

- idea: analyze a sequence of operations in order to show that although a single operation may be expensive, on average the cost per operation is small.
- observation: *not* probabilistic analysis
- Plan: go over 3 methods for doing amortized analysis

9/19/13

Idea:	
> Define: potential function φ which maps state of data structure to a real number	
Justify: why potential function never goes below initial v	alue
$ ightarrow$ Amortized cost for operation is actual cost + Δ ϕ	
Application to multiper stacks	
Application to multipop stacks	
 Application to multipop stacks 	
 Application to multipop stacks 	

increme	nt(B)					
	0	0	0	0	0	0
	0	0	0	0	0	1
	0	0	0	0	1	0
	0	0	0	0	1	1
	0	0	0	1	0	0
	0	0	0	1	0	1
	0	0	0	1	1	0
	0	0	0	1	1	1
	0	0	1	0	0	0

2

