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The Infinite Monkey Theorem (Lecture W 9/11)

”It was the best of times, it was the blurst of times?! ...You stupid monkey!... Oh, shut up!”
— Charles Montgomery Burns

The main goal of this handout is to prove the following statement:

Theorem 1 (Infinite monkey theorem). If a monkey hits the typewriter keys at random for an infinite
amount of time, then he will almost surely produce any type of text, such as the entire collected works of
William Shakespeare.

To say that an event E happens almost surely means that it happens with probability 1: P (E) = 11.
We will state a slightly stronger version of Theorem 1 and give its proof, which is actually not very hard.

The key ingredients involve:

• basics of convergent/divergent infinite series (which hopefully you already know!);

• basic properties of the probability (measure) P (see Ross §2.4, done in lecture F 9/6);

• the probability of a monotone increasing/decreasing sequence of events, which is the main content of
Ross, Proposition 2.6.1;

• the notion of independent events (which we will discuss properly next week, see Ross §3.4, but it’s
quite easy to state the meaning here).

1 Preliminaries

In this section we outline some basic facts which will be needed later. The first two are hopefully familiar
(or at least believable) if you have had freshman calculus:

1 While almost surely and surely often mean the same in the context of finite discrete probability problems, they differ when
the events considered involve some form of infinity. For instance, in the ”dart throwing while blindfolded” example we did in
class [F 9/6], I claimed that with probability 1 (almost surely) that the dart cannot land on single points (or a countable union
thereof). It’s not that it can’t happen outright: but the probability that it happens, measured with respect to the (uncountably
infinite) continuum of all events, is smaller than any positive number.
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Proposition 2. Let (an)
∞
n=1 be a sequence of nonnegative real numbers. Then the series

∑
n an converges

(write:
∑

n an < ∞) if and only if its tail series
∑

n≥m an tends to 0 as m → ∞.

Proposition 3. For any x ∈ R, 1− x ≤ e−x.

Proof. If you wish, plot the graphs of f1(x) = 1− x and f2(x) = e−x, and you’ll see that f1(0) = f2(0) = 1,
while for all x ̸= 0, f1(x) ⪇ f2(x). For a calculus proof, what you need to show is that the differentiable
function g(x) = (1− x)− e−x has a global maximum at the point x = 0 with value g(0) = 0.

The remaining items involve probabilistic notions.

Proposition 4 (Union bound, Boole’s inequality). Let (En)n be any (finite or infinite) sequence of events.
Then P (

∪
n En) ≤

∑
n P (En).

Proof. Notice that the right-hand side of the inequality is the first sum appearing in the inclusion-exclusion
identity. But as we argued many times in class, this sum in general overestimates P (

∪
n En) (unless all the

En’s are pairwise disjoint). For a formal proof, see Self-Test Problem 2.14.

Definition 5. We say that an infinite sequence of events (En)
∞
n=1 is monotone if either E1 ⊂ E2 ⊂ · · · ⊂

En ⊂ · · · (monotone increasing) or E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · · (monotone decreasing). Define limn→∞ En to
mean

∪∞
n=1 En, if the sequence is monotone increasing; respectively,

∩∞
n=1 En, if the sequence is monotone

decreasing.

Proposition 6 (Ross, Proposition 2.6.1). Let (En)
∞
n=1 be a monotone sequence of events. Then

P
(
lim

n→∞
En

)
= lim

n→∞
P (En).

Definition 7 (Ross, §3.4). A finite sequence of events (En)
N
n=1 is said to be independent if P (E1 ∩ E2 ∩

· · · ∩ EN ) = P (E1)P (E2) · · ·P (EN ). An infinite sequence of events (En)
∞
n=1 is said to be independent if all

its finite subsequences are themselves independent.

For instance, when you roll a die consecutively, the event that you roll any of {1, 2, 3, 4, 5, 6} on the 1st
attempt is independent from the event that you roll any of {1, 2, 3, 4, 5, 6} on the 2nd attempt, etc. So the
probability that you roll a 1 first then a 4 next is the product P ({1})P ({4}) = 1

6 · 1
6 = 1

36 .

2 The Borel-Cantelli lemma

In this section we will put the preliminary statements to good use. Let (En)
∞
n=1 be an arbitrary, infinite

sequence of events. We would like to consider the event that infinitely many of the En’s happen. To state
this in another way, if I give you any positive integer m, you can always find a bigger integer n ≥ m such
that En happens. (If not, then there can’t be an infinite number of these En’s happening.) The set-theoretic
way of expressing this is

∞∩
m=1

∞∪
n=m

En,

which stands for the event that the En’s happen infinitely often, abbreviated as (En i.o.).
The following result, known as the Borel-Cantelli lemma2, says that the probability of (En i.o.)

depends on whether the series
∑

n P (En) converges or not.

2This is related to Kolmogorov’s 0-1 law, introduced by the same Andrei Kolmogorov whose axioms of probability you’re
learning in this class. The law says that any ”tail event,” such as the event (En i.o.) (under the independence assumption),
will either almost surely happen or almost surely not happen.
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Lemma 8 (Borel-Cantelli). Let (En)
∞
n=1 be any infinite sequence of events.

(i) If
∑∞

n=1 P (En) < ∞, then P (En i.o.) = 0.

(ii) Suppose (En)
∞
n=1 are independent. If

∑∞
n=1 P (En) = ∞, then P (En i.o.) = 1.

Proof. For Part (i), notice that (Fm)∞m=1, where Fm :=
∪

n≥m En, is a monotone decreasing sequence of
events. Hence

P

( ∞∩
m=1

∞∪
n=m

En

)
=

Def.5
P

(
lim

m→∞

( ∞∪
n=m

En

))
=

Prop.6
lim

m→∞
P

( ∞∪
n=m

En

)
≤

Prop.4
lim

m→∞

( ∞∑
n=m

P (En)

)
.

Since it is assumed that the series
∑

n P (En) converges, Proposition 2 implies that the right-hand side must
be 0. This establishes Part (i).

For Part (ii), recall that an application of DeMorgan’s laws gives

( ∞∩
m=1

∞∪
n=m

En

)c

=
∞∪

m=1

∞∩
n=m

(En)
c. So

proving that P

( ∞∩
m=1

∞∪
n=m

En

)
= 1 is equivalent to proving that P

( ∞∪
m=1

∞∩
n=m

(En)
c

)
= 0. In fact, it is

enough just to show that for some positive integer m that

P

( ∞∩
n=m

(En)
c

)
= 0.

(Why?), and this is what we prove below. Observe that the sequence (Hk)
∞
k=m+1, where Hk :=

∩k
n=m(En)

c,
is a monotone decreasing sequence of events. Thus under the assumption that the En’s (and hence the
(En)

c’s) are independent, we have

P

( ∞∩
n=m

(En)
c

)
=

Def.5
P

(
lim
k→∞

k∩
n=m

(En)
c

)
=

Prop.6
lim
k→∞

P

(
k∩

n=m

(En)
c

)
=

Def.7
lim
k→∞

k∏
n=m

P ((En)
c)

= lim
k→∞

k∏
n=m

(1− P (En)) ≤
Prop.3

lim
k→∞

k∏
n=m

e−P (En) = lim
k→∞

exp

(
−

k∑
n=m

P (En)

)
.

Finally, since it is assumed that
∑

n P (En) = ∞, its tail series
∑∞

n=m P (En) must also diverge, so the
right-hand side must be 0.

3 Proof of the infinite monkey theorem

Of course the monkey is just a metaphor here: you could make a robot or a human perform the same task
as well! The essence of the problem is really the following (now suitably abstracted):

Theorem 9 (Infinite monkey theorem, mathematical version). Consider an infinite string of letters a1a2 · · · an · · ·
produced from a finite alphabet (of, say, 26 letters) by picking each letter independently at random, and uni-
formly from the alphabet (so each letter gets picked with probability 1

26). Fix a string S of length m from
the same alphabet (which is the given “text”). Let Ej be the event that the substring ajaj+1 · · · aj+m−1 is S.
Then with probability 1, infinitely many of the Ej’s occur.

Proof. Consider the sequence of events (Emj+1)
∞
j=0. Observe that they are independent events: the event that

a1a2 · · · am is S is independent from the event that am+1am+2 · · · a2m is S, etc., since they belong to different
”blocks” of the infinite string. Moreover, for every j, P (Emj+1) =

(
1
26

)m
. Therefore

∑∞
j=0 P (Emj+1) =∑∞

j=0(
1
26 )

m = ∞. So by Part (ii) of the Borel-Cantelli lemma (Lemma 8), the probability that infinitely
many of the Emj+1’s occur is 1.
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To paraphrase this in the language of Theorem 1, but in a stronger sense:

Corollary 10 (Infinite monkey theorem, restated). If a monkey hits the typewriter keys at random for an
infinite amount of time, then he will almost surely produce any type of text, such as the entire collected
works of William Shakespeare, infinitely often.

What if one doesn’t have an infinite amount of time/patience to watch a monkey type away randomly?
Then none of the above is guaranteed (with full probability). Realistically, one could ask if a monkey could
type up some readable text (or any comprehensible gibberish for that matter) in a reasonably long but finite
amount of time. See Jesse Anderson’s successful attempt at deploying millions of virtual monkeys to type up
the entire collected works of Shakespeare3. And for amusement, you can always watch the Simpsons episode
where they spoofed the infinite monkey theorem.

3See http://www.jesse-anderson.com/2011/10/a-few-million-monkeys-randomly-recreate-every-work-of-shakespeare
and the hyperlinks therein.
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