
9/3/13	

1	

cs140 – algorithms
prof. yi chen

september 3, 2013

9/3/13

Big picture
  Solve problems

  Given a definition
  put it in context of existing knowledge
  prove things about it

  Be able to use common strategies
  break it down in a structured way
  decide whether/how to simplify
  decide if general techniques can be applied and, if so, how

  Determine if it can be solved efficiently
  understand the role of heuristics
  understand the role of implementation

  Collaborate and communicate

9/3/13

Prerequisites/assumptions
  Proficiency with:

  proof techniques

  Experience with:
  high-level programming language
  counting
  graphs and trees

  Exposure to:
  big-O notation
  1D/2D arrays
  sorting (one O(n2) sort)
  basic matrix/vector operations
  sequential vs. random memory access

9/3/13

two conjectures

  all primes are odd

  if p is prime, then 2p-1 is prime

9/3/13

9/3/13	

2	

Proof techniques
  by example/counterexample
  by enumeration
  by cases
  by inference (aka direct proof)
  trivially
  by the contrapositive
  by contradiction
  by (weak) induction
  by strong induction

all primes are odd
if p is prime, then 2p-1 is prime

9/3/13

handouts
  Administrivia

  synchronization
  collaboration
  piazza

  piazza
  q&a
  resources

9/3/13

asymptotics

9/3/13

  Show that f(n)=120n2-11n+250 is O(n2)

  Show that f(n)=n3 is O(n2)

f(n) is O(g(n)) if there exist positive constants
c and n0 such that f(n) ≤ cg(n) for all n>n0

more asymptotics
  Ω (big-Omega)

  θ (Theta)

  ω (little-omega)
  ο(little-o)

f(n) is Ω(g(n)) if there exist positive constants c and
n0 such that f(n) ≥ cg(n) for all n>n0

f(n) is Ω (g(n)) if there exists a positive constant c
such that f(n) ≥ cg(n) for an infinite number of n

∞

9/3/13

9/3/13	

3	

Describe (in English sentences) how you would arrange a set of
10 dates in “ascending sorted order”, that is, from earliest to
latest. You might consider the following list of dates, but make
sure that you describe how to do it with any 10 dates.

December 21, 2010
May 1, 1988
July 21, 1970
August 28, 2001
January 31, 2002
June 6, 2010
May 20, 1988
November 5, 1970
April 2, 1999
September 9, 2002

9/3/13

insertion sort

 insertion-sort(A)

 1. for j = 2 to length of A

 2. key = A[j]

 3. // insert key into sorted sequence A[1:j-1]

 4. i = j-1

 5. while ((i>0) and (A[i]>key))

 6. A[i+1] = A[i]

 7. i = i-1

 8. endwhile

 9. A[i+1] = key

 10. endfor

9/3/13

correctness – loop invariants
  loop invariant

  initialization

  maintenance

  termination

 insertion-sort(A)
 1. for j = 2 to length of A
 2. key = A[j]
 3. // insert key into sorted sequence A[1:j-1]
 4. i = j-1
 5. while ((i>0) and (A[i]>key))
 6. A[i+1] = A[i]
 7. i = i-1
 8. endwhile
 9. A[i+1] = key
 10. endfor

9/3/13

