
Amortization

This many rubles
should buy me a
lot of time!

Last time:

• We showed how we could get
linear expected worst-case by
sweeping things under the rug….

• Today, we will show how to
improve analysis by carefully
considering sequences of action.

O

Let’s count!

• How hard is counting?
• …in binary?

Amortization
•  Idea:

o  Sometimes we don’t care about
the exact, potentially expensive
cost for each operation

o  We do care about a sequence of
operations

•  Goal: show that, on
average, cost per operation
is small

•  Average
o  In the worst-case
o  Not over a distribution of inputs

Source: youtube.com

Amortization:

•  Sometimes we don’t care

about the cost for one
operation (but we do care
about the cost of a
sequence of operations!)

Examples:
•  Multipop Stack
•  Binary Counting
•  Extendible ADT

•  Running time of multipop
o  Linear in number of pops
o  # of iterations of while loop is

min(s,k) where s=|S|

o  Total cost: min(s,k)

•  Total cost of sequence of
n operations:

Amortization!

Multipop Stack ADT

O(n2)

Sequencing Stack Operations
•  Consider any sequence of n stack

operations:
o  Push()
o  Pop()
o  Push()
o  Multipop()
o  Multipop()

o  Push()

•  But wait…
o  Each item will get popped from the stack at

most once per push operation
o  Number of pops (including those in Multipop)
o  …is bound by number of pushes
o  …is bound by n

Total cost:

•  Worst-case O(n) for sequence of
size n
o  Average O(1) per operation

•  Aggregate Analysis
o  No probability distribution needed!

No need to get
pushy!

Pops ≤ # Pushes ≤ n

O(n)

Bit counter

•  Each call could flip k bits
•  n increments ! O(nk)

Analysis
•  Not every bit flips every time

Analysis
•  Total flips:

•  n increments costs:
•  Average cost per operation:

O(n)
O(1)

Accounting Method
•  Idea:

o  Some operations are charged
an amortized cost that is more
than actual cost

o  Store difference to specific
item in data structure as
credit

o  Use credit to pay for when
actual cost > amortized cost

•  Key points:
o  In accounting method,

different operations have
different costs

o  Credit must never go negative
"  Otherwise amortized cost

is not an upper bound on
actual cost

"  Amortized cost would tell
us nothing

Accounting Method Overview

Accounting Method: Multipop Stack

•  Total amortized cost:
•  Upper bound on actual cost!

?
?
?

O(n) •  Total amortized cost:
•  Upper bound on actual cost!

Actual cost Amortized
cost

A[k]!1

1 2

A[k]!0

1 0

?

?

Accounting Method: Binary Counter

O(n)

Potential Method
•  Similar to accounting method, but we

think of credit as potential stored with
the entire data structure

•  Key Ideas:
o  Accounting method stores credit with specific objects
o  Potential method stores potential in the data structure as a whole
o  Can release potential to pay for future operations
o  Most flexible of the amortized analysis

The Potential Function

The (amortized) costs of having potential

•  If we require:

then amortized cost is
always an upper bound on
actual cost
•  In practice:

Φ(Di) ≥Φ(D0)∀i

Φ(D0) = 0;Φ(Di) ≥ 0∀i

The (amortized) costs of having potential

Potential Method: Stack

Φ(D0) = 0?
Φ(Di) ≥ 0∀i?

Yes! D0 represents an empty
stack.

Yes! # of objects on stack is
always non-zero

Potential Method: Stack

•  Suppose ith operation
resets ti bits to 0

•  ci ≤ ti+1 (resets ti bits,
sets ≤ 1 bit to 1)

•  bi ≤ bi-1 – ti +1

Potential Method: Binary Counting Dynamic Table ADT
Scenario
•  Have a table – e.g., hash table.
•  Don’t know in advanced how many objects will be

stored in it.
•  When it fills, must reallocate with a larger size,

copying all objects into the new larger table.
•  Details of table organization not important
Goal: O(1) amortized time per operation.

Dynamic Table Expansion
Whenever table
becomes full,
double it in size

Count inserts

Dynamic Table Expansion:
Aggregate Method

<This page intentionally left blank>

Dynamic Table Expansion:
Accounting Method

<This page intentionally left blank>

Dynamic Table Expansion:
Potential Method

<This page intentionally left blank>

