

Disjoint Sets

CS 140 HMC - Jim Boerkoel

Admin

- Homework 5a out today
- Midterm out Thursday
 - 2 hours
 - Must take and turn in by Tuesday at 2:45pm
 - No homework / no office hours
 - Distributed at review session (see below)
 - In class session?
- Joint Pomona / Mudd Review Session on Thursday
 - Edmunds 101, 2:45 (right before colloquium)
 - Will cover topics / example problems suggested in homework submissions
 - Hand out exam
- Final
 - Take-home; time-shiftable
 - Details later...

Today's Goals

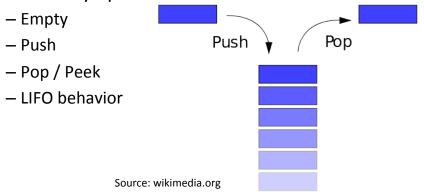
- Admin
- Review of ADTs
- Disjoint Sets
- Red-Black Trees
 - Insertion / Deletion

Abstract Data Type (ADT)

- An abstract model of data object
- Characterize behavior by the operations that must be supported
- Examples:
 - Dynamic Sets (PS3A)
 - Stacks / Queues (PS3BQ2)
 - Priority Queues (PS3BQ1)
 - Mergeable Heaps (Last time)
 - Disjoint Sets (Today)
- Key idea: Implementation is independent
 - Examples: Dynamic set as (singly- / doubly-) (un)sorted linked list, priority queue implemented as binary max heap, mergeable heap as binary min heap, as binomial min heap, and as linked list

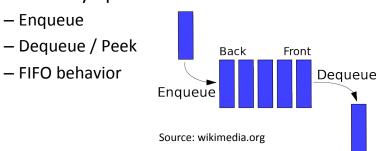
Stack ADT

• Defined by operations:



Queue ADT

• Defined by operations:

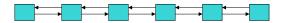


Mergeable Heap

A mergeable heap is any data structure that supports the following five operations, in which each element has a key:

- MakeHeap() creates and returns a new heap containing no elements.
- BuildHeap() creates and returns a new heap from n elements.
- Insert(H,x) inserts element x, whose key has already been filled in, into heap H.
- Minimum(H) returns a pointer to the element in heap H whose key is minimum.
- Extract-Min(H) deletes the element from heap H whose key is minimum, returning a pointer to the element.
- Union(H₁, H₂) creates and returns a new heap that contains all the elements of heaps H1 and H2. Heaps H1 and H2 are "destroyed" by this operation.
- · ALSO: Decrease-Element, Delete

Linked-list heap

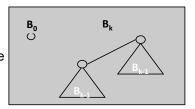


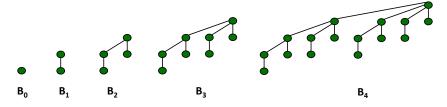
- Store the elements in a doubly linked list
- Insert: add to the end/beginning
- Max: search through the linked list
- Extract-Max: search and delete
- Increase: increase value
- Union: concatenate linked lists

Adapted from: Kevin Wayne

Binomial Tree

 B_k : a binomial tree B_{k-1} with the addition of a left child with another binomial tree B_{k-1}





Binomial Heap

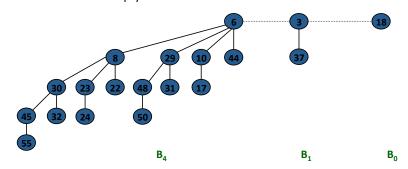
Represented as a series of arrays (each representing a min-heap)

Binomial Heap

•Binomial heap Vuillemin, 1978.

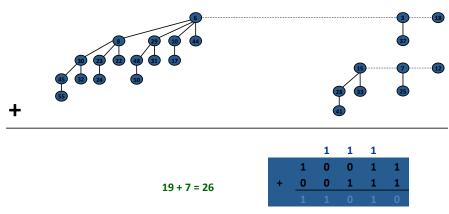
Sequence of binomial trees that satisfy binomial heap property:

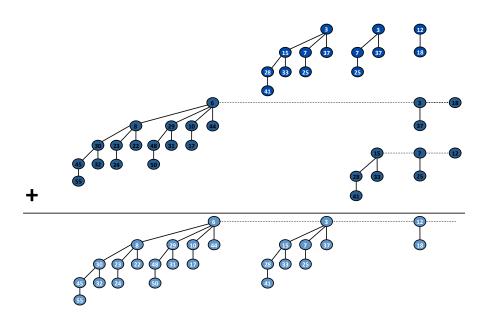
- each tree is min-heap ordered
- top level: full or empty binomial tree of order/rank k
- which are empty or full is based on the number of elements



Binomial Heap: Union

Go through each tree size starting at 0 and merge as we go





Heaps

Procedure	Binary heap (worst-case)	Binomial heap (worst-case)	Linked-list
Build-Heap	$\Theta(n)$	$\Theta(n)$	Θ(n)
Insert	$\Theta(\log n)$	$O(\log n)$	Θ(1)
MAXIMUM	$\Theta(1)$	$O(\log n)$	Θ(n)
EXTRAC-MAX	$\Theta(\log n)$	$\Theta(\log n)$	Θ(n)
Union	$\Theta(n)$	$\Theta(\log n)$	Θ(1)
Increase-Element	$\Theta(\log n)$	$\Theta(\log n)$	Θ(1)
DELETE	$\Theta(\log n)$	$\Theta(\log n)$	
(adapted from Figure 19.1, pg. 456 [1])			Θ(1)

Disjoint-Set Data Structure

- Also known as "union-find"
- Idea: Maintain collection $\Sigma = \{S_1, ..., S_K\}$ of disjoint (non-overlapping), dynamic (changing over time) sets.
- Each set is identified by a *representative*, which is some member of the set
 - Doesn't matter which member is representative as long as representative is consistent (doesn't change unless the set does).

The Disjoint Set ADT

- Operations:
 - Make-Set(x): make a new set $S_i = \{x\}$, and add S_i to Σ
 - Union(x,y): if $x \in S_x, y \in S_y$ then $\Sigma = \Sigma S_x S_y \cup \{S_x \cup S_y\}$
 - Representative of new set is any member of $S_{r} \cup S_{v}$
 - Destroys S_x and S_y
 - Find-Set(x): return representative of set containing x

Example sequence of operations

-	
<u>Operation</u>	Σ
Make-Set(x)	{ <u>x</u> }
Make-Set(y)	{ <u>x</u> }, { <u>y</u> }
Make-Set(z)	$\{\underline{x}\},\{\underline{y}\},\{\underline{z}\}$
Union(x,y)	$\{\underline{x},y\},\{\underline{z}\}$
Find-Set(x)	Returns: { <u>x</u> ,y}
	(Representative underlined)

The Disjoint Set ADT

- Analysis in terms of:
 - -n =# of elements = # of Make-Set operations
 - -m = total # of operations
- Worksheet:
 - 1. $m \text{ is } \leq 1, \leq 1, \leq n, \leq n$. Why?
 - 2. # of Union operations is ≥ _____ Why?

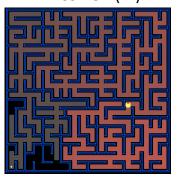
Example sequence of operations

Operation	Σ
Make-Set(x)	{ <u>x</u> }
Make-Set(y)	{ <u>x</u> }, { <u>y</u> }
Make-Set(z)	{ <u>x</u> }, {y},{ <u>z</u> }
Union(x,y)	$\{\underline{x},y\},\{\underline{z}\}$
Find-Set(x)	Returns: { <u>x</u> ,y}
	(Representative underlined)

For analysis, typically assume first \boldsymbol{n} operations are Make-Set

Problem

I need help generating mazes for my Pacman projects in CS-151 (AI)

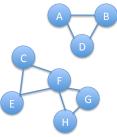


Maze-Builder

Credit: Dave Kauchak

Applications: Detecting Disjoint Graphs

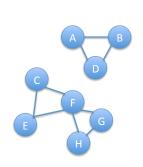
- A graph G = <*V*,*E*> is composed of
 - V: a set of vertices
 - E: a set of edges where edge {u,v} connects vertices u and v



 Questions: Is it connected? Is there a path between vertex x and vertex y?

Maze-Demo

Connected-Components



for each vertex $v \in G.V$ MAKE-SET(v)for each edge $(u, v) \in G.E$ if FIND-SET $(u) \neq$ FIND-SET(v)UNION(u, v)

CONNECTED-COMPONENTS (G)

SAME-COMPONENT (u, v)

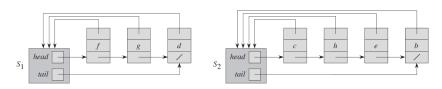
if FIND-SET(u) == FIND-SET(ν)
 return TRUE
else return FALSE

Implementations of Disjoint Sets

- We will explore two implementations of disjoint set operations
 - Linked lists
 - Disjoint forests

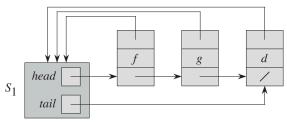
Operations

- Make-Set: create a singleton list
- Find-Set: follow pointer back to list object, then follow head pointer back to representative
- Union(x,y): append y's list onto end of x's list



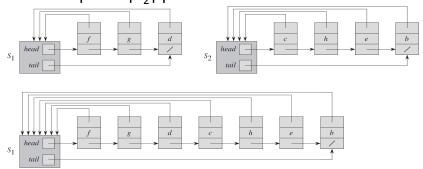
A linked list implementation

- Represent each set as a singly linked list with attributes:
 - Head: the first element in the list; representative
 - Tail: the last element in the list
- · Each object in the list has attributes for:
 - Set member (the element itself)
 - Pointer to the set object (i.e., to the representative)
 - Next (the link)



Linked-list Union

- How expensive is it?
- Must update |S₂| pointers



Amortized Cost?

Operation	Number of objects updated
$\overline{\text{MAKE-SET}(x_1)}$	1
$MAKE-SET(x_2)$	1
:	;
MAKE-SET (x_n)	1
$UNION(x_2, x_1)$	1
$UNION(x_3, x_2)$	2
UNION (x_4, x_3)	3
÷	÷
UNION (x_n, x_{n-1})	n-1
,	$\Theta(n^2)$ total

Amortized time per operation = $\Theta(n)$.

Weighted-union heuristic

 ≥ 2

Theorem: With weighted union, a sequence of *m* operations on n elements takes $O(m+n \log n)$ time.

times updated size of resulting set How many times can a member's representative pointer be updated?

Weighted-union heuristic

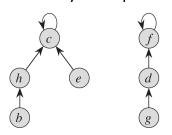
- Always append Operation $\overline{\text{MAKE-SET}(x_1)}$ smaller list to $MAKE-SET(x_2)$ larger list • A single union of
- two sets containing n/2 members can still take $\Omega(n)$ time

(**2)	_	
:	:	
$MAKE-SET(x_n)$	1	
$UNION(x_2, x_1)$	1	
$UNION(x_3, x_2)$	X	
$UNION(x_4, x_3)$	×	
:	:	
UNION (x_n, x_{n-1})	1X-X 1	

Number of objects updated

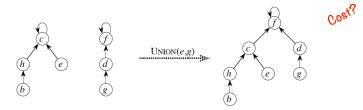
A Disjoint-set forest

- Forest of trees
 - 1 tree per set; root is representative
 - Each node points only to its parent



Disjoint-set Forest Operations

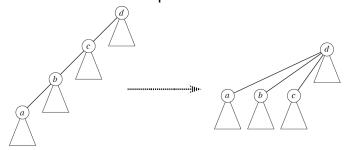
- Make-set: make a single-node tree ogt?
- Union: Make one root a child of the other



Find-Set: follow pointers to root of

Path compression

- **Find-Path** = nodes visited during Find-Set on the trip to root
- Make all nodes on find path direct children of root



Union-by-rank Heuristic

- Make the root of the smaller tree (fewer nodes) a child of the root of the larger tree
 - Don't actually use size
 - Use rank---upper-bound on the height of node
 - Rank maintained as an additional node attribute (with parent)
 - Make the root with the smaller rank into a child of the root with the larger rank
- Improves analysis to:
- Is it a tight bound? Show Ω in PS5A

Implementation

```
MAKE-SET(x)

x.p = x
x.rank = 0

UNION(x, y)

LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

if x.rank > y.rank
y.p = x
else x.p = y

// If equal ranks, choose y as parent and increment its rank.

if x.rank = y.rank
y.rank = y.rank + 1
```

Disjoint-set Forest Analysis

If use both union by rank and path compression, $O(m \alpha(n))$.

n	$\alpha(n)$	R
0–2	0	
3	1	
4–7	2	
8-2047	3	
$2048 - A_4(1)$	4	

$$A_4(1) \gg 10^{80} \approx \text{\# of atoms}$$