Order Statistics, Data
Structures, and HeaRs

N

® jthorder statics is the " smallest

The selection problem
element of a set of n elements

.) istic (i=n l' !
o A median is the “halfway point” of the set

o The minimum is the first order statistic (i=1)
= When nis odd, median is unique, at i=(n+1)/2

o The maximum is the last order statistic (i=n)

= When nis even, there are two medians: i=n/2 and i=n/2+1

The selection problem:

Input: A set A of n distinct numbers and a number 7, with 1 <i < n.

Output: The element x € A that is larger than exactly i — 1 other elements in 4.
In other words, the ith smallest element of A.

Administrivia...

® Today:
o Order Statistics
o Data Structures
o Heap Sort

® Homework
o Big-Oh notation
o Recursion trees

® Feedback

Order Stotistics
L elum, Floyd, Praxt, Rivest y Tarjan 1973)

A/\/-\

oWh No
@ Statistios |

select (A,i) ° —

o»\ No! N
/L< Lordec!
\\ P A
LN 3
Reberne The B =
smallest number b T
W, an UNSCATED (N
st A, (

~——
fh\éwa wy
s\idas are
being md‘\-hﬂ\

Select(£6,%,3,1,5%,2) .
=3

Solving the selection problem

® Obvious approach
o Sortin O(n log n)
o Select " element
® Is there a faster way?

o In the expected case?
o In the worst case?

The Cast...

Vaughan
Ronald
Pratt

Vaughan Ronald
Pratt, a Professor
Emeritus at Stanford
University, was one of
the earliest pioneers
in the field of
computer science.
Wikipedia

Born: 1944

Education: Stanford University (1972),
University of Sydney (1970), University of
Sydney (1967)

-

More
images

Ronald Rivest

Ronald Linn Rivest is a cryptographer. He
is the Andrew and Erna Viterbi Professor
of Computer Science at MIT's Department
of Electrical Engineering and Computer
Science and a member of MIT's Computer
Science and Artificial Intelligence
Laboratory. Wikipedia

Born: 1947, Schenectady
Books: Introduction to Algorithms

Education: Stanford University (1974),
Yale University (1969)

Awards: Turing Award, Marconi Prize

Manuel Blum

Manuel Blum is a computer scientist who
received the Turing Award in 1995 "In
recognition of his contributions to the

of
theory and its application to cryptography
and program checking". Wikipedia

Born: April 26, 1938 (age 74), Caracas
Spouse: Lenore Blum

Children: Avrim Blum

Education: Massachusetts Institute of
Technology (1964), More

Awards: Turing Award

Robert
Tarjan

Robert Endre Tarjan is
an American computer
scientist. He is the
discoverer of several
graph algorithms,
including Tarjan's off-line
least common ancestors
algorithm, and
co-inventor of both splay
trees and Fibonacci
heaps. Wikipedia

The Cast...

Robert
Floyd

Robert W Floyd was an
eminent computer
scientist. His
contributions include the
design of the Floyd—
Warshall algorithm,
which efficiently finds all
shortest paths in a graph,
Floyd's cycle-finding ...
Wikipedia

Born: June 8, 1936, New York
Died: September 25, 2001, Palo Alto

Books: The Language of Machines: an
Introduction to Computability and Formal
Languages

Education: University of Chicago (1958),
University of Chicago (1953)

Awards: Turing Award

The Cast...

Born: April 30, 1948 (age 64), Pomona @

Books: Data Structures and Network
Algorithms
Education: Stanford University (1972),

Stanford University (1971), California
Institute of Technology (1969)

Awards: Turing Award, Nevanlinna Prize

Wishful .
< Thmkmg
<z <D

Select (A, 1)

N B R 1]

14 2 3 LS A

. SOMRNOW N
Ooln) +ime ...

'S [| fee]4z]
—— | ————
W Na,
Everything cver ~ than everything

Selection in Expected Linear Time

RANDOMIZED-SELECT (4, p,r,i)

ip==r We've seen
return A[p] Rand ed

¢ = RANDOMIZED-PARTITION (A, p,) an =R

k=g-—p+1 Partition before...

ifi ==k // pivot value is the answer in Quicksort!

return A[q] s
elseif i < k &
return RANDOMIZED-SELECT (A, p,q — 1,i)
else return RANDOMIZED-SELECT(A,q + 1,r,i —k) =
* After R-P call:
Alp...q-1]1=< Alq]; - Pivotis k" (k=g-p+1)element of A[p..r]
Alg+1...r]> Alq]
* 3 cases:
* i=k: done!
« i<k: we want ith element of A[p..q-1]
 i>k: we want (i-k)th element of A[g+1...r]

Worksheet:Think, pair, share

* Sketch an algorithm for select that is O(n) in
expected case

Random Select (rough) Analysis

* Worst-case: O(n?)
* Expected-case?

* Fact: 50% of all number fall in 25t to 75t
percentile

* Fact: A fair coin needs to be flipped twice in
expectation to see a heads

*Thus: in expectation, we shrink array to at most %

of it’s original size

* Ergo: In expectation, T(n)<T(@Bn/4)+0(n) —=T(n) =0(n)

Linear worst case: Min / max

{17,10,4,37,12,28,27,14}
* Find min? max? both?
* How many comparisons did it take?
°n-1%*2=2n-2

* A more pair-fect way?
* Maintain min/max —’/\
* Process in pairs
*Compare larger to max, h

smaller to min 3[n/2J S .\\

A First Attempt...
select (A, i)

/. Here are the N numbers :

a L] |] . LR Y] []
(A"
Sort each
grovp of
3

3. ® Recursively call Seclect

to find the median of
these “middle” elements,
call it foo,

'Folo = select (f’\P))

~/
1
i

vk wNRE

A first attempt

Divide n elements into groups of 3
Find median of n/3 groups

X = Find median of the n/3 medians
Partition on median of median

If i=k, return X

If i<k, recurse on smaller partition
If i>k, recurse on larger partition

4. Portition entire arcro
A with rvrespect to foo.

L__< foo [fool <00 |

ow bad .
con -ﬂ\\s_’ @’ﬁ
i {; =

split be (ch»

é; cuz i s
jreally bod
(I'wm gonno.

/

&
e

L] L] L]] () [[}
A A

>
a2

. \' A, AA
] e a/Ze e a 1

S. wWe know the locathow
of foo in the poarthtioned
o.rrm\/...
ronge of "fN’

L {#oo]]
' J

Ex

A (e mEE B
s ¢ F+ & ¢q

1A 3 4

select (A, 7)

we Gant Al
F™ swolest alement
WA

=1

WorSt cosQ:
T(n)=T (‘;‘R) + T (-3 n,)-ﬁg..n.

/3\ 7

() FGw) %&“J\?en)

1/\ A\ A A
1

Analysis

* Steps 1,2,4 all take O(n)
* Step 3: recurses on how many elements?
* Step 5: recurses on how many elements?

5: The secret of all happiness!!

Divide n elements into groups of n/5
Find median of n/5 groups

X = Find median of the n/5 medians
Partition on median of median

If i=k, return X
If i<k, recurse on smaller partition
If i>k, recurse on larger partition

ik w N RE

The Secret +to q, Portihon entre arcay
A with respect to foo.

All Hoppiness ...

<% + >¥
setect (A, i) l = eo] >
—f oKk, €0 how bhad
. Here oare +the n numbers:)’ can THIS spiit b ?
(-]
™" m 8 ®w a8 - ® W / hx:#\c\?qf“ >
N it 4
C L n L a @ " a : :
A A ~ A A n
BERRER - s s
288 O group of R)
, 'l 1‘ r. , [’p' N A N ~
n - a » 'Y r- ‘ ‘_‘5.5 » [] {
3. Recursively call Scleet oo
to find e mediaw of 5. we kwew the locakin of foo
these “middle” elements, n the partitioned arroy ...
coll it Ffoo. .. S0 we can recwise !
Analysis Select vs. Sort
* Steps 1,2,4 all take O(n) * Select / Randomized-Select are comparison based!
* Step 3: recurses on how many elements? * Sorting is Q(n log n) under-comparison based sort
. " . .
« Step 5: recurses on how many elements? Linear hme sorting algorithm need to make
assumptions

* Linear-time selection do NOT require assumptions by
solving the problem without sort

~T(n)<T(n/5)+T(Tn/10)+0(n)

Data Structures

Quick Review: Queues

12 3 4 5 6 7 8 9 10 11 12

o [15[6 [o] s [+ [
A

!

Q.head =17 Q.tail =12
1 2 3 4 5 6 7 8 9 10 11 12
e[3]s NI 15[6 9] 8]4[17]
A 4
Q.tail =3 Q.head =17
1 2 3 4 5 6 7 8 9 10 11 12
o [3]s ST s [o 84]17]

A

Q.tail =3

A

Q.head = 8

*FIFO

* All operations
0(1)

ENQUEUE(Q, x)

1 Q[Q.tail] = x

2 if Q.tail == Q.length

3 Q.tail =1

4 else Q.tail = Q.tail + 1

DEQUEUE(Q)

[T R S

Quick Review: Stacks

1 2 3 4 5 6 7 12 3 4 5 6 7 12 3 4 5 6 7
s[1s]s[2]9 [T s[is[6]2]9]17]3] s[15]6[2]9[17]3]
S.top =4 S.top =6 S.top =5

* LIFO
* All operations: O(1)

STACK-EMPTY(S) PUSH(S. x) PoP(S)

1 if S.rop == 1 if STACK-EMPTY (S)

2 return TRUE 2 error “underflow”

3 else return FALSE 2 3 elseS.top = S.top—1
4 return S[S.7op + 1]

Quick Review: Linked Lists

prev key next
\ | /
Lohead ——>{]9 [F— o] F—L [4] J—L [1]/]

Lot — BB — e ATl

Lt ——Z BB —CRF—CTil]
LIST-SEARCH (L. k) O(n) LIST-INSERT(L,x) O(1) LIST-DELETE(L, x) O(1)
1 x = L.head 1 x.next = L.head 1
2 while x # NIL and x.key # k 2 if L.head # NIL 2
3 X = x.next 3 L.head.prev = x 3

4

4 L.head = x
5 x.prev = NIL 5

4 return x

LE} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

i — 1
A B0 T+ I o o o T L T
*—Ié

key | prev
next

Worksheet: Fill in missing lines

PUSH(S, x) DEQUEUE(Q) LIST-DELETE (L. x)
1 1

1) 5

2 3 3
4 4
5 5

Quick Review: Queues

12 3 4 5 6 7 8 9 10 11 12 .FIFO

o (NI <[o T+ [+ 1) .
)) * All operations
Q.head =7 Q.tail =12 O(l)
1 2 3 4 5 6 7 8 9 1011 12 ENQUEUE(Q. x)
o3[NN s[s[o]s[417] 1 0[Q.ai) = x
f ﬁ 2 if Q.tail == Q.length
Q.tail =3 Q.head =7 3 Q.tail =1
4 else Q.tail = Q.tail + 1
1 2 3 45 6 7 8 9 1011 12
o s MMM s [5]s 7] DrQUEUE(Q)

! A

Q.tail =3 Q.head = 8

[T R S

Quick Review: Stacks

1 2 3 4 5 6 7 1 2 3 4 5 6 7 12 3 4 5 6 7
shslel2]o [T s[15]6]2]917]3] s[i5]e]2]9]17]3]
A A
S.top =4 S.top =6 S.top =5

* LIFO
* All operations: O(1)

STACK-EMPTY (S) PUSH(S, x) PopP(S)

1 if S.top == 1 if STACK-EMPTY (S)

2 return TRUE 2 error “underflow”

3 else return FALSE 2 3 elseS.top = S.top—1
4 return S[S.7op + 1]

Quick Review: Linked Lists

prev key next
\ | /
L.head ——>{/[9] T 6] G [4[F—{ [1]/]

L.head —{/J25] T o] T Ti6] J— [4] T [1]/]

L head —— 7B A= E P =6 =il

LIST-SEARCH (L. k) O(n) LIST-INSERT (L, x) O(1) ~ LIST-DELETE(L,x) O(1)

1 x = L.head 1 x.next = L.head 1
2 while x # NIL and x.key # k 2 if L.head # NIL 2
3 X = x.next 3 L.head.prev = x 3
4 return x 4 L.head = x 4
5 x.prev = NIL 5

LE} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

28 I EXEAIE DA BN LR N DR e

key | prev

next

Quick Review: Binary Tree
Representations

T.root

Heapsort

* O(n log n) worst cast
* Like merge sort
* Sorts in place
* Like insertion sort
* Combines the best of
both algorithms!

And my roommate
thinks I'm
unorganized...

Quick Review: Tree
Representations

T.root

Heap data structure

* Heap A is a nearly complete binary tree
* Height of a node = # edges on simplest path to leaf
* Height of a tree = height of root = O(n)
* Can be stored as an array with root A[1]

. 1 2 3 4.5 6 7 8 910 PARENT()

[16[14[10]8[7]9]3]2]4]1] 1 returnl|i/2]
N~

LEFT(i)
1 return 2/

RIGHT(i)
1 return2i + 1

Heap Property Maintaining the heap property

* Max-Heapify maintains the max-heap property
* Assume left and right subtrees are max-heaps
* Swap A[i] with largest child

* Repeat until we hit a leaf

* O(log n)
MAX-HEAPIFY (A,i,n)
* (Max-)heap property: for all nodes i, excluding the root, A[Parent(i)] = Ali] | = LEFT(i)
. _ . . , ~ r = RIGHT(7)
For min-heaps, flip the sign (we’ll use max-heaps) i1 < and All] > Afi]
* By induction and transitivity of <, max-heap property guarantees max largest = |

else largest = i

if r <nand A[r] > A[largest]

* In general, can be k-ary trees rather than just binary largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest, n)

element at root

Building a Max Heap Building a heap

9

BuiLD-MAX-HEAP(A, n) A\i\f\i\i\i\g\lﬁ\ﬁ\s\f\
fori = |n/2| downto | al4a]1]s]2]16[9]10[14[8[7]
MAX-HEAPIFY (A, i,n)

* Loop invariant: at start of every iteration, each node i+1,i+2,
...,n is root of max-heap
* Initial: all leaf nodes
* Maintain: by invariance, nodes higher than i are roots, i is made a root

* Termination: when /=0, loop terminates and node 1 is root of max-heap

Analysis

* Simple bound: O(n) calls to Max-Heapify,
which each take O(log n) = O(n log n)
* Tighter bound:
* Max-Heapify is linear in height of node
* Most nodes have small height

[lgn]

lign]
3 ULJ O(h) = 0 (n Y 2’—1)

h=0 h=0

*0O(n)

Heapsort

HEAPSORT(A,n)

BUILD-MAX-HEAP(A, n)

for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY(A,1,i — 1)

®
@ ®
JONNO)

Al

o
w
=

Heapsort

HEAPSORT(A,n)

A BUILD-MAX-HEAP(A, n)
’%Q‘ w,: -3 for i = n downto 2
S exchange A[1] with A[i]

* The idea: MaX-HEAPIFY (A4, 1,i — 1)

* Build a max-heap

o

* Swap root to last position

* “Discard” last node (by decreasing heap size)
* Max-heapify new root of remaining heap

* Rinse and repeat

Heapsort Analysis

HEAPSORT(A,n)
BUILD-MAX-HEAP(A, n)
for i = n downto 2
exchange A[1] with A[i]
MAX-HEAPIFY(A,1,i — 1)
* Build-Max-Heap: O(n)
* for loop: n-1 times
* exchange O(1)
* Max-Heapify O(log n)
* Total O(n log n)

Priority Queue as Heap

* Balances cost of insertion / extraction
* Insert(S,x): O(log n)
* Maximum(S): O(1)
* Extract-Max(S): O(log n)
* Increase-Key(S,x,k): O(log n)

Multi-select

* Earlier we discussed a select(S,i) procedure
that runs in O(n) in the expected/worst case

* What if over time we knew we’d be calling
select on S n times?
*n O(n) 2 O(n?)
* Improvement: Store values in case of repeat
query?

* Improvement: Sort values up front?
*O(nlog n) +(n-1) O(1)
* Average cost per select query? O(log n)

