
Lab 6 : External merge sort

Professor: Ronaldo Menezes

TA: Ivan Bogun

Department of Computer Science
Florida Institute of Technology

September 23, 2013

CSE 2010 Algorithms and Data Structures Fall 2013

1 General description

In this lab you will be given a file with integers. Your task is to sort it and save a sorted
file on the hard drive. As simple as that. Unfortunately the file will be too big to fit in
the RAM, thus conventional methods won’t work. This problem is known as External
sorting1, since eventually you will need to use external memory .

1.1 Algorithm

This algorithm is known as a 2-way external merge sort. Let S be the whole set of
integers in the file, then :

1) Divide S into chunks of size T (will be a parameter in the algorithm). Sort each
chunk using merge sort and save every it into a separate file. (You are required to
implement your own merge sort)

2)Merge every two consecutive sorted files using merge procedure from the merge sort
algorithm. You will have to modify it so it can sort integers from the two files without
creating arrays. The result of this merging should be saved into a file. Continue until
you merge every pair of consecutive files. Now you decreased the number of files by the
factor of two. Continue merging rounds until only one file is left, which is supposed to
be a sorted version of the input. Also, your program has to delete all files, but last one.

1.2 Useful tips

Test every function you write on the small testcase. If you want to test if your program
solves the problem correctly (sorts the input file) you can do the following:

1) Write a small program which reads input file and loops through lines of the file
checking if the next integer is higher or equal than the previous one

2) Check the space (physical memory) of the input and output files. Since your pro-
gram has to sort, both files should be of the same size.

2 Implementation

Implement class Sudoku.java.

// ExternalSort.java
public class ExternalSort {

private int chunkSize_ ; // size of the chunks

1http://en.wikipedia.org/wiki/External_sorting

2

http://en.wikipedia.org/wiki/External_sorting

CSE 2010 Algorithms and Data Structures Fall 2013

private String directory_; // directory where all the files will
be saved to

public ExternalSort(String directory, int chunkSize) {
// implement constructor

}

public int[] mergeSort(int[] variableArray){
// variableArray - array to be sorted
// basic sorting algorithm, it has to read the file and sort it using

merge sort
// should return a sorted array

}

public void completeSort(String inputFile,String outputFile) {
// inputFile - filename of the input file
// outputFile - filename of the output file (new file which is a sorted

version of the input)
// implement external 2-way merge sort

}
}

3 Optional problems

• Investigate which chunk size, T , will be optimal. Although you can find it analyt-
ically, you can run a few experiments and make a plot with running time vs chunk
size to determine the optimal value.

4 Sample input-output

4.1 Input

Use the following main for testing.

// main method
public static void main(String[] args) throws FileNotFoundException {

ExternalSort externalsort=new
ExternalSort("/host/Files/Dropbox/GSA/CSE2010_Fall2013",10000);

externalsort.completeSort("testcase1.txt","output1.txt");

}

output1.txt (7,705 KB): (only the first 8 and last 8 lines will be shown)

3

CSE 2010 Algorithms and Data Structures Fall 2013

4.2 Output

0
1
2
2
3
5
7
9
...
999994
999994
999994
999995
999996
999997
999998
999998

5 Grade breakdown

basis grade
Implementation (60)

merge sort 20
external sort 40
Comments (20)
General 10
Javadocs 10
Overall (20)
Compiled 5
Style 5

Runtime 10
Total 100

4

	General description
	Algorithm
	Useful tips

	Implementation
	Optional problems
	Sample input-output
	Input
	Output

	Grade breakdown

