There are two pure strategy Nash equilibria, (h, d) and (d, h), and a mixed
strategy Nash equilibrium

(v2
w
h+

(

1− v2
w

)

d,
v1
w
h +

(

1− v1
w

)

d
)

.

We now imagine populations of Species 1 and Species 2. Let σ = p1h1 + p2d,
τ = q1h + q2d, so p2 = 1 − p1 and q2 = 1 − q1. Animals of Species 1 randomly
encounter animals of Species 2 near the food source and play the game.
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As in the previous section, we set p2 = 1− p1 and q2 = 1− q1, and only write
the differential equations for p1 and p2:

ṗ1 = (π1 (h, τ)− π1 (σ, τ)) p1

=

(

v1 − w

2
q1 + v1 (1− q1)−

(

v1 − w

2
p1q1 + v1p1 (1− q1) +

v1
2
(1− p1) (1− q1)

))

p1

= p1 (1− p1)
(v1
2
− w

2
q1

)

q̇1 = (π2 (σ, h)− π2 (σ, τ)) q1

=

(

v2 − w

2
p1 + v2 (1− p1)−

(

v2 − w

2
p1q1 + v2 (1− p1) q1 +

v2
2
(1− p1) (1− q1)

))

q1

= q1 (1− q1) (3p1 + (1− p1)− 4p1) = q1 (1− q1)
(v2
2

− w

2
p1

)

We consider this system on

D1 ×D1 = {(p1, q1) : 0 ≤ p1 ≤ 1 and 0 ≤ q1 ≤ 1}.
The nullclines and the vector field on the nullclines are as in Figure 10.7, except
that two nullclines are p1 =

v2
w

and q1 =
v1
w

instead of p1 =
1
2
and q1 =

1
2
. The phase

portrait is shown in Figure 10.9 under the assumption that v1
w

is close to 0 and v2
w

is close to 1. We see that the basin of attraction of the equilibrium (0, 1) is much
larger than the basin of attraction of the equilibrium (1, 0). At the first equilibrium,
Species 2, which places more value on the resource than Species 1, is willing to fight
for it, but Species 1 is not. The second equilibrium is the reverse.

 

p1

q1

1

1

v1/w

v2/w

Figure 10.9. Phase portrait for Hawks and Doves with Unequal Value.
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10.12. The Ultimatum Minigame revisited

In the Ultimatum Minigame of Section 5.6, we now imagine a population of
Alices (the offerers) and a population of Bobs (the responders). Let σ = p1f + p2u,
τ = q1a + q2r, so p2 = 1 − p1 and q2 = 1 − q1. The Bobs and Alices randomly
encounter each other and play the Ultimatum Minigame. The differential equations
for ṗ1 and q̇1, after simplification and factoring, are

ṗ1 = p1(1− p1)(2− 3q1),

q̇1 = q1(1− q1)(1− p1).

You should check this.

The equilibria in D1 ×D2 = {(p1, q1) : 0 ≤ p1 ≤ 1 and 0 ≤ q1 ≤ 1} are (0, 0),
(0, 1), and the line segment p1 = 1, 0 ≤ q1 ≤ 1. Those that correspond to Nash
equilibria of the game are (0, 1) and the smaller line segment p1 = 1, 0 ≤ q1 ≤ 2

3
.

Linearization shows that (0, 0) is a repeller; (0, 1) is an attractor; and points on
the line segment p1 = 1, 0 ≤ q1 ≤ 1 have one zero eigenvalue and one negative
eigenvalue if 0 ≤ q1 <

2
3
; two zero eigenvalues if q1 =

2
3
; and one zero eigenvalue and

one positive eigenvalue if 2
3
< q1 ≤ 1.

As in Section 10.7, because of the nonhyperbolic equilibria, the phase portrait
cannot be completely drawn by the methods we have learned. It is given in Figure
10.10.

p1

q1

2/3

Figure 10.10. Phase portrait for the Ultimatum Minigame. The
line q1 =

2
3
is a nullcline on which ṗ1 = 0; q̇1 is positive everywhere in

the interior of the square D1 ×D1.
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From the phase portrait we see that most initial population states are in the
basin of attraction of the equilibrium (0, 1), which corresponds to the Nash equilib-
rium of the game in which Alice makes an unfair offer and Bob accepts it. Recall
that this is the equilibrium we expect from backward induction Nevertheless, a size-
able set of initial conditions lead to an equilibrium (1, q1) with 0 ≤ q1 ≤ 2

3
. These

are Nash equilibrium in which Bob threatens to reject unfair offers with probability
1− q1 ≥ 2

3
. Alice, believing the threat, makes a fair offer. In order for the threat to

be believable, it must be that unfair offers really do get rejected much of the time.

We conclude that it is possible for the dynamic of evolution to lead to a
situation in which unfair offers are rejected with high probability and hence are not
made. As we mentioned in Section 5.6, experiments with the Ultimatum Game
indicate that this is in fact the case.

In experiments with the Ultimatum Game, people sometimes get mad when
a low offer is made to them, and in their anger they reject it. Perhaps they should
calm down and consider the problem rationally. Or perhaps evolution has equipped
us with anger in such a situation in order to ensure that low offers get rejected, and
hence that people don’t make them.

Notice, however, that the initial conditions that lead to an equilibrium in which
unfair offers are not made all have p1 > q1, i.e., from the start, the fraction of Alices
making fair offers is greater than the fraction of Bobs willing to accept unfair offers.
You should also notice that nothing holds the population at a specific equilibrium
in the set of equilibria (1, q1) with 0 ≤ q1 ≤ 2

3
. If some random fluctuation takes the

population state off this set (i.e., if some Alices try the strategy u), the population
state can return to a different equilibrium on the set. Thus the population state
can drift along the line of equilibria. Should q1 drift above 2

3
, and some Alices

start to use the strategy u, the solution will go toward the stable equilibrium (0, 1).
For this reason, this model is generally not considered to fully explain how fairness
establishes itself in populations.

10.13. Problems

10.13.1. Lions and Impalas. Two lions see a big impala and a little impala
in the distance. Each lion independently chooses which impala to chase. The lions
will kill whichever impala they chase, but if they choose the same impala, they will
have to share it. The value of the big impala is 4, the value of the little impala is 2.
The payoff matrix is then

lion 2
big little

lion 1 big (2,2) (4,2)
little (2,4) (1,1)
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Our classification of 2 × 2 symmetric games (Theorem 8.5) does not apply to this
one because a = c.

(1) Are there any strictly dominated or weakly dominated strategies?
(2) Find the pure strategy Nash equilibria.
(3) Check whether any pure strategy symmetric Nash equilibria that you found

in part (b) correspond to evolutionarily stable states.
(4) Denote a population state by σ = p1b+ p2l. Find the replicator system for

this game. Answer:

ṗ1 = p1(2p1 + 4p2 − (p1(2p1 + 4p2) + p2(2p1 + p2))),

ṗ2 = p2(2p1 + p2 − (p1(2p1 + 4p2) + p2(2p1 + p2))).

(5) Use p2 = 1 − p1 to reduce this system of two differential equations to one
differential equation in the variable p1 only. Answer:

ṗ1 = 3p1(1− p1)
2.

(6) Sketch the phase portrait on the interval 0 ≤ p1 ≤ 1, and describe in words
what happens.

10.13.2. Pure coordination games. Microsoft vs. Apple (Section 10.3) is a
pure coordination game. We saw that the basin of attraction of the better attracting
equilibrium is larger than the basin of attraction of the worse attracting equilibrium.
Is this always true?

To explore this question, in Section 10.2 assume a > c and d > b, so that we
have a pure coordination game. The phase portrait is given by Figure 10.2 (3). The
equilibrium p1 = 0 corresponds to the pure population state s2, and the equilibrium
p1 = 1 corresponds to the pure population state s1. Assume a > d, so that the
equilibrium p1 = 1 gives the players a higher payoff than the equilibrium p1 = 0.

(1) Explain the following: p∗1 <
1
2
if and only if a− c > d− b.

(2) Explain in words under what circumstances the equilibrium p1 = 1 has a
larger basin of attraction than the equilibrium p1 = 0.

10.13.3. Generalized Rock–Paper–Scissors. The payoff matrix in Section
10.5 is also the payoff matrix for Rock–Paper–Scissors. Consider a generalization
of Rock–Paper–Scissors in which two players who use the same strategy receive a
payoff α rather than 0. The payoff matrix is then

Player 2
R P S

R (α, α) (−1, 1) (1,−1)
Player 1 P (1,−1) (α, α) (−1, 1)

S (−1, 1) (1,−1) (α, α)
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We assume that −1 < α < 1 and α 6= 0.

(1) Show that there are no pure strategy Nash equilibria.
(2) There is one mixed strategy Nash equilibrium, p1 = p2 = p3 = 1

3
. (You

don’t have to check this.)
(3) Find the replicator system for this game. Answer:

ṗ1 = p1(αp1 − p2 + p3 − α(p21 + p22 + p23)),

ṗ2 = p2(p1 + αp2 − p3 − α(p21 + p22 + p23)),

ṗ3 = p3(−p1 + p2 + αp3 − α(p21 + p22 + p23)).

(4) Use p3 = 1− p1 − p2 to reduce this system of three differential equations to
two differential equation in the variables p1 and p2 only. Answer:

ṗ1 = p1

(

1 + (α− 1)p1 − 2p2 − α
(

p21 + p22 + (1− p1 − p2)
2
)

)

,

ṗ2 = p2

(

− 1 + 2p1 + (α+ 1)p2 − α
(

p21 + p22 + (1− p1 − p2)
2
)

)

.

(5) In the region p1 ≥ 0, p2 ≥ 0, p1+ p2 ≤ 1, the only equilibria are the corners
and (1

3
, 1
3
). The phase portrait on the boundary of the triangle is the same

as in Figure 10.5. To get some idea of the phase portrait in the interior of
the triangle, calculate the eigenvalues of the linearization at (1

3
, 1
3
). Answer:

(α± i
√
3)/3. What does this tell you?

10.13.4. Cooperators, Defectors, and Tit-for-tatters. This problem is
about Section 10.7.

(1) Derive the replicator system (10.8)–(10.9).
(2) Use linearization to find the eigenvalues of the equilibria on the line segment

(p1, 0), 0 ≤ p1 ≤ 1.

10.13.5. Honesty and Trust Come and Go. Consider an asymmetric evo-
lutionary game with populations of sellers and buyers. Sellers can be honest (H) or
dishonest (D). Buyers can carefully inspect the merchandise (I) or can trust that it
is as represented (T). The payoffs are given by the following matrix .

Buyer
I T

Seller H (2,3) (3,4)
D (1,2) (4,1)

Notice that the best response to an honest seller is to trust him (avoiding the time
and trouble of inspecting), while the best response to dishonest seller is to inspect;
and the best response to an inspecting buyer is be honest, while the best response to
a trusting buyer is to be dishonest. Thus there are no pure-strategy Nash equilibria.
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There is a mixed-strategy Nash equilibrium in which each player uses each strategy
half the time.

(1) Find the replicator system using only the variables p1 and q1. (Answer:
ṗ1 = p1(1− p1)(2q1 − 1), q̇1 = q1(1− q1)(1− 2p1).

(2) In the square {(p1, q1) : 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1}, draw the nullclines, the
equilibria, and the vector field on the nullclines.

(3) From you picture, it should appear that the corner equilibria are all saddles;
you don’t need to check this. It should also appear that solutions spiral
around the equilibrium (1

2
, 1
2
) in the clockwise direction. Calculate the

eigenvalues of the linearization at the equilibrium (1
2
, 1
2
).

(4) You should find that the eigenvalues at the equilibrium (1
2
, 1
2
) are pure imag-

inary. Thus Theorem 9.3 does not help us. Use the method of Subsection
9.4.2 to find a first integral. (One answer: V (p1, q1) = (p1 − p21)(q1 − q21).)

(5) Show that V has a local maximum at (1
2
, 1
2
). Therefore, as in Subsection

9.4.2, near the equilibrium, solutions go around the equilibrium and rejoin
themselves: they are time-periodic. (Actually, all solutions in the interior
of the square do this.)

According to this problem, trust and honesty cycle: if sellers are generally
honest, buyers start to trust, so sellers become dishonest, so buyers start to inspect,
so sellers again become honest, and the cycle repeats.

Similar cycles occur in the relationship between government regulators (which
are like the buyers) and businesses (which are like the sellers).

10.13.6. Cooperators, Defectors, and Punishers. Does punishing defec-
tors encourage cooperation? Sections 10.7 and 10.12 both address this question.
Here is another simple model that uses an asymmetric game.

Alice can help Bob, conferring a benefit b on Bob at a cost a to herself. If Alice
does not help, Bob can punish her, causing a loss l to Alice at a cost e to himself.
Alice has two strategies: cooperate by helping (c) or defect by not helping (d). Bob
also has two strategies: punish Alice if she defects (p), or don’t bother punishing
her if she defects (n). The payoff matrix is

Bob
p n

Alice c (−a, b) (−a, b)
d (−l,−e) (0, 0)

We shall assume 0 < a < l and 0 < e < b.

(1) Use iterative elimination of weakly dominated strategies to find a dominated
strategy equilibrium.

(2) Find a second pure strategy Nash equilibrium.
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(3) Find the replicator system using only the variables p1 and q1. (Answer:
ṗ1 = p1(1− p1)(lq1 − a), q̇1 = −e(1− p)q(1− q).)

(4) Use the nullclines and linearization to draw the phase portrait. (Answer:
like Figure 10.10 turned upside down, with the horizontal nullcline at q1 =
a
l
. Note that one of our assumptions implies that 0 < a

l
< 1.)

10.13.7. Reputation. In this problem we explore how the previous model of
Cooperators, Defectors, and Punishers changes if Bob’s reputation influences Alice.

First suppose Alice is a cooperator. If she knows that Bob is a punisher, her
action is not affected: she still prefers to cooperate. However, if she knows that
Bob is a nonpunisher, she will prefer to defect. We suppose that when Bob is a
nonpunisher, Alice realizes it with probability µ (Bob’s reputation precedes him)
and defects.

Next suppose Alice is a defector. If she knows that Bob is a nonpunisher, her
action is not affected: she still prefers to defect. However, if she knows that Bob is
a punisher, she will prefer to cooperate. We suppose that when Bob is a punisher,
Alice realizes it with probability ν and cooperates.

The payoff matrix is now

Bob
p n

Alice c (−a, b) (−a(1− µ), b(1− µ))
d (−l(1− ν)− aν,−e(1 − ν) + bν) (0, 0)

As in the previous problem, we assume 0 < a < l and 0 < e < b.

(1) Find the replicator system using only the variables p1 and q1. Answer:

ṗ1 = p1(1− p1)
(

(

l − aµ+ (a− l)ν
)

q1 − a(1− µ)
)

,

q̇1 =
(

− e+ (b+ e)ν +
(

e+ bµ + (b− e)ν
)

p1

)

q1(1− q1).

(2) For ν = 0 (punishers have no reputation), the replicator system becomes

ṗ1 = p1(1− p1)
(

(l − aµ)q1 − a(1− µ)
)

,

q̇1 =
(

− e + (e+ bµ)p1
)

q1(1− q1).

Use the nullclines and linearization to draw the phase portrait. (Answer:
like Figure 10.8 flipped across a vertical line, with the horizontal nullcline
at q1 =

a−aµ

l−aµ
and the vertical nullcline at p1 =

e
e+bµ

.)

(3) In the phase portrait you just drew, what are the stable equilibria? As µ
increases from 0 to 1, which basin of attraction grows and which shrinks?

238



10.13.8. Asymmetric evolutionary games with two strategies. In this
problem we look at the general asymmetric evolutionary game with two strategies.
The payoff matrix is

Player 2
t1 t2

Player 1 s1 (α11, β11) (α12, β12)
s2 (α21, β21) (α22, β22)

(1) Show that if we replace α11 and α21 by α11 + k and α21 + k, the replicator
system is unchanged. Why does this make intuitive sense? The same is
true if we add a constant to α12 and α22, or to β11 and β12, or to β21 and
β22.

(2) Because of the previous problem, we can assume that α11 = β11 = α22 =
β22 = 0. We write the new payoff matrix as

Player 2
t1 t2

Player 1 s1 (0, 0) (a, b)
s2 (c, d) (0, 0)

Show that the replicator system, using only the variables p1 and q1, is

ṗ1 = p1(1− p1)
(

a− (a + c)q1
)

,

q̇1 =
(

d− (b+ d)p1
)

q1(1− q1).

(3) Assume that 0 < a
a+c

< 1 and 0 < d
b+d

< 1. Then there is an interior

equilibrium at (p∗1, q
∗
1) =

(

d
b+d

, a
a+c

)

. Show that the linearized replicator
system at (p∗1, q

∗
1) has the matrix

(

0 −(a + c)p∗1(1− p∗1)
−(b+ d)q∗1(1− q∗1) 0

)

Thus the characteristic equation is

λ2 − (a+ c)(b+ d)p∗1(1− p∗1)q
∗
1(1− q∗1) = 0.

Since 0 < p∗1 < 1 and 0 < q∗1 < 1, the eigenvalues have opposite sign if
(a + c)(b+ d) > 0, and are pure imaginary if (a + c)(b + d) < 0. The first
case gives a saddle point; we have seen such examples.

(4) In the second case, use the method of Subsection 9.4.2 to find a first integral.
One answer:

V (p1, q1) = a ln q1 + c ln(1− q1)− d ln p1 − b ln(1− p1).

(5) Show that V has a local extremum at (p∗1, q
∗
1) by showing that Vp1p1Vq1q1 −

V 2
p1q1

> 0 at (p∗1, q
∗
1). This implies that that near (p∗1, q

∗
1) the orbits of the

replicator system are closed, so the solutions are time-periodic. In fact
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all solutions in the interior of the rectangle 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1 are
time-periodic, but we will not show this.

Notice that when (a + c)(b + d) 6= 0, interior equilibria (p∗1, q
∗
1) are

never asymptotically stable. This is a case of a more general fact: for any
asymmetric game, interior equilibria are never asymptotically stable [6].

(6) Show that on any periodic solution, the average of p1(t) is p∗1, and the
average of q1(t) is q

∗
1. (See the end of Section 10.5.)
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CHAPTER 11

Sources for examples and problems

Chapter 1

Section 1.5. [3], sec. 1.2.

Section 1.8. [3], sec. 2.18. For other versions, see the Wikipedia page devoted to
this game, http://en.wikipedia.org/wiki/Centipede_game.

Section 1.12. This example is a simplification of the version in [4], sec. 5.16.

Section 1.13. The setup for this example is from [4], sec. 5.13.

Problem 1.16.3. [4], sec. 4.7.

Chapter 2

Section 2.6. [4], sec. 4.9.

Section 2.7. The notation in this problem comes from [4], sec. 4.6.

Section 1.15. For backward induction in mixed martial arts, see [10].

Problem 2.14.2. [4], sec. 4.6.

Problem 2.14.3. [4], sec. 4.3.

Problem 2.14.4. [4], sec. 4.10.

Problem 2.14.5. [4], sec. 4.15.

Problem 2.14.6. [5], sec. 4.11.

Problem 2.14.7. [5], sec. 4.10.

Chapter 3

Section 3.3. [4], sec. 6.5.

Section 3.4. [4], sec. 5.4.

Problem 3.11.1 [4], sec. 5.1.

Problem 3.11.2 [4], sec. 5.1.
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Problem 3.11.3 [4], sec. 5.2 (a).

Problem 3.11.4 [4], sec. 5.2 (b).

Problem 3.11.8 [5], sec. 4.5.

Problem 3.11.10 [4], sec. 5.15 (a).

Problem 3.11.11 [4], sec. 4.12.

Problem 3.11.13 [7].

Chapter 4

Section 4.2 [3], sec. 3.18.

Section 4.4 [4], sec. 3.21.

Section 4.6 [2], chapter 14.

Problem 4.7.1 [2], sec. 3.7.

Chapter 5

Section 5.1 [4], sec. 6.4.

Section 5.4 [4], sec. 6.21.

Section 5.6 [1], p. 48.

Section 5.7 [4], sec. 6.29.

Problem 5.12.1 [4], sec. 6.10.

Problem 5.12.2 [4], sec. 6.14.

Problem 5.12.3 [4], sec. 6.3.

Problem 5.12.5 [4], sec.6.7.

Problem 5.12.6 [4], sec. 6.30.

Chapter 6

Section 6.5 [4], sec. 5.10.

Problem 6.9.3 [4], sec. 5.14.

Problem 6.9.4 [4], sec. 9.4.

Chapter 7
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Section 7.2 [9], sec. 4.8.

Section 8.5 [4], sec. 6.26.

Problems 7.5.2–7.5.3 [4], secs. 6.35 to 6.37.

Chapter 8

Section 8.4.3 [4], sec. 3.10.

Problem 8.6.1 [4], sec. 10.9.

Problem 8.6.2 [4], sec. 6.41.

Chapter 10

Section 10.5 [4], secs. 6.25 and 12.14.

Problem 10.13.1 [4], sec. 6.2.

Problem 10.13.3 [4], sec. 12.13.

Problem 10.13.5 [4], sec 12.19.

Problems 10.13.6–10.13.7 [11].
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