Time to clear the air...
Linear Time Sorting e Quicksort

o Best case is ~ merge sort’s worst-case
o In expectation: 39% more comparisons

® Mergesort
o Most implementations do not sort in place
* Need n or n/2 memory
= Lots of copying!
o In place requires O(n log? n)
» (Katajainen, Pasanen & Teuhola 1996)

...80 what gives? The Take-away
® In practice, ® Home: 1078; Super: 10M2
o There are other operations occurring than Insertion Sort (N?) Mergesort (N log N)
comparisons computer  thousand million billion thousand  million billion
. . . home instant 2.8 hours | 317 years instant 1sec 18 min
© QUICkS.OI’t has lower costing hlgh'frequency super instant l1second | 1.6 weeks instant instant instant
operations
o More “engineering” tricks to speed Quicksort (N log N)
= Choose sample median (usually 3) Souree: esprinceton.ed thousand __million ___billion
. . instant 0.3 sec 6 min
= Swap to insertion for small (<10) arrays e o | oo

® Lesson 1: Good algorithms are better than super computers
® Lesson 2: Great algorithms are better than good ones

® Lesson 3:Coefficients actually do matter in practice: implement with
hardware in mind!



Matrix Multiplication Matrix Multiplication

column j
Input: Two n X n (square) matrices, A = (a;;) and B = (b;;).

aily a2 a3 ... Qin 1 b2 ... bin ' .
. : Output: 7 X n matrix C = (¢;;), where C = A- B, 1e.,
row z — aj] a2 a3 ... (ip . bz‘l bi‘.’. . bm — "
: Cij = Z aikby;

(nl @n2 @p3 ... Gdnpn bat bn2 ... ban P

11 12 .. forl'.j 1o ;

= Gl G2 enfry on row
column j
Cnl Cn2 .-

Source: math.cornell.edu

The Obvious Method Can we do better?

SQUARE-MAT-MULT (A4, B, n) ® |s e(*) the best we can do?

let C be a new n X n matrix o Must compute n? entries
fori = 1ton o Each entry is the sum of n terms

column j

for j = 1ton

ain a2 a3 ... Qin bt bz ... . bin
CI-] - O row ¢ — bir b ... . obin | =
k = )4 o R
fOl' 1 tO 1 Anl @n2 an3 ... Qnn bn1 bn2 ... . ban
Cij = Cij + ik - by e

- €y e Cln

return C : I
3 =:{SvSTEM FATLURE] = R
i @(l’l ) - g Cnl Cn2 .-

entry on row
column j




DiVide-and-Conquer? But wait! Call now, and get....

h Volker
Cll C12 _ All A12 . Bll Bl2 \ 5 4 Strassen
Cy Cx Ay A By B> SN ket Strassen is @
multiplicaiions /Gérman mathematician,
[ J f o
Approach . For e priceor 8 profesor et
; thematics and
o Multllply two n/2 C,, = Ay -Bi +Ap- By, 7\ \:tgtis;?saalffhaenUniversity
matrices ] (! of Konstanz.
. Co = Auu-Bi+ A1 By, A
o Sum their product / Born: April 29, 1936 (age 76), Diisseldorf
* Cost Cyy = Ay -Biy+ A4y By, / \\/ Awards: Knuth Prize
OoSts o Cpn = Ay -Bip+ A - By y
o 8 multiplications y

o Combining takes O(n)
® Recurrence: T(n)=8T(n/2)+O(n’) =T(n)=0(n")

Strassen Method Strassen Method

* Step 1: divide * Step 2: add /subtract * Step 3: multiply
S1 = Bix— B, Pl = All'Sl
S, = A+ A, Pz _ S2 . 322

(@o)-(ow) () PIEE RIME

21 (2 21 22 21 D22 Se = A+ Ay P, = Ay-S,

S¢ = B+ Bxn, Ps = Ss5-Sg
S7 = A12—A22-
Ss = By + Ba, P6 = S7 ) SS
So = A —4;. P7 = SQ : SIO
S0 = By + B

O(n/2).



Strassen Method What’s the difference?

* Step 4: combine Consider the Mudd-0O-Matic computer, capable
Ci, = Ps+ Py— P, + Pg, of performing 10° operations second...
Co = P+ P,
gzl = 1;3+P4~ n=10°
22 = s+ Pr—Py—P;. n3 lldays
B8 Cp = Pt P n2-81 31 hours
P, = Ay-S, Ay - B — Ay - By

P, = S-Bx»

Cio = An-Bia+ A1 By

Ay B+ Az Bas

Improving on Strassen! What’s the difference?

* Coppersmith-Winograd: O(n?373/) Consider the Mudd-O-Matic computer, capable

of performing 10° operations second...

Don Coppersmith n= 105
n3 11 days
n2-81 31 hours

n2-37 12 minutes



Putnam FE| IOWS (top 5 on Putnam)

Name
Don Coppersmith
Arthur Rubin
Bjorn Poonen
Ravi D. Vakil
Gabriel D. Carroll
Reid W. Barton
Daniel Kane
Brian R. Lawrence

Edward L. Kaplan

David J. Grabiner

Team
MIT
Purdue, Caltech
Harvard
Toronto
UC Berkeley, Harvard
MIT
MIT
Caltech

Carnegie Tech

Princeton

1968
1970
1985
1988
2000
2001
2003
2007
1939

1986

Years

1969
1971
1986
1989
2001
2002
2004
2008
1940

1987

1970
1972
1987
1980
2002
2003
2005
2010
1941

1988

Lower-bounding sort

* Bounding problems
* Establish lower bounds for solving general problem

* Why do we care?
* We want to show that our algorithms are optimal

* E.g., algorithms worst-case = problem best-case

* How long does it take to sort?
* Insertion, Merge, Quick

* Can we do better?
. to examine input

1971
1973
1988
1981
2003
2004
2006
2011

A Breakthrough On
Matrix Product
NOVEMBER 29, 2011

by rjlipton tags: breakthrough, galactic, matrix exponent, matrix

product, Strassen

Beating Coppersmith-Winograd

Virginia Vassilevska Williams is a theoretical computer
scientist who has worked on a number of problems,
including a very neat question about cheating in the
setup of tournaments, and a bunch of novel papers

exemplified by this one on graph and matrix problems

with runtime exponents of 3 that have long been

begging to be improved.

Comparison-based search

* Decision tree:

* Comparisons form a binary tree



What does the comparison tree look Two Key Observations
like for Mergesort?,

* * Every comparison-based sorting algorithm for
a,a,a; a a, on . . )
1 2‘ 39, \ a,: az ﬁ both S|4des n elements has a binary comparison tree with
'! at least n! leaves
‘ a2 ‘ ‘ a3 ‘ * The depth of that tree (number of comparisons on the
39 L 3-9 )
- e longest path) is a lower bound on the worst-case
T () running time. (" OK then, whatis )
d, . ad d, . ad a,:.d en, what Is
‘ 1-73 ‘ ‘ 174 ‘ ‘ 2°73 ‘ the height of a
binary tree with n!
1 ) \ leaves? )
“\ a,:a; ‘ Q}
a;a,a;a,

Binary trees and their heights... Putting it all together...

e Atree with 2 Any comparison based sorting algorithm on n

/'777‘\‘ . . . . I
leaves has height A items has a corresponding binary tree with n!
at least 1 leaves.

* The height of that tree is at least

* Atree with 4 /-\ which is a lower bound on the worst-case
leaves has height running time.

atleast... /\ : \‘ : \‘ * Finishing up...

* Atree with k sy ‘
leaves has height ‘ _ 5
|~ Y 7=\

n! 2mn (e)

| What's with the |
giant cannon and
the strange
formula?

at least...




Bounding comparison-based search

* Observations
* Number of permutation (leaves) for n elements:

* Binary tree of depth d has at most: leaves
. Why?
. (Stirling’s approximation)

* Any decision tree sorting n elements has depth
* Depthd =

Counting Sort Properties

* Stable: keys with same values appear in same order
as input
* Analysis:
e O(n+k)— O(n) if k=0(n)
* What values of k are practical?
* 64/32 bit values?
* 16 bit? Probably not
* 8 bit? Maybe, depending on n
* 4-bit? Probably, unless n is really small

* Used in Radix sort

Counting sort

* Assumption: numbers to be sorted are integers in {0,1,...,k}

COUNTING-SORT(A, B, n.k)

let C[0..k] be a new array
fori = 0tok
Cli]=0
for j = 1ton
Claljll = Cclaljn+1
fori = 1tok
Cli] =Cli]+C[i —1]
for j = n downto 1
B[C[A[j]]] = Al/]
ClAljll = Cclal -1

Radix sort

i
[

* How IBM made its money

* Punch card readers for census
tabulation

* Early versions of the sorters
involved human operators!

Earlier sorters | edit source | edit =ta |

Original census sorter, msom

Sorting cards became an issue during the 1900 agricultural census, so Herman Hollerith developed the 1901 Hollerith
Automatic Horizontal Sorter,! a sorter with horizonal pockets.!

In 1908, he designed the more compact Hollerith 070 Vertical Sorting Machine!®! that sorted 250 cards per minute. 24!

The IBM Type 71 Vertical Sorter came out in 1928. It had 12 pockets that could hold 80 cards. It could sort 150 cards per
minute.[©!

The IBM Type 75, Model 1, 1922, 400 cards per minute!?!
The IBM Type 75, Model 2, 1922, 250 cards per minute?

Hollerith census machine with sorter &

* Key idea: sort /least significant digits first



Radix sort

RADIX-SORT(A.d)

fori = 1tod
use a stable sort to sort array A on digit i
Example
¢ sorted ¢

326 690 7ok [3b6
453 731 qoB 435
608 433 Pk 453
835 704 36 608
751 > 835 7> 435 7> |6bo
435 435 750 704
704 326 458 751
690 608 69D 835

The breakdown

* n words

* b bits/word

* Break into r-bit digits. Have d=[b/r]
* Using counting sort, k=2" -1

*Time = @(?(n+2r))

* Example: 32-bit words, 8-bit digits.
b=32,r=8,d=[32/8]=4,k=28 -1=255

Radix sort

RADIX-SORT(A.d)
fori = 1tod
use a stable sort to sort array A on digit i

* Correctness
* Proven inductively on i

* Assume digits 1,2,...,i-1 are sorted
« If digits in position i are different, remaining digits are irrelevant
« If digits in position i are same, stable sort leaves numbers in sorted order

* Analysis
. @(n + k) per pass, d passes
- O(dn+k))=0O(dn)if k=0(n)

How to choose r?

@(é<n+zr>)
r

* Balance b/r and n+2".
* Choosing r =logn=0©

(n+ n)) =0O(bn/logn)
logn

r<logn=

r>logn=



Comparison

* 1 million (22°) 32-bit integers
* Radix sort: ceil(32/20) = 2 passes
* Merge sort/quicksort: log 22°= 20 passes
* But | thought we showed sorting to be ®(nlogn)?

* Counting sort allows us to gain information about keys
without directly comparing them

* Use keys as array indices

Bucket Sort

Input: A[l..n], where 0 < A[i] < 1 foralli.
Auxiliary array: B[0..n — 1] of linked lists, each list initially empty.

BUCKET-SORT(A.n)
let B[0..n — 1] be a new array

fori =1ton—1
make B[i] an empty list
fori = 1ton

insert A[i] into list B[|n - A[i]]]
fori =0ton—1

sort list B[i] with insertion sort
concatenate lists B[0], B[1],..., B[n — 1] together in order
return the concatenated lists

Bucket sort

* Assumes input is generated by a random process
that distributed elements uniformly over [0,1)
* |dea:
* Divide [0,1) into n equal-sized buckets
* Distributed the n input values into the buckets
* Sort each bucket
* Process buckets in order, gathering elements in each one

— fgi i

Correctness of Bucket Sort

* Consider A[i],A[j]; WLOG, let A[i] =< A[j]
* Then, |n-Alil|=|n- Aljl| andA[i] is placed into
a bucket with the same or lower index as A[ j]
* If same, insertion sort fixes order
* If earlier bucket, concatenation fixes order

BUCKET-SORT(A,n)

let B[0..n — 1] be a new array
- fori = 1ton—1
4 make B[i] an empty list
fori = 1ton

insert A[i] into list B[|n - A[i]]]
fori =0ton—1

sort list B[i] with insertion sort
concatenate lists B[0], B[1],.... B[n — 1] together in order
return the concatenated lists




Bucket Sort Analysis Expected-case analysis

* Relies on no bucket getting too many values * Probabilistic analysis uses probability to

analyze an algorithm whose running time
depends on the distribution of inputs

* All lines of algorithm besides insertion sort take ®(n)

* If each bucket gets a constant number (average is 1 per
bucket) of elements, then sorting all buckets takes O(n)

* Requires careful analysis * Different than using a randomized algorithm,
where randomization imposes a distribution
* If not drawn from a uniform distribution, all
bets are off

* Still correct, performance analysis just doesn’t
stand



