Upcoming

* Midterm review
— Oct 3: Midterm review session
— Edmunds 101, right before colloquium
— Bonus Question
* Midterm
— Take home
— Due Tuesday, Oct 8

Feedback summary

Board work...
— More / Less
— Intuitive narrative

Notes:

— Find right balance of how much to include
rely on your note-taking

Highlight important ideas

And when all else fails....

i (with decimal
equivalents)

Overview

Data structures that support many dynamic-set operations
Can be used as a both a dictionary and as a priority queue
Basic operations take time proportional to the height of the
tree

— Complete binary tree with n nodes: worst case O(log n)

— For linear chain of n nodes: worst case O(n)

Different types of search trees include:

— binary search trees (chapter 12),

— red-black trees (chapter 13), and

— B-trees (chapter 18)

Quick Review: Binary Tree
Representations

Each node contains:

key (or other data)

left: pointer to left child
right: pointer to right child
p: points to parent

T.root

Inorder-Tree-Walk

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x.left)
print key[x]
INORDER-TREE-WALK (x.right) £

* |dea:
— Check that x is not null
— Recursively, print the keys of nodes in x’s left subtree

— Print x’s key
— Recursively, print the keys of nodes in x’s right subtree

Binary Tree Property

* Binary-search-tree property:
— Ifyisin the left subtree of x, then y.key < x.key
— Ifyisin the right subtree of x, then y.key = x.key

Inorder-Tree-Walk

INORDER-TREE-WALK (x)
if x # NIL
INORDER-TREE-WALK (x.left)
print key[x]
INORDER-TREE-WALK (x.right) £&

e Correct? * Time?

Binary Search Tree Operations

* Queries

— Search

— Min / Max

— Successor / Predecessor
* Insertion / deletion

e Cost?
Tree-Search
TREE-SEARCH(x, k) e Time
if x == NIL or k == key[x]
return x
if k < x.key

return TREE-SEARCH (x.left, k)
else return TREE-SEARCH (x.right, k)

Initial call is TREE-SEARCH(T.root, k).

Tree-Search

* Example
— Find D
— Find C
* |dea:

— Start at root

— If key == k or Null, return x

— If key < k, recurse on left subtree
— If key > k, recurse on right subtree

Minimum and Maximum

* The binary-search-tree property guarantees that
— The minimum key of a binary search tree is located:
— The maximum key of a binary search tree is located:

Minimum and Maximum Successor / predecessor

Minimum / Maximum operations a special case of search * Assuming distinct keys, the successor of node x is the
Advantage of iterative formulation: node y such that y.key is the smallest key > x.key
Time? * No comparisons necessary! Why?

TREE-MINIMUM (x)

while x.left # NIL
x = x.left

return x

TREE-MAXIMUM (x)

while x.right # NIL
x = x.right
return x

Successor / predecessor Worksheet:

* Write pseudo-code for Successor

* Feel free to use previously defined
operations...

 Successor of the node with key value:

Successor

TREE-SUCCESSOR (x)

2 Cases:

* x has non-empty subtree

— Return minimum of x’s
right subtree

* x has empty right subtree

— Recursively visit parent
node until we travel right

* Predecessor is symmetric
* Time?

Example: Insert(T,C)
Time:

Insertion
TREE-INSERT(T. z)

y = NIL
x = T.root
while x # NIL

y=ux

if z.key < x.key

x = x.left

else x = x.right
Zp=y
if y == NIL

T.root = z // tree T was empty
elseif z.key < y.key

y.left =z

else y.right = z

Insertion

e Where to insert?

— Binary search
* Stop when x = Null

* Insertion point
— Need a “trailing pointer”

* Keep track of which parent to
connect to

Delete

* Requires moving subtrees around within the binary search tree
* Transplant replaces u with v

TRANSPLANT(T, u, v)

if u.p==NIL

T.root = v
elseif v == u.p.left

u.p.left = v
else u.p.right = v
if v # NIL

V.p = u.p

Deletion: Case 1 — no left child Deletion: Case 2 — just left child

* If z has no left child, replace z by right child * |f z has one child to the left, replace z by left child
* Covers the case where x has no children q q
g
1 q
z reassnssesfipe- [
Z lllllllll Elll- I ,/ \\
NIL o0 : NI
! ’ \ / \
Deletion: Case 3 —two children Deletion: Case 3 —two children
* Replace z with its successor y * Replace z with its successor y
* Y must lie in z's right subchild and have no left child (why?) * Y must lie in z's right subchild and have no left child (why?)
* Ifyis Z's right child, replace x by z, leaving y right child alone * Else, replace y by its own right child, the replace z by y

Tree-Delete Example

* Delete: 1, G, K, B

Minimizing running time

* We’'ve been analyzing running times in terms of h rather than n
* Problem: worst-case height for binary search tree is: O(n)

— Depends on order of insertion / deletion

— E.g., {A,B,C,D,E,F}, {B,O,E,R,K,O,E,L}

— Who's the most unbalanced?
* Solution(s):

— Analyze expected case? (Section 12.4)

— Restructure tree to guarantee small height (balanced tree): O(log n)

TREE-DELETE(T. 2)
if z.left == NIL Time:
TRANSPLANT(T., z. z.right) // zhasnoleftchild o AJl lines constant
elseif z.right == NIL ; i -
TRANSPLANT(T, z, z.left) // z has just a left child hmej besides Tree
else // z has two children. Minimum
y = TREE-MINIMUM(z.right) // y is z’s successor
ifyp#z

// y lies within z’s right subtree but is not the root of this subtree.
TRANSPLANT(T, y, y.right)
y.right = z.right
y.rightp =y
// Replace z by y.
TRANSPLANT(T, z, y)
y.left = z.left
y.leftp =y

e A variation of binary search trees
* Balanced: height is O(log n)

* Operations will take O(log n) in the worst case

Red-black tree Red-Black Tree Properties

* Ared-black tree is a binary search tree +1 bit per 1. Every node is either red or black.
node: a color attribute, which is either red or black 2. The root is black.
3. Every (null) leaf is black.
" Al Ieav?s are empty and Folored black 4. If a node is red, then both its children are black.
— Use single black node, T.nil, for root and all leaves of tree
5. For each node, all paths from the node to
_ _ _ descendant leaves contain the same number of
* Inherits all other properties of a binary search tree
black nodes.
Red-Black Tree Example Height of a Red-Black Tree

* Height of a node: is the number of edges in a
longest path to a leaf

* Black-height of a node x: bh(x) is the number
of black nodes (including NIL) on the path
from x to a leaf, not including x.
— Well-defined due to property 5

Red-Black Tree Example Worksheet: Prove

* Claim 1: Any node with height h has black-

height > h/2.
Worksheet: Prove The key to success
e Claim 2: Any node with height h has black- * Lemma: A red black tree with n internal nodes
height > h/2. has height < 2log(n+1).

* Proof: Let h and b be the height and black-
height of the root. Then, M0

Operations on Red-black trees Inserting

° Non_modrfy'ng Operat—ions run as before * When insert‘ing a hew key, e.g. 40, should it be:

— Minimum, Maximum, Successor, Predecessor, Search

— Red?
— Black?

Rotations

Deleting

The basic tree-restructuring operation

Needed to maintain red-black trees as balanced binary
search trees

Changes only the local pointer structure.
* Does not impact binary tree property
* Both left and right rotations (inverse of each other)

* Takes as input: red-black tree and a node within the
tree

* When deleting an existing key, what happens if it’s:

— Red?
— Black?

LEFT-ROTATE(T, x)
.||§

Rotates

RIGHT-ROTATE(T, y)

a B B 4

LEFT-ROTATE(T, x)
y = x.right
LEFT-ROTATE(T, x) x.right = y.left
Aff e ———— if y.left # T.nil
y.left.p = x
'y T TP PP PP TP P PRI TPPPTTTTTS) | T8 o y.p=x.p

. if x.p ==T.nil
RIGHT-ROTATE(T, y) n }},m(,z Z y

B B 4 elseif x == x.p. left
x.pleft =y
else x.p.right = y

y.left = x
xXp=y

Rotate Analysis

LerT-ROTATE(T, X) LEFT-ROTATE(T., x)

¥ y = x.right * Time:
x.right = y.left .
if y.left £ T.nil * Used in AVL and splay trees
left.p = .

oy s ffpp * * Can also talk about rotating on

if x.p==T.nil edge, rather than node
T.root =y

elseif x == x.p.left
P .le:f 1=y LEFT-ROTATE(T, x)

else x.p.right =y Wsressessesssseseseeees

y.left = x

RIGHT-ROTATE(T, y)

RB-INSERT(T, z)

. y = T.nil .
Inserting Y = T roor Insertion
while x # T.nil
When inserting a new key, e.g. 40, should it be: Vf ka i * |dea:
I Z.key < X.Ke . .
xyz x_leﬁy — Run insertion as before
else x = x.right — Set z to red
h=3,bh=1 w“p=y — Fix possible violations:
if y == T.nil 1
T.root = z)
h=2,bh=1 elseif z.key < y.key 2.
y.left = z 3.
— Red? Could violate property 4. elsle];;"”ggt =l z 4,
z.left = T.ni
— Black? Could violate property 5. -.right = T.nil 5.
h=1 bh=1 z.color = RED
B RB-INSERT-F1xuP(T, 2)
Insert-Fixup Insert-Fixup: Case 1 —y is red
RB-INSERT-FIxuP(T, z)
while z.p.color == RED
ifz.p==z.p.p.left
y = z.p.p.right
if y.color == RED
z.p.color = BLACK // case 1
y.color = BLACK // case 1
Z.p.p.color = RED // case 1
Z =2z.pp // case 1
else if z == z.p.right
z=2z.p // case 2
LEFT-R T.z // case 2
pcolor = pck 1 case * z.p.p must be black * Make z.p.p red
z.p.p.color = RED // case 3
RIGHT-ROTATE(T.2.p.p) / case 3 * Make z.p and y black ¢ Set z.p.p as the new z

else (same as then clause with “right” and “left” exchanged)
T.root.color = BLACK

Insert-Fixup: Case 2 —y is black, z is right child Insert-Fixup: Case 3 — y is black, z is left child

B v
* Make z.p blackand z.p.p * No longer have 2 reds in a
d row
e Rotate zand z re
P * Rotate on z.p.p * z.pisnow black 2 no
more iterations
RB-Insert Analysis Deleting
 O(log n) time for original insert * When deleting an existing key, what happens if it’s:
* Within RB-Insert-Fixup
— Each iteration takes O(1) time h=3,bh=1 h=3,bh=2
— Each iteration either fixes the tree or moves z up Q °
two levels
— There are at most 2 rotations overall — Red? OK

— Black? Could lead to violation of:

— O(log n) levels = O(log n) time oroperties 2,4, and/or 5

RB-DELETE(T, z)
y=2z
y-original-color = Yy.color
if z.left == T.nil
X = z.right

RB-TRANSPLANT(T, z, z.right) .

elseif z.right == T.nil
x = z.left
RB-TRANSPLANT(T, z, z.left)
else y = TREE-MINIMUM(z.right)
y-original-color = y.color
x = y.right
ify.p==2z
xX.p=y

else RB-TRANSPLANT(T, y, y.right)

y.right = z.right

y.right.p =y
RB-TRANSPLANT(T, z, y)
v.left = z.left
y.leftp =y

y.color = z.color
if y-original-color == BLACK
RB-DELETE-FIXUuP(T, x)

Deletion

Idea:
— Run deletion (mostly) as before

— If y’s original color black, fix
possible violations:

uhwnNE

Delete-Fixup: Case 1 — w is red

* W must have black children ¢ New sibiling of x must now
* Make w black and x.p red be black

* Left rotate on x.p

* Gotocase 2,3,or4

RB Delete Fixup

RB-DELETE-FIXUP(T, x)

while x # T.roo and x.color == BLACK * |dea: Move the extra black
o r i’?;;;’?,,gh, up the tree until
if w.color == RED .
w.color = wLACK 1 case 1 — x points to a red & black node
e T) Meased - turn it into a black node
w = x.p.righ // case 1 . .
0 Ieft-coloy o LACK and . ight.color = BLACK — x points to the root = just
s cotor = e essed remove the extra black, or
e ehcotor — minc sees — We can otherwise fix it
w.color = // case 3 . . .
R Ror7.) rwere Within the while loop:
w = x.p.right case 3 .
w.color = x.p.color // case 4 — X always po|nts to a nonroot'
x.p.color = BLACK // case 4
whright.color = BLACK U case 4 doubly black node
LEFT-ROTATE(T. x.p) 1/ case 4 .) . .
x = Troot 7 case 4 — wisX's 5|b||ng

else (same as then clause with “right” and “left” exchanged)
X.color = BLACK

Delete-Fixup: Case 2 — w is black & both children are black

new X
W
o @ o L
() () () (&)
* Take 1 black off x and w as new x
* Move black to x.p * If new x had been red,

* Do next iteration with x.p break and new x to black

Delete-Fixup: Case 3 — w is black Delete-Fixup: Case 4 — w is black
& w's left child is red, right child is black & w’'s right child is red

e

* Make w be x.p’s color * Left rotate on w

. * Make x.p blackand w's ¢ Remove extra black on x
Ieﬁ: Chlld bIaCk o 9 case 4 rlght child black e Set xto root

* Make wred and w’s ¢ Right rotate on w

RB-Delete Analysis Wrap-up

o O(|Og n) time to delete * Data structures that support many dynamic-set operations
) * Can be used as a both a dictionary and as a priority queue
* RB-Delete-Fixup * Basic operations take time proportional to the height of the
— Only Case 2 iterates tree

— Complete binary tree with n nodes: worst case O(log n)
— For linear chain of n nodes: worst case O(n)
* Red-black trees
- EaCh Of cases 1, 3, and 4 haS 1 rotation 9 <3 — Variation of binary search tree
rotations in all — Balanced: height is O(log n)
— Hence O(Iog n) overall — Operations take O(log n) in the worst case

* (all others progress to next case or halt)
* X moves up one level

