Algorithms Rule the World !?

e
Talk about putting

the conquer in
divide and
conquer...

Recall D&C

- Divide the problem into a number of smaller, sub-
instances of the same problem

- Conquer the subproblems by solving them
recursively

- Combine the subproblem solutions to give a
solution to the original problem

Wouldn’t it be nice if we had a mechanism for
evaluating the complexity of all such algorithms that
fit into this paradigm?

Last time...

* Divide-and-conquer:
* Merge sort
*|n pop culture?

e Administrivia

Recurrence functions

* A recurrence is a function that is defined in
terms of
* One or more base cases, and
* Itself, with smaller arguments.

* Examples:
ifn=1,

1
1 fn=1, T =
T(n) =) % Thi—1)+1 ifn>1.

2T (n/2)+n ifn>1.

Solution: T'(n) = nl . .
olution: T(n) = nlgn +n 0 =

T =9 rm a1 itn>2.

Recursion-tree
T(n)=3T(n/4)+cn’

c(s)’ c(3) c(3)

Worksheet: Solve using recursion tree

ifn=1,
Th—1)4+1 ifn>1.

Solution: T'(n) = n.

T(n) =

ifn=2,
T(J/n)+1 ifn>2.
Solution: T'(n) = lglgn.

T(n) =

Recursion-tree
\ T(l’l) = 3T(l’l / 4) + Cl’l2 en? j cn?

P

Y T(1) T() TA) T() T() T() T(A) T(A) T(A) T(A) - T(1) T(1) T(1) woime O

() Total: O(n?)

Substitution Method

* You can inductively verify / prove (a guess for)
a solution by substituting it back into the
recurrence formula.

* Recursion trees are a good way of generating
a good estimate.

fn=1,

T(n)= ,
2T (n/2) +n iftn>1.

Substitution Method for
Example: Merge sort

Asymptotics
« Assume 1'(n) = O(1) for sufficiently small n T(n) = 2T (n/2) + ©(n)
* Why?
* No need to worry about base cases 2T (n/2) + O(n)

* Name the constant in the additive term T(n) <2T(n/2) + cn for some positive constant ¢

* For O, must show upper (O) and lower bounds
(Q) separately!
* Can use different constants

Guess: T(n) < dnlgn for some positive constant d .

When to substitute The structure of D&C problems
Size n Branching factor a
* Recursion trees can get messy...
Cn cn Size n/b
/ \ Size n/b?
c(n/3) €(2n/3) i cn Bszbh
c(n/9) c(2n/9) c(2n/9) c(4n/9) wwmminn- cn
leftmost branch peters rightmost branch peters Size 1
out after logy n levels out after logs/, n levels Width alo8: 7 — plogre

A General Recurrence Function

T(n) = aT([n/b]) + O(n?)

Branching factor a

Depth
log, n

~AAAAA

Proving the Master Theorem

* For convenience, assume n is a power of b

* Note: size of problem decreases by a factor of
b with each level of recursion, reaches base
case after log, nlevels

* Branching factor a

* kthlevel of the tree has a subproblems of size
n/bk

Master theorem

If T(n) = aT'([n/b]) + O(n?) for some constants
a>0,b>1 andd > 0,

T(n) = O(ntlogn) ifd=logya

O(n?) if d > logy a
O(n'°®2) ifd <loga .

Full Proof: Section 4.6

Proving the Master Theorem (cont)

* kth level of the tree has a* subproblems of size
n/bk:
n\ a\
k d
a xO(ﬁ) =0(n)x(b—d)

* As k increases, a
geometric series with ratio F

Proving the Master Theorem:

Case 1:)
a
O(rzd) X (b_d)
a ..]
—_|<] - seriesisdecreasing, sum
(bd) given by first term / level in
the tree:
d
O (n)

Proving the Master Theorem:
Case 3:

o))

(a)_1 --- each of the O(IOgb n)

d |~ . .
b terms in the series are equal to

O(n’)

Proving the Master Theorem:

Case 2:
k
a
O(nd) x| —
b
a --- series is increasing, sum
F > 1 given by last term / level in
the tree:
a log, n alogbn (1)(1 y
d d log,n __ og,n)log,n) _ 'log,a
(ﬁ) - (blogbn)d =d : =d =n :

Master theorem

If T(n) = aT'([n/b]) + O(n?) for some constants
a>0,b>1 andd > 0,

O(n?) if d > logy a
T(n) = O(ntlogn) ifd=logya
O(n'°®2) ifd <loga .

Full Proof: Section 4.6

Integer Multiplication

;1::‘ T H Tp ‘:2”/2xL+;1?R

y=| v || ur

Ty = (QTL/Q-TL + -TR)(QR/QZIL +yr) = 2wy + 2n/2 (xLyr + TRYL) + TRYR-

T(n) = 4T(n/2) 4+ O(n). O(

rryr+2rYr = (v +2r) (Yo +Yr) — XYL — TRYR

O(nlog23)

T(n) = 3T(n/2) +O(n).

Quicksort: the players

Tony Hoare

From Wikipedia, the free encyclopedia

Sir Charles Antony Richard Hoare (born 11 January 1934),11! commonly known as Tony Hoare or C. A. R.
Hoare, is a British computer scientist. He developed the sorting algorithm Quicksort in 1960. He also developed
Hoare logic for verifying program correctness, and the formal language Communicating Sequential Processes
(CSP) to specify the interactions of concurrent processes (including the dining philosophers problem) and the
inspiration for the occam programming language.

Contents [hide]
1 Biography

2 Quotations

3 Awards
4Books

5 References

6 Further reading

= 22y 4 yp.

Sir Charles Antony Richard Hoare

7 External links Sir Charles Antony Richard Hoare giving a
conference at EPFL on 20 June 2011

Biography [edit source | edit 522] som

Born in Colombo, Ceylon (now Sri Lanka) to British parents, he received his Bachelor's degree in Classics from the | pesidence
University of Oxford (Merton College) in 1956. He remained an extra year at Oxford studying graduate-level Fields
statistics, and following his National Service in the Royal Navy (1956-1958). While he studied Russian, he also Institutions
studied computer translation of human languages at the Moscow State University in the Soviet Union in the school

11 January 1934 (age 79)
Colombo, British Ceylon

Cambridge
Computer Scientist

Eliott Brothers
Queen's University Belfast
Oxford University

Quicksort

Source: Wikimedia

Quicksort

* Java system sort = Mergesort

JAVA

* Unix sort command = Quicksort

UNIX

Where there is a shell there isa way

Quicksort

To sortitemsin A
- select last item to be pivot r,

- divide remaining items into two subgroups:
those smaller than r and those larger than r

- Recurse on each subgroup

Quicksort

PARTITION(A, p, 1)

QUICKSORT(A, p.r) x = Alr]

if p<r i=p-1
¢ = PARTITION(A, p,r) torJ j ptor—1
QUICKSORT(A, p.g — 1) if [I.J]_Sl_x+ .

QUICKSORT(A,q + 1,r)

Initial call is QUICKSORT(A, 1,n). return 7 + 1

exchange A[i] with A[/]
exchange A[i + 1] with A[r]

Quicksort Loop Invariants

Loop invariant:

1. All entries in A[p ..i] are < pivot.

2. All entries in A[i + 1..j — 1] are > pivot.
3. A[r] = pivot.

J

r

=X

Alp .. i):

>X

unrestricted

Quicksort in action

r

i
14038

96|

Alr]: pivot
Alj .. r-1]:

not yet examined
Al[i+1 .. j-1]: known to be > pivot
known to be < pivot

Worksheet: Correctness
* |nitialization:
* Maintenance:

* Termination

Proportional splits

A /C"\ """"""""""""""""""" "
¢ () T — "
wr /N
c(5) (%) (F) (%) e =
Y

Total: O(nlgn)

------------------- - Q) . < 10.))
0

Quicktime runtimer

[There’s nothing)

.. . quick about
D|V|de- O(n) sorting a sorted
list!

Conquer: T(A_L)+T(A_R) ‘ ®
Merge: O(1) j
Worst-case: Tn) = Tnm—1)+T(0O)+ O(n)

= Tm—-1)+ O(n)

= OMmn?.

T(n) = 2T (n/2)+ O(n)

Best case: = Onlgn).

Not all that can go wrong will...

Unless your
Murphy...

n-12-1 ‘ (n-1)/2 ‘

Alternating between best/worst case adds only
constant factor to tree depth

Average case analysis

- We'd like a way to describe what typically
happens, i.e., what we expect to happen on
average

« Turns out for quicksort, average case is
similar to best case.

Average-case analysis of Quicksort

See Chapter 5 for more!

Avoiding the worst case:
randomization

RANDOMIZED-PARTITION (A4, p, 1)

i = RANDOM(p,r)
exchange A[r] with A[i]
return PARTITION(A, p,r)

RANDOMIZED-QUICKSORT(A, p,r)
ifp<r
q¢ = RANDOMIZED-PARTITION (A4, p,r)

RANDOMIZED-QUICKSORT (A4, p,qg — 1)
RANDOMIZED-QUICKSORT (A, q + 1,7)

http://www.sorting-algorithms.com/quick-sort

Bounding Algorithms vs. Problems

* Bounding Algorithms
* Best-case, average-case, worst-case
* For each: upper bound (0), lower bound (Q), tight bound(8)
* Bounding problems
* Establish lower bounds for solving general problem
* Why do we care?

* We want to show that our algorithms are optimal

* E.g., algorithm’s worst-case = problem best-case

Lower-bounding sort Comparison-based search

* Bounding problems

* Establish lower bounds for solving general problem

* Decision tree:

* Why do we care?

* We want to show that our algorithms are optimal

* E.g., algorithms worst-case = problem best-case
* How long does it take to sort?
* Insertion, Merge, Quick
- Q(nlogn)
* Can we do better?
+€2(n)to examine input

* Comparisons form a binary tree
* Each permutation of n input elements must appear as a leaf

* Depth--number of comparisons on the longest path--represents worst-
case complexity

Bounding comparison-based search Coming up...

* Observations * Classic D&C: Strassen’s Matrix Multiplication
* Number of permutation (leaves) for n elements: n!

* Binary tree of depth d has at most: 27 leaves * Beatmg n |Og nsorts
d . .

« 20=zl=zn! * Order in this array!

e nlz(n/2)" why? nl=1-2--n

e n!>(n/e)" (Stirling’s approximation)

* Any decision tree sorting n elements has depth Q(nlogn)

. = log(n!
Depthd = og(n!) " Hmm... that
=log(n/2)"" makes merge sort
imal!
_ glog(n/Z) optimal!

n n
=—logn-—log2]

=Q(nlogn)

