Amortization

Let's count!

- How hard is counting?
- ...in binary?

Last time:

- We showed how we could get linear expected worst-case by sweeping things under the rug..
- Today, we will show how to improve analysis by carefully considering sequences of action.

Amortization

- Idea:
 - Sometimes we don't care about the exact, potentially expensive cost for each operation
 - We do care about a sequence of operations
- Goal: show that, on average, cost per operation is small

Source: youtube.com

- Average
 - o In the worst-case
 - o Not over a distribution of inputs

Amortization:

 Sometimes we don't care about the cost for one operation (but we do care about the cost of a sequence of operations!)

Examples:

- Multipop Stack
- Binary Counting
- Extendible ADT

Multipop Stack ADT

- PUSH(S, x): O(1) each
- POP(S): O(1) each
- MULTIPOP(S, k)while S is not empty and k > 0POP(S)k = k - 1

- Running time of multipop
 - o Linear in number of pops
 - # of iterations of while loop is min(s,k) where s=|S|
 - o Total cost:
- Total cost of sequence of n operations:

Sequencing Stack Operations

- Consider any sequence of n stack operations:

 Push()
 Pop()
 Push()
 Multipop()
 Multipop()

 Push()

 No need to get pushy!
 - But wait...
 - Each item will get popped from the stack at most once per push operation
 - o Number of pops (including those in Multipop)
 - o ...is bound by number of pushes
 - o ...is bound by n

Total cost:

Worst-case O(n) for sequence of size n

- Average O(1) per operation
- Aggregate Analysis
 - o No probability distribution needed!

Bit counter

INCREMENT(A, k) i = 0while i < k and A[i] == 1 A[i] = 0 i = i + 1if i < kA[i] = 1

Cost of Increment = $\Theta(\# \text{ of bits flipped})$

- Each call could flip k bits
- n increments $\rightarrow O(nk)$

Analysis

Not every bit flips every time

bit	flips how often	times in n Increments
0	every time	n
1	1/2 the time	$\lfloor n/2 \rfloor$
2	1/4 the time	$\lfloor n/4 \rfloor$
	:	
i	$1/2^i$ the time	$\lfloor n/2^i \rfloor$
	:	
$i \ge k$	never	0

counter	A	
value	210	cost
0	000	0
1	0 <u>0 1</u>	1
2 3	0 1 <u>0</u>	3
3	<u>0 1 1</u>	4
4	1 0 <u>0</u>	7
5 6	1 <u>0 1</u>	8
6	1 1 <u>0</u>	10
7	<u>111</u>	11
0	0 0 <u>0</u>	14
÷	÷	15

Accounting Method

- Idea:
 - Some operations are charged an amortized cost that is more than actual cost
 - Store difference to specific item in data structure as credit
 - Use credit to pay for when actual cost > amortized cost

• Key points:

- In accounting method, different operations have different costs
- o Credit must never go negative
 - Otherwise amortized cost is not an upper bound on actual cost
 - Amortized cost would tell us nothing

Analysis

Total flips:

=

<

bit	flips how often	times in n INCREMENTS
0	every time	n
1	1/2 the time	$\lfloor n/2 \rfloor$
2	1/4 the time	$\lfloor n/4 \rfloor$
	;	
i	$1/2^i$ the time	$\lfloor n/2^i \rfloor$
	:	
$i \ge k$	never	0

- *n* increments costs:
- Average cost per operation:

Accounting Method Overview

Let c_i = actual cost of i th operation,

 \hat{c}_i = amortized cost of *i*th operation.

Then require $\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$ for *all* sequences of *n* operations.

Total credit stored =
$$\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \ge 0.$$
 had better be

Accounting Method: Multipop Stack

$$\begin{array}{rcl} \text{Let } c_i & = & \text{actual cost of } i \, \text{th operation ,} \\ \widehat{c}_i & = & \text{amortized cost of } i \, \text{th operation .} \\ \end{array}$$

Then require
$$\sum_{i=1}^n \hat{c}_i \ge \sum_{i=1}^n c_i$$
 for *all* sequences of *n* operations. Total credit stored $= \sum_{i=1}^n \hat{c}_i - \sum_{i=1}^n c_i \ge 0$.

Stack

operation	actual cost	amortized cost
Push	1	?
Pop	1	?
MULTIPOP	$\min(k,s)$?

- Total amortized cost:
- Upper bound on actual cost!

Potential Method

 Similar to accounting method, but we think of credit as **potential** stored with the entire data structure

- Key Ideas:
 - o Accounting method stores credit with specific objects
 - o Potential method stores potential in the data structure as a whole
 - o Can release potential to pay for future operations
 - Most flexible of the amortized analysis

Accounting Method: Binary Counter

Let $c_i = \arctan \cos i$ th operation, $\hat{c}_i = \arctan \cos i$ th operation.

Then require
$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$
 for *all* sequences of *n* operations.

Total credit stored =
$$\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \ge 0$$
.

	Actual cost	Amortized cost
$A[k] \rightarrow 1$	1	?
<i>A</i> [<i>k</i>]→0	1	?

- Total amortized cost:
- Upper bound on actual cost!

The Potential Function **DO**

Potential function $\Phi: D_i \to \mathbb{R}$

 $\Phi(D_i)$ is the *potential* associated with data structure D_i .

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
= c_i + \Delta\Phi(D_i).$$

increase in potential due to i th operation

 $D_i =$

 $D_0 =$

 c_i =

 $\hat{c}_i =$

The (amortized) costs of having potential

Potential function $\Phi: D_i \to \mathbb{R}$

 $\Phi(D_i)$ is the *potential* associated with data structure D_i .

$$\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$= c_i + \Delta \Phi(D_i)$$

increase in potential due to ith operation

Potential Method: Stack

=

$$\Phi =$$

$$\Phi(D_0) = 0?$$

Total amortized cost $=\sum_{i=1}^{n} \hat{c}_i$

$$\Phi(D_i) \ge 0 \forall i$$
?

The (amortized) costs of having potential

• If we require:

Potential function $\Phi: D_i \to \mathbb{R}$

 $\Phi(D_i)$ is the *potential* associated with data structure D_i .

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
= c_i + \Delta\Phi(D_i) .$$

increase in potential due to ith operation

then amortized cost is always an upper bound on actual cost

amortized cost

• In practice:

Potential Method: Stack

operation	actual cost	$\Delta\Phi$	
PUSH	1		
POP MULTIPOP	$k' = \min(k, s)$		
Therefore, amortized cost of a sequence of n operations =			

Potential Method: Binary Counting

 $\Phi = b_i = \#$ of 1's after *i* th INCREMENT

- Suppose ith operation resets t_i bits to 0
- $c_i \le t_i + 1$ (resets t_i bits, sets ≤ 1 bit to 1)
- $b_i \le b_{i-1} t_i + 1$

$$\Delta\Phi(D_i) \leq (b_{i-1} - t_i + 1) - b_{i-1}
= 1 - t_i.$$

$$\hat{c}_i = c_i + \Delta \Phi(D_i)
\leq (t_i + 1) + (1 - t_i)
= 2.$$

If counter starts at 0, $\Phi(D_0) =$

Therefore, amortized cost of n operations =

Dynamic Table Expansion

```
Whenever table
TABLE-INSERT (T, x)
                                          becomes full,
 if T.size == 0
     allocate T.table with 1 slot
                                          double it in size
     T.size = 1
 if T.num == T.size
                                                    // expand?
     allocate new-table with 2 \cdot T. size slots
     insert all items in T.table into new-table
                                                    // T.num elem insertions
     free T.table
     T.table = new-table
     T.size = 2 \cdot T.size
                                Count inserts
 insert x into T.table
                                                     // 1 elem insertion
 T.num = T.num + 1
Initially, T.num = T.size = 0.
```

Dynamic Table ADT

Scenario

- Have a table e.g., hash table.
- Don't know in advanced how many objects will be stored in it.
- When it fills, must reallocate with a larger size, copying all objects into the new larger table.
- Details of table organization not important

Goal: O(1) amortized time per operation.

Dynamic Table Expansion: Aggregate Method

<This page intentionally left blank>

Dynamic Table Expansion: Accounting Method

Dynamic Table Expansion: Potential Method

<This page intentionally left blank>

<This page intentionally left blank>