# DFA Minimisation Algorithm

### Raghunath Tewari

September 13, 2013

Let  $D = (Q, \Sigma, \delta, q_0, F)$  be a DFA with no unreachable states, such that L = L(D).

For any two states  $p, q \in Q$ , we say that p is equivalent to q (denoted as  $p \approx q$ ) if for all  $x \in \Sigma^*$ ,

$$\delta(p, x) \in F \Longleftrightarrow \delta(q, x) \in F$$

It is easy to check that  $\approx$  defines an equivalence class on Q (show it!). Now we will give an algorithm to construct a new DFA whose states are the equivalence classes of Q and transitions defined accordingly, such that this new DFA also recognises L.

### Algorithm

- 1. Create a table of pairs  $\{p, q\}$  for all states  $p, q \in Q$ . Initially each pair is unmarked. (Note that we are considering unordered pairs.)
- 2. If for a pair  $\{p,q\}, p \in F$  and  $q \notin F$  or vice versa then mark  $\{p,q\}$ .
- Repeat the following until you make an entire pass of the table without marking any pair: For every unmarked pair {p, q} and for every symbol a ∈ Σ, if {δ(p, a), δ(q, a)} is marked, then mark {p, q}.
- 4. Finally, if a pair  $\{p, q\}$  is unmarked then  $p \approx q$ .

Observe that we mark a pair  $\{p, q\}$  if p and q are not equivalent.

#### Example 1



The table of state pairs is initially as follows: 1

| - | 2 |   |   |   |   |
|---|---|---|---|---|---|
| - | - | 3 |   |   |   |
| - | - | - | 4 |   |   |
| - | - | - | - | 5 |   |
| - | - | - | - | - | 6 |

Table is initially completely unmarked.

| 1 |   |   |   |   |   |
|---|---|---|---|---|---|
| × | 2 |   |   |   |   |
| × | - | 3 |   |   |   |
| - | × | × | 4 |   |   |
| - | × | × | - | 5 |   |
| × | _ | _ | × | × | 6 |

After first pass (marked all pairs consisting of one accept state and one non-accept state).

| 1 |   |   |   |   |   |
|---|---|---|---|---|---|
| × | 2 |   |   |   |   |
| × | - | 3 |   |   |   |
| - | × | × | 4 |   |   |
| - | × | × | - | 5 |   |
| × | × | × | × | × | 6 |

After second pass (marked pairs {2,6} and {3,6} as  $\{\delta(2,a), \delta(6,a)\} = \{4,6\}$  and  $\{\delta(3,a), \delta(6,a)\} = \{5,6\}$  and both are marked pairs).

| 1 |   |   |   |   |   |
|---|---|---|---|---|---|
| × | 2 |   |   |   |   |
| × | - | 3 |   |   |   |
| × | × | × | 4 |   |   |
| × | × | × | - | 5 |   |
| × | × | × | × | × | 6 |

After third pass (marked pairs  $\{1, 4\}$  and  $\{1, 5\}$  as  $\{\delta(1, a), \delta(4, a)\} = \{2, 6\}$  and  $\{\delta(1, a), \delta(5, a)\} = \{2, 6\}$  and  $\{2, 6\}$  is now a marked pair).

At this point, we are done since we cannot make any further progress. Since the pairs  $\{2,3\}$  and  $\{4,5\}$  remain unmarked, hence  $2 \approx 3$  and  $4 \approx 5$ .

The minimised DFA is as follows:

start 
$$\longrightarrow$$
  $1$   $\xrightarrow{a, b}$   $2, 3$   $\xrightarrow{a, b}$   $4, 5$   $\xrightarrow{a, b}$   $6$   $a, b$ 

## Example 2

Consider the DFA D given below in a table format:  $\begin{vmatrix} a \\ b \end{vmatrix}$ 

|                   | a | b |
|-------------------|---|---|
| $\rightarrow 1 F$ | 6 | 4 |
| $2\mathrm{F}$     | 7 | 5 |
| 3                 | 2 | 8 |
| 4                 | 1 | 8 |
| 5                 | 2 | 6 |
| 6                 | 3 | 1 |
| 7                 | 5 | 2 |
| 8                 | 4 | 2 |

Here 1 is the start state and 1 and 2 are accept states.

| 1             |         |         |          |        |      |   |   |
|---------------|---------|---------|----------|--------|------|---|---|
| -             | 2       |         |          |        |      |   |   |
| -             | -       | 3       |          |        |      |   |   |
| -             | -       | -       | 4        |        |      |   |   |
| -             | -       | -       | -        | 5      |      |   |   |
| -             | -       | -       | -        | -      | 6    |   |   |
| -             | -       | -       | -        | -      | -    | 7 |   |
| -             | -       | -       | -        | -      | -    | - | 8 |
| Table is<br>1 | initial | ly comp | letely ı | unmarl | ked. |   |   |
| -             | 2       |         |          |        |      |   |   |
| ×             | ×       | 3       |          |        |      |   |   |
| ×             | ×       | -       | 4        |        |      |   |   |
| ×             | ×       | -       | -        | 5      |      |   |   |
| ×             | ×       | _       | _        | _      | 6    |   |   |

After first pass (marked all pairs consisting of one accept state and one non-accept state).

-

-

\_

-

\_

-

 $\times$ 

Х

 $\times$ 

Х

7

-

8

-

-

| 1 |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|
| - | 2 |   |   |   |   |   |   |
| × | × | 3 |   |   |   |   |   |
| × | × | - | 4 |   |   |   |   |
| × | × | - | - | 5 |   |   |   |
| × | × | × | × | × | 6 |   |   |
| × | × | × | × | × | - | 7 |   |
| × | × | × | × | × | - | - | 8 |
|   |   |   |   |   |   |   |   |

After second pass (marked pairs  $\{3,6\}$ ,  $\{3,7\}$ ,  $\{3,8\}$ ,  $\{4,6\}$ ,  $\{4,7\}$ ,  $\{4,8\}$ ,  $\{5,6\}$ ,  $\{5,7\}$  and  $\{5,8\}$ ).

Observe that at this point, we are done since we cannot make any further progress. From the unmarked pairs we conclude that  $1 \approx 2$ ,  $3 \approx 4 \approx 5$  and  $6 \approx 7 \approx 8$ .

The minimised DFA is as follows:

