Disjoint Sets

CS 140 HMC - Jim Boerkoel

Admin

Homework 5a out today
Midterm out Thursday
— 2 hours
— Must take and turn in by Tuesday at 2:45pm
— No homework / no office hours
— Distributed at review session (see below)
— Inclass session?
Joint Pomona / Mudd Review Session on Thursday
— Edmunds 101, 2:45 (right before colloquium)
— Will cover topics / example problems suggested in homework submissions
— Hand out exam
Final
— Take-home; time-shiftable
— Details later...

Today’s Goals

Admin

Review of ADTs
Disjoint Sets
Red-Black Trees

— Insertion / Deletion

Abstract Data Type (ADT)

An abstract model of data object
Characterize behavior by the operations that must be supported
Examples:
— Dynamic Sets (PS3A)
Stacks / Queues (PS3BQ2)
Priority Queues (PS3BQ1)
Mergeable Heaps (Last time)
Disjoint Sets (Today)
Key idea: Implementation is independent

— Examples: Dynamic set as (singly- / doubly-) (un)sorted linked list,
priority queue implemented as binary max heap, mergeable heap as
binary min heap, as binomial min heap, and as linked list

Stack ADT

Defined by operations:

— Empty - -
— PUSh Pum KP:);

— Pop / Peek -

— LIFO behavior

il

Source: wikimedia.org

Mergeable Heap

A mergeable heap is any data structure that supports the following five
operations, in which each element has a key:

MakeHeap() - creates and returns a new heap containing no elements.
BuildHeap() - creates and returns a new heap from n elements.

Insert(H,x) - inserts element x, whose key has already been filled in, into heap H.
Minimum(H) - returns a pointer to the element in heap H whose key is minimum.

Extract-Min(H) - deletes the element from heap H whose key is minimum,
returning a pointer to the element.

Union(H,, H,) - creates and returns a new heap that contains all the elements of
heaps H1 and H2. Heaps H1 and H2 are “destroyed” by this operation.

ALSO: Decrease-Element, Delete

Queue ADT

* Defined by operations:

— Enqueue
— Dequeue / Peek Back Front

— FIFO behavior \» Dequeue
Enqueue N
Source: wikimedia.org I

Linked-list heap
——r—r—r—

Store the elements in a doubly linked list
Insert: add to the end/beginning

Max: search through the linked list
Extract-Max: search and delete
Increase: increase value

Union: concatenate linked lists

Kowin Wayne. Binomial Tree Binomial Heap

*Binomial heap Vuillemin, 1978.
g; By Sequence of binomial trees that satisfy binomial heap property:

B bi ol tree B ith th * each tree is min-heap ordered

«. @ binomial tree B, _; wi e .) . .
addition of a left child with top level: full or empty binomial tree of order/rank k
another binomial tree B, , * which are empty or full is based on the number of elements

BO Bl BZ B3 B4
B, B, B,

Binomial Hea : : :
Represented as a series of arrays (each representiE)g a min-heap) BI nomia I H €d p . U nion

Go through each tree size starting at 0 and merge as we go

Ay [18]

A8, 7] —

A, empty I

A;: empty

A, [6, 8, 29, 10, 44, 30, 23, 22, 48, 31,17, 45, 32, 24, 55] . I‘
+ :

19+7=26

Heaps

Binary heap Binomial heap

Procedure (worst-case) (worst-case) Linked-list
BuiLD-HEAP O(n) O(n) O(n)
INSERT O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) o(n)
EXTRAC-MAX O(logn) O(logn) o(n)
UNION O(n) O(logn) o(1)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) O(logn) o(1)

(adapted from Figure 19.1, pg. 456 [1])

Disjoint-Set Data Structure The Disjoint Set ADT

* Also known as “union-find” ¢ Operations:

® Idea: Ma|nta|n CO”QCﬁon Z = {Sl' e SK} Of d|SJO|nt — Make-Set(x); make a new set Si = {x}, and add Si to2
(non-overlapping), dynamic (changing over time) — Union(xy):if *ES.YES, then==2-5, -5 U{S,US}
sets.

o .] o * Representative of new set is any member of S, US|
* Each set is identified by a representative, which is * Destroys S, and s,

some member of the set
— Doesn’t matter which member is representative as

long as representative is consistent (doesn’t change -
unless the set does). Nt

— Find-Set(x): return representative of set containing x

Example sequence of operations

Operation z
Make-Set(x) {x}
Make-Set(y) {x}, {y}
Make-Set(z) {x}, {y}L{z}

Union(x,y) {xyh{z}

Find-Set(x) Returns: {x,y}

(Representative underlined)

Example sequence of operations

Operation z
Make-Set(x) {x}
Make-Set(y) {x}, {y}
Make-Set(z) {x}, {y}L{z}

Union(x,y) {xyh{z}

Find-Set(x) Returns: {x,y}

(Representative underlined)

For analysis, typically assume first n operations are Make-Set

The Disjoint Set ADT

* Analysis in terms of:
— n = # of elements = # of Make-Set operations
— m = total # of operations

* Worksheet:
1. mis<, g, =, 2,0or >n. Why?

2. # of Union operations is > Why?

Problem

| need help generating mazes for my Pacman projects
in CS-151 (Al)

Maze-RBuilder

INPUT: a k by 1 grid of k*1 = m squares, separated by walls
OUTPUT: a feasible maze

for each of the m squares:
Make-Set (square)

let W be all the interior walls
while |[W| > 0
pick a random wall in W and remove from W
let x and y be the squares on either side of the wall
if Find-Set(x) != Find-Set(y) // not in the same set
remove that wall in the maze (connecting the two sets of squares)

Union (set (x), set(y)

select two random edge walls and remove them,
label one as entrance and one as exit

Credit: Dave Kauchak

Applications:
Detecting Disjoint Graphs

* A graph G =<V,E> is composed of &Cﬁ

— V: a set of vertices 4

— E: a set of edges where edge {u,v}
connects vertices u and v

* Questions: Is it connected? Is there a path
between vertex x and vertex y?

Maze—-Demo

Connected-Components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V

%7./ MAKE-SET(v)

for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)
SAME-COMPONENT (u, v)
A 4 if FIND-SET (1) == FIND-SET(v)
return TRUE
else return FALSE

Implementations of Disjoint Sets A linked list implementation

Represent each set as a singly linked list with attributes:

i We W|” eXpIore tWO Imp|ementat|0n$ Of — Head: the first element in the list; representative
e e . . — Tail: the last element in the list
d|SJO|nt set Opel’atlons * Each object in the list has attributes for:
— Set member (the element itself)
— Llnked ||StS — Pointer to the set object (i.e., to the representative)
— Next (the link)
— Disjoint forests
!
y f g d
head /
Sl ’:} T
tail D
Operations Linked-list Union
* Make-Set: create a singleton list * How expensive is it?
* Find-Set: follow pointer back to list object, then * Must update |S,| pointers
follow head pointer back to representative R |
o e it ot - Re B B
* Union(x,y): append y’s list onto end of x’s list N R R = e e
rait [—H I tait [—H 1

L UL B L R L I
Yy J 8 a A\AJ @ h e
| & | e | e |
5 head D 7 s, head 1] =1
rait [H | [H ——

NaE

] IIIIII
| el 2] o] [=
e s e I = B e B

S

Amortized Cost? Weighted-union heuristic

Operation Number of objects updated
MAKE-SET(x1) 1 . Operation Number of objects updated
MAKESEt() | Always a_ppend e 1
: smaller list to MAKE-SET(x2) I
MAKE-SET(xy) 1 Iarger list : :
UNION(x2, x1) 1 . . MAKE-SET(x) 1
UNION(x3, x2) 2 * Asingle union of Union(rs. 1) 1
UNION(x4, 3 . .
(x4, %3) _ two sets containing UNION(3.x2) x
: : UNION(x4, X3) B
UNIONGon 1) o n/2 members can : 5
O(n?) total still take Q(n) time UNtoN(x,. x,-1) XX

Amortized time per operation = ®(n).

Weighted-union heuristic A Disjoint-set forest
Theorem: With weighted union, a sequence of m * Forest of trees
operations on n elements takes O(m+n log n) time. — 1 tree per set; root is representative
* How many times times updated _ size Ofrgsghing < — Each node points only to its parent

can a member’s 2
representative pointer e

G

be updated?
OO (@)
® ®

Disjoint-set Forest Operations Union-by-rank Heuristic

* Make-set: make a single-node tree goS‘Q * Make the root of the smaller tree (fewer nodes) a child
of the root of the larger tree

* Union: Make one root a child of the other _ Don't actually use size

2
O 0 6 0o — Use rank---upper-bound on the height of node
(c) @) o) ® 0 — Rank maintained as an additional node attribute (with parent)
NION(e,
@ @ @ e — Make the root with the smaller rank into a child of the
> S ®» © © root with the larger rank
® * Improves analysis to:
* Find-Set: follow pointers to root * Isitatight bound? Show (2 1n PS5A
Path compression Implementation
* Find-Path = nodes visited during Find-Set on the trip MjEE'S’iT(X) FI.:D';ET("‘)
X.p = if x #x.p
to root x.rank = 0 x.p = FIND-SET(x.p)
* Make all nodes on find path direct children of root UNION(x. y) return x.p

LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

if x.rank > y.rank Pala
yp=x Jal VAV
elsex.p =y
// If equal ranks, choose y as parent and increment its rank.
if x.rank == y.rank
y.rank = y.rank + 1

Disjoint-set Forest Analysis

If use both union by rank and path compression, O(m «(n)).

n a(n) @

0-2 0
0
3 1 ﬁ 7\
i N . o
8-2047 3 ; { A A

2048-A,(1) 4
As(1) > 103 ~~ # of atoms

