Today’s Goals

* Mergeable Heaps
— Review Binary Heaps
— Linked-lists

— Binomial Trees MERGE
— Binomial Heaps AHEAD

* Red-Black

http://recursivelyreursive.wordpress.com/ — Prove balance

Heaps O’ Fun — Look at insert / delete

CS 140 HMC - Jim Boerkoel

Binary heap representations

ExtractMax
% Return and remove the largest element in the set
123456789 10 (16

= @@ @o owo

o G
A7 ok

ExtractMax ExtractMax

Return and remove the largest element in the set Return and remove the largest element in the set

£ 4

Heapify

ExtractMax ExtractMax

Return and remove the largest element in the set Return and remove the largest element in the set

Heapify

EXTRACT-MAX(A)
if heap-size[A] < 1
error
mazx — A[l]
A[l] «— A[HEAP-SIZE[A]] — 1
heap-size[A] «— heap-size[A] — 1
HEAPIFY(A,1)
return max

NO Ok WN -

Mergeable Heap

A mergeable heap is any data structure that supports the
following five operations, in which each element has a key:

MakeHeap() - creates and returns a new heap containing no elements.

Insert(H,x) - inserts element x, whose key has already been filled in, into
heap H.

Minimum(H) - returns a pointer to the element in heap H whose key is
minimum.

Extract-Min(H) - deletes the element from heap H whose key is minimum,
returning a pointer to the element.

Union(H,, H,) - creates and returns a new heap that contains all the
elements of heaps H1 and H2. Heaps H1 and H2 are “destroyed” by this
operation.

ALSO: Increase-Element, Delete

Mergeable heaps

Binary heap

Procedure (WOTSE—C)ase) - Mergeable heaps support
BuiLD-HEAP O(n . .

INSERT O(logn) the union operation
MAXIMUM o(1)

EXTRAC-MAX ©(logn) - Allows us to combine two
UNION .
INCREASE-ELEMENT O(logn) heaps to get a single heap
DELETE O (logn)

(adapted from Figure 19.1, pg. 456 [1]) - Union runtime for binary

heaps?

Binary heaps

Binary heap

Procedure (worst-case)
BuIiLD-HEAP O(n)
INSERT O(logn)
MAXIMUM o(1)
ExXTRAC-MAX O(logn)
UNION

INCREASE-ELEMENT O(logn)
DELETE O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Union for binary heaps

Binary heap

Procedure (worst-case)

BuIiLD-HEAP O(n)

INSERT O(logn)

MAXIMUM o(1)

ExXTRAC-MAX O(logn)

UNION concatenatg the arrays and
INCREASE-ELEMENT ©O(logn) then call Build-Heap
DELETE O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Worksheet:
(Doubly) linked-list heap

Binary heap

Procedure (worst-case) Linked-list
BuUIiLD-HEAP O(n)

INSERT O(logn)

MAXIMUM o(1)

ExXTRAC-MAX O(logn)

UNION o(n)
INCREASE-ELEMENT O(logn)

DELETE O (logn)

(adapted from Figure 19.1, pg. 456 [1])

Binomial Tree

Number of nodes with
respect to k?

prasrAds Binomial Tree
B, B,
(@)

B,: a binomial tree B,_; with the
addition of a left child with
another binomial tree B, ,

Binomial Tree

Height?

Degree of root node?

depth 0
depth 1
depth 2

depth 3

depth 4

Binomial Tree

By

Binomial Tree

Why is it called a binomial tree?

B,

Binomial Tree

What are the children of
the root?

By

B,

Binomial Heap

*Binomial heap Vuillemin, 1978.

Sequence of binomial trees that satisfy binomial heap property:

* each tree is min-heap ordered
* top level: full or empty binomial tree of order k

* which are empty or full is based on the number of elements

WI

AR

Binomial Heap

Represented as a series of arrays (each representing a min-heap)

Ay: [18]
7,45, 32f, 55] ®

A3, 7]

A,: empty

A;: empty

A [6, 8, 29, 10, 44, 30, 23, 22, 48, 31,

Binomial Heap: Properties

Where is the max/min?

Binomial Heap: Properties

How many heaps?

Binomial Heap: Properties

Runtime of max/min?

Binomial Heap: Properties
Height?

- largest tree = By, ,
- height of that tree is log n

Binomial Heap: Union

How can we combine/merge binomial
heaps (i.e. a combination of binomial
tree heaps)?

Binomial Heap: Union

*How can we merge two binomial tree heaps of the same size (2¥)?
* connect roots of H' and H"
* choose smaller key to be root of H

Runtime?

Binomial Heap: Union

Go through each tree size starting at 0 and merge as we go

X

1 1 1

Binomial Heap: Delete Min/Max
We can find the min/max in O(log n).

How can we extract it?
Hint: B, consists of
binomial trees:
Bk-1’ Bk-2’ ey Bo

IO

Binomial Heap: Union

Analogous to binary addition

*Running time?
— Proportional to number of trees in root lists 2 O(log, N)

1 1 1

Binomial Heap: Delete Min

*Delete node with minimum key in binomial heap H.
— Find root x with min key in root list of H, and delete
— H'< broken binomial trees
— H <= Union(H', H)

EEa

Binomial Heap: Delete Min

*Delete node with minimum key in binomial heap H.
— Find root x with min key in root list of H, and delete
— H' < broken binomial trees
— H <= Union(H', H)

*Running time? .

Binomial Heap: Delete

*Delete node x in binomial heap H
— Decrease key of x to -«
— Delete min

*Running time:

Binomial Heap: Decrease Key

*Just call Decrease-Key/Increase-Key of Heap

— Suppose x is in binomial tree B,

— Bubble node x up the tree if x is too small
*Running time:

— Proportional to depth of node x

Binomial Heap: Insert

*Insert a new node x into binomial heap H
— H'<— MakeHeap(x)
— H < Union(H', H)

*Running time. . o

Build-Heap

*Call insert n times
Runtime?

Can we get a tighter bound?

Heaps

Build-Heap

*Call insert n times

Consider inserting n numbers times cost
« how many times will By be empty?
« how many times will we need to merge with B,?
« how many times will we need to merge with B,?

» how many times will we need to merge with B,?

how many times will we need to merge with B, .?

BST refresher

Binary heap Binomial heap Fibonacci heap * Data structures that support many dynamic-set operations
Procedure (worst-case) (worst-case) (amortized) * Can be used as a both a dictionary and as a priority queue
BuiLD-HEAP O(n) O(n) O(n)
INSERT O(log n) O(log n) e(1) * Basic operations take time proportional to the height of the
MAXIMUM o(1) O(logn) (1) tree
EXTRAC-MAX O(log n) O(logn) O(log n) — Complete binary tree with n nodes: worst case ©(log n)
UNION O(n) O(logn) (1) . . .
INCREASE-ELEMENT O(log n) O(log n) e(1) — For linear chain of n nodes: worst case ©(n)
DELETE ©(logn) ©(logn) O(log n) * Red-black trees

(adapted from Figure 19.1, pg. 456 [1])

— Variation of binary search tree
— Balanced: height is O(log n)
— Operations take O(log n) in the worst case

* Avariation of binary search trees

* Balanced: height is O(log n)

* Operations will take O(log n) in the worst case

e W e

Red-Black Tree Properties

Every node is either red or black.

The root is black.

Every (null) leaf is black.

If a node is red, then both its children are black.

For each node, all paths from the node to
descendant leaves contain the same number of
black nodes.

Red-black tree

* Ared-black tree is a binary search tree +1 bit per
node: a color attribute, which is either red or black

* All leaves are empty and colored black
— Use single black node, T.nil, for root and all leaves of tree

* Inherits all other properties of a binary search tree

Red-Black Tree Example

Height of a Red-Black Tree Red-Black Tree Example

* Height of a node: is the number of edges in a
longest path to a leaf

* Black-height of a node x: bh(x) is the number
of black nodes (including NIL) on the path
from x to a leaf, not including x.

— Well-defined due to property 5

Worksheet: Prove Worksheet: Prove

* Claim 1: Any node with height h has black- * Claim 2: The subtree rooted at node x
height > h/2. contains > 2bh(x) -1

The key to success Operations on Red-black trees

* Lemma: A red black tree with n internal nodes * Non-modifying operations run as before
has height < 2log(n+1). — Minimum, Maximum, Successor, Predecessor, Search

* Proof: Let h and b be the height and black-
height of the root. Then, R

Inserting Deleting

* When inserting a new key, e.g. 40, should it be: * When deleting an existing key, what happens if it’s:

— Red?

— ?
Red? — Black?

— Black?

Rotations Rotate Analysis

* The basic tree-restructuring operation LR)
EFT-ROTATE(/, x

* Needed to maintain red-black trees as balanced binary V= x.right e Time:
search trees xf'riz’}m » y'le]; * Used in AVL and splay trees
. if y. T.ni
* Changes only the local pointer structure. n ;ﬁ;l, o _
. . p =y * Can also talk about rotating on
* Does not impact binary tree property »p=xp
. . i if x.p ==T.nil edge, rather than node
* Both left and right rotations (inverse of each other) 1 ‘fT.mot = ylﬁ
elsel == X.p.l¢
* Takes as input: red-black tree and a node within the et s
p-lef Y LEFT-ROTATE(T, X)
tree else x.p.right = y Alfresessesseeessssseseseseeeees
y.left = x
P ' RIGHT-ROTATE(T, ly) *
a B
RB-INSERT(T, z)
y = T.nil
x = T.root Insertion Insert-Fixup: Case 1 —y is red
while x # T.nil
y=x * |dea:
! *,"iey:;};ey — Run insertion as before (<)
else x = x.right — Setztored o o
Zp =y — Fix possible violations: o 5 e
if y == T.nil 1 X
T.root = z ’ o
elseif z.key < y.key 2. B v
v.left = z 3.
else y.right = = 4 * z.p.p must be black * Make z.p.p red
z.left = T.nil :
ot =T 5. » Make z.p and y black * Set z.p.p as the new z

z.right = T.nil
z.color = RED
RB-INSERT-FIXUP(T, 2)

Insert-Fixup: Case 2 —y is black, z is right child

* Rotatezand z.p

RB-Insert Analysis

* O(log n) time for original insert
e Within RB-Insert-Fixup
— Each iteration takes O(1) time

— Each iteration either fixes the tree or moves z up
two levels

— There are at most 2 rotations overall
— O(log n) levels = O(log n) time

Insert-Fixup: Case 3 —y is black, z is left child

* Make z.p blackand z.p.p * No longer have 2 reds in a
red row

* Rotateonz.p.p * z.pisnow black 2 no
more iterations

RB-DELETE(T. 2)

y =2

y-original-color = y.color I 1
A Deletion
X = z.right
RB-TRANSPLANT(T, z, z.right)
elseif z.right == T.nil * ldea:
i\;lg:Tz.leﬁ e etety — Run deletion (mostly) as before
-TRANSPLANT(7, z,z.l¢ .. .
else y = TREE-MINIMUM (z.right) - If y’S orlglnal color blaCk; fix
y-original-color = y.color possible violations:
x = y.right
ify.p==z
x.p=y
else RB-TRANSPLANT(T, y, y.right)
y.right = z.right
y.right.p =y
RB-TRANSPLANT(T, z,y)
y.left = z.left
y.leftp =y
y.color = z.color
if y-original-color == BLACK
RB-DELETE-F1xupP(T, x)

uhwN R

Delete-Fixup: Case 1 —w is red

* W must have black children ¢« New sibiling of x must now

Make w black and x.p red be black
Left rotate on x.p * Gotocase2,3,0r4

Delete-Fixup: Case 3 — w is black
& w's left child is red, right child is black

new x

jo@Bo NN o @80
e C

* Make wred and w’s < Right rotate on w

left child black e D cased

Delete-Fixup: Case 2 — w is black & both children are black

o

e Take 1 black off xand w as new x

* Move black to x.p * If new x had been red,
* Do next iteration with x.p ~ Preak and new x to black

Delete-Fixup: Case 4 — w is black
& w's right child is red

o2

* Make w be x.p’s color * Left rotate on w

* Make x.p black and w's ¢ Remove extra black on x

RB-Delete Analysis

* O(log n) time to delete
* RB-Delete-Fixup
— Only Case 2 iterates

* (all others progress to next case or halt)
* X moves up one level

— Each of cases 1, 3, and 4 has 1 rotation 2 <3
rotations in all

— Hence O(log n) overall

