. . Last time:
Amortization asttime

GHAET BAIIKA POCCHF

® We showed how we could get
KT 3101293 linear expected worst-case by
sweeping things under the rug....

® Today, we will show how to 4

improve analysis by carefully Qi thinkicati just
considering sequences of action.

7 This many rubles
~| should buy me a
lot of time!

genjthis unda da;ig!

Let’s count! Amortization
® How hard is counting? ® |dea: giin B '
° . . o Sometimes we don’t care about . ivalents

...in binary? the exact, potentially expensive equivalents)

cost for each operation

o We do care about a sequence of
operations

® Goal: show that, on ® Average

average, cost per operation o Inthe worst-case
is small o Not over a distribution of inputs

Source: youtube.com

Three

Metnods oF

Acnactized. Analysis

- Agqregotion. / Aggcregaie method

63

B;;

- A«.oqﬁ\na Method

c’scﬁ(‘@g

* Potenthal
@ — ball Neo.s Pﬂu\\'\')
g (b»‘ﬂ—ﬁo‘ -~ ewnergy) -
= S mﬁ?\
pnuu«.\m woet !

Amortization:

® Sometimes we don’t care
about the cost for one
operation (but we do care
about the cost of a
sequence of operations!)

Examples:

® Multipop Stack
¢ Binary Counting
¢ Extendible ADT

Sequencing Stack Operations

® Consider any sequence of n stack
operations:

o

o o o o

Push()
Pop()
Push()
Multipop()
Multipop()

Push()

.. #Pops<#Pushes<n

No need to get
pushy!

® But wait...

o Each item will get popped from the stack at
most once per push operation

o Number of pops (including those in Multipop)

o ...is bound by number of pushes
o ...isbound by n
Total cost:

Worst-case O(n) for sequence of
size n

o Average O(1) per operation
® Aggregate Analysis

o No probability distribution needed!

Multipop Stack ADT

* PuUsH(S,x): O(1) each
* Popr(S): O(1) each

e MULTIPOP (S, k)

Amortization!

® Running time of multipop
o Linear in number of pops

o # of iterations of while loop is
min(s,k) where s=|S|

while S is not empty and k > 0

Pop(S)
k=k—1

Bit counter

INCREMENT(A, k)

i =0

while i < k and A[i] ==
Alil =0
i=i+1

ifi <k
Alil =1

o Total cost:

® Total cost of sequence of
n operations:

Trccemerting o Binacy counter

Binery iy easy ¥
You nn\ “ove
_g a ««“q.rt !

Countec cost
©coo0o o000 o
ooo0o0 oo0 | \

Q0 000/ 0 R

|
3

o
0 000011 \
© 0 00 100

Cost of INCREMENT = O(# of bits flipped)

Each call could flip k bits
* nincrements = O(nk)

Analys IS counter A
value 210 cost
® Not every bit flips every time 0 000 0
1 001 1
bit flips how often times in 7 INCREMENTS 2 010 3
0 every time n 3 011 4
1 1/2 the time ln/2] 4 100 7
2 1/4 the time n/4] 5 101 8
. 6 110 10
i 1/2 the time /2] (7) ﬁ ii
i >k never 0 15

Accounting Method

® Idea: ¢ Key points:
o Some operations are charged

o In accounting method,
different operations have
different costs

an amortized cost that is more

than actual cost

Store difference to specific o Credit must never go negative

item in data structure as » Otherwise amortized cost

credit is not an upper bound on

Use credit to pay for when actual cost

actual cost > amortized cost = Amortized cost would tell
us nothing

An a Iys IS bit flips how often times in # INCREMENTS

0 every time n
* Total flips: 1 1/2 the t.ime ln/2]
2 1/4 the time |n/4]
- i 1/2' the time /2
i >k never 0
<

® nincrements costs:
- ® Average cost per operation:

Accounting Method Overview

Letc; = actual cost of i th operation ,

G

amortized cost of i/th operation .

n n
Then require E ¢ > E ¢; for all sequences of n operations.

i=1 i=1

n n
Total credit stored = Z ¢ — Z ¢ > 0.
i=1 i=1 N——

had better be

Accounting Method: Multipop Stack

Letc; = actual cost of i th operation , Stack
¢; = amortized cost of ith operation .
Then require Z &= Z ¢; for all sequences of n operations. operation actual cost _amortized cost
i = PusH 1 ?
n n
Total credit stored = Zf, - Z‘V > 0. Por) 1 ?
= o MuLtipoP min(k, s) ?

——
had better be

® Total amortized cost:
® Upper bound on actual cost!

YouRE

Potential Method

¢ Similar to accounting method, but we
think of credit as potential stored with
the entire data structure

PoTEnTiaLLYy,
T Coulp BE A
LeT LAZIER

© 2096 87 29U SN

¢ Key ldeas:

Accounting method stores credit with specific objects

Can release potential to pay for future operations
Most flexible of the amortized analysis

O O O O

Potential method stores potential in the data structure as a whole

Accounting Method: Binary Counter

Let¢; = actual cost of i th operation ,

G

amortized cost of ith operation . Actual cost Amortized

n n cost
Then require Z &= Z ¢; for all sequences of n operations. A[k]91 1 P
i=1 i=1 ?
Total credit stored = Z - Z ¢ > 0.
- = Alk]>0 1 ?

i —_——
had better be

® Total amortized cost:
® Upper bound on actual cost!

everyday
The Potential Function potdent|a||ife~e

unlimite ¢ ‘hkewwv;;:?f full
Potential function ® : D; —- R possiilte

ith

®(D;) is the potential associated with data structure D; .
G = ¢+ dD;)—D(D;-y)

= ¢ +AD(D;) .

—— ———
increase in potential due to i th operation

D,

DO ==

¢ =

A~

Ci

The (amortized) costs of having potential

Potential function ® : D; - R

®(D;) is the potential associated with data structure D; .

& = ¢+ ®D)-0(Di-1)

n
Total amortized cost = Z Ci = at ﬁ)\(@ ‘
i=1

increase in potential due to i th operation

Potential Method: Stack
b =

®(D,) =07
®(D,)=0Vi?

The (amortized) costs of having potential

® If we require:

Potential function ® : D; — R
®(D;) is the potential associated with data structure D; .

& = a+D)=Di) then amortized cost is

= ¢+ ADD;) .
—_ always an upper bound on
increase in potential due to 7 th operation
actual cost
® In practice:

Potential Method: Stack

operation actual cost AD amortized cost
PUSH 1

Por 1
MULTIPOP k' = min(k, 5)

Therefore, amortized cost of a sequence of n operations =

[

Y NNy Sl

Potential Method: Binary Counting
® = b; = # of 1’s after ith INCREMENT

® Suppose M operation ~ A®Di) = (i —ti+1) = by

resets t; bits to 0 = 1—1.
® ¢, <t+1 (resets t, bits, ¢ = ¢ +AP(D;)
sets < 1 bitto 1) < t+D+U-1)

® bisbi—t+1 = 2.
If counter starts at 0, ®(Dy) =

Therefore, amortized cost of n operations =

Dynamic Table Expansion

p-

TABLE-INSERT (T, X)

if T.size ==0
allocate T.table with 1 slot
T.size = 1

if T.num == T.size // expand?
allocate new-table with 2 - T.size slots
insert all items in 7.table into new-table // T.num elem insertions
free T.table —

a B N

T.table = new-table

T.size = 2 - T.size
insert x into T.table // 1 elem insertion
T.num = T.num + 1

Initially, 7.num = T.size = 0.

Dynamic Table ADT

Scenario
® Have a table — e.g., hash table.

® Don’t know in advanced how many objects will be
stored in it.

® When it fills, must reallocate with a larger size,
copying all objects into the new larger table.

® Details of table organization not important
Goal: O(1) amortized time per operation.

Dynamic Table Expansion:
Aggregate Method

<This page intentionally left blank>

Dynamic Table Expansion: Dynamic Table Expansion:
Accounting Method Potential Method

<This page intentionally left blank> <This page intentionally left blank>

