Midterm

¢ Will receive it at the end of this review section!
* You will have 2 hours to take it

— watch your time!
— if you get stuck on a problem, move on and come back

* Must take it and turn it in by 2:45 PM on Tuesday (next

lecture)
* You may use:
CS 140 — ONLY a double-sided page of notes
Boerkoel & Chen » Do NOT discuss it with anyone until after Wednesday at
4dpm

What to Expect Midterm

.* Lighter-weight versions of homework style

i » General
questions — what is an algorithm?
 All topics are fair game — algorithm properties
— pseudocode

* Important topics
— proving correctness

* loop invariants
— run time analysis

— Course objectives
— Topics repeated in lecture, homeworks, etc.

Midterm Midterm

Asymptotic notation + Sorting
— proving bounds

. , , — insertion sort
— ranking/ordering of functions
. ! — merge sort
Amortized analysis)
Recurrences * merge function
— solving recurrences — quick slo.rt '
* substitution method * partition function
* recursion-tree — heap sort

¢ master method

Midterm Midterm

Divide and conquer Abstract Data Types (ADT)
— divide up the data (often in half) + Heaps
— recurse

— Binary heaps
— Binomial heaps
» Search trees

— possibly do some work to combine the answer
Calculating order statistics/medians
Basic data structures

— set operations - BSTs
g — Red-black
— array e .
— linked lists . Dlsplnt sgts (very briefly)
— stacks — Linked list
— Forests

— queues

Midterm

e Other things to know:
— Run-times
— When to use an algorithm

— Proof techniques

* Look again at proofs by induction
— Make sure to follow the explicit form we covered in class
* Proof by contradiction

* Read WritingProofs.pdf (Piazza)

Proofs

- Prove by contradiction:
For all integers n, if n+2 is odd, then n is odd.

Proofs

- Prove by induction: 1+x"n >= 1+nx for all nonnegative integers
nandall x>=-1.
-- Base case
-- Inductive case
--- Inductive hypothesis
--- Proof of inductive step (s)

Big O: Upper bound
O(g(n)) is the set of functions:

Og(n)) = { S < Fn) = cg(n) for all n = n,

there exists positive constants ¢ and »n, such that }

Provides an upper bound on runtime
for algs!

Omega: Lower bound

Q(g(n)) is the set of functions:

there exists positive constants ¢ and n, such that

Q(g(n)) = { JSn): 0 =<cg(n) = f(n) for all n=n,

Provides a general lower bound for
difficulty of a problem!

Visually: lower bound

ﬂr%—/&%

!

Theta: Upper and lower bound

O(g(n)) is the set of functions:
there exists positive constants c¢,,c, and n, such that
0= all n = n,

We can bound the function f(n)
above and below by some
constant factor of g(n) (though
different constants)

Note: A function is theta bounded iff it is big O
bounded and Omega bounded

worst-case vs. best-case vs. average-case

worst-case: what is the worst the running time of the algorithm can
be?

best-case: what is the best the running time of the algorithm can be?

average-case: given random data, what is the running time of the
algorithm?

Don’ t confuse this with O, Q and ©. The cases above are situations,
asymptotic notation is about bounding particular situations

Proving bounds: find constants that satisfy
inequalities
Show that 5n2—15n + 100 is ©(n?)

Step 1: Prove O(n?) — Find constants c and n, such that
5n?—15n +100 < cn? for all n > n,
2

cn = 5n>-157n+100
c = 5-15/n+100/n’

Let n,=1and c=5+ 100 = 105.
100/n? only get smaller as n increases and we ignore
-15/n since it only varies between -15 and 0

Disproving bounds

Is 51n°> O(n)?

there exists positive constants ¢ and rn, such that
O(g(n) =1 f(n):
0= f(n)=cg(n) forall n=n,

Assume it’s true.

That means there exists some ¢ and n,such that
5n* = cn for n > n,

Sn=c contradiction!

Proving bounds

Step 2: Prove Q(n?) — Find constants ¢ and n, such that
5n?—15n +100 2 cn? for alln > n,

2

cn = 5n*-157n+100
¢ = 5-15/n+100/n*

Let ny=4 and c =5-15/4 = 1.25 (or anything less than
1.25). 15/n is always decreasing and we ignore 100/n?
since it is always between 0 and 100.

T(n)=3T(n/4)+n’ cost

cn? cn?

(Z) (z ’ (2) 3/16¢cn?
/ AN DN
(56 <(e) (i) i6) (56) (56) «(fe) () /6y
IV NI IV

What is the cost at each level? (_) cn’

What is the depth of the tree?

At each level, the size of the data is divided by 4

271

n
log(4—d) =0
logn—log4? =0

dlog4 =1logn

d=log,n *

) Total cost

T(n) = %cnz + O3

310g4n — 4log431°g4”

— 4_10g4 nlog,3

_ 4_10g4 nloea3

log, 3
=n g4

T(n)=3T(n/4)+n’

&)
/1N

T
()

3d _ 3log4n
How many leaves are there? -

/

Amortized analysis

What does “amortize” mean?
am-or-tized am-or-tiz-ing
Definition of AMORTIZE Z2+1| [Like

1 : to pay off (as a mortgage) gradually usually by periodic

payments of principal and interest or by payments to a
sinking fund

2 : to gradually reduce or write off the cost or value of (as an
asset) <amortize goodwill> <amortize machinery>

— am-or-tiz-able) adjective

Amortized analysis

There are many situations where the worst case running time is
bad

However, if we average the operations over n operations, the
average time is more reasonable

This is called amortized analysis

— This is different than average-case running time, which requires
probabilistic reasoning about input

— The worst case running time doesn’t change

From 4b: Dictionaries

Idea: store data in a collection of arrays
— array i has size 2/
— an array is either full or empty (never partially full)
— each array is stored in sorted order
— no relationship between arrays

From 4b: Dictionaries

We want to support fast lookup and insertion (i.e. faster than
linear)

Arrays can easily made to be fast for one or the other
— fast search: keep list sorted
* O(n) insert
* O(log n) search
— fastinsert: extensible array
* 0O(1) insert (amortized)
* O(n) search

From 4b: Dictionaries

Which arrays are full and empty are based on the number of elements
— specifically, binary representation of the number of elements
— 4items =100 = A2-full, Al-empty, Aj-empty
— 11items=1011 = A;-full, A,-empty, A,-full, A,-full
A, [5]
A [4, 8]
A,: empty
As[2,6,9, 12,13, 16, 20, 25]

Lookup: binary search through each array
— Worse case runtime?

From 4b: Dictionaries

Ay [9]

A [4, 8]

A,: empty

As:[2,6,9, 12,13, 16, 20, 25]

Lookup: binary search through each array

Worse case: all arrays are full
— number of arrays = number of digits = log n
— binary search cost for each array = O(log n)
— O(log nlogn)

Insert running time

Worse case
— merge at each level
—2+4+8+..+n/2+n=0(n)

There are many insertions that won’t fall into this
worse case

What is the amortized worse case for insertion?

From 4b: Dictionaries

Insert(A, item)

— startingati=0

— current = [item]

— aslong as the level jis full
* merge current with A; using merge procedure
*» store to current
* A =empty
o i+

— A;=current

insert: amortized analysis

Consider inserting n numbers times cost
— how many times will A, be empty? n/2 0(1)
— how many times will we need to merge with A;? n/2 2
— how many times will we need to merge with A;? n/4 4
— how many times will we need to merge with A,? n/8 8

— how many times will we need to merge with A, ;? 1 n
total cost: log n levels * O(n) each level

O(n log n) cost for n inserts
O(log n) amortized cost!

Accounting Method

* |dea: * Key points:

— Some operations are charged an — In accounting method, different
amortized cost that is more than operations have different costs
actual cost — Credit must never go negative

— Store difference to specific item o Otherwise amortized cost is
in data structure as credit not an upper bound on

— Use credit to pay for when actual cost
actual cost > amortized cost Amortized cost would tell us

nothing

Accounting Method: Multipop Stack

Letc; = actual cost of ith operation . Stack
¢; = amortized cost of ith operation .

Then require Z ¢ > Z(', for all sequences of n operations. operation actual cost _amortized cost

== PUsH 1 5
Total credit stored = Z G- Z(-, > 0. Pop A 1 -
oS —— MuLtipoP min(k, s) ?

had better be

* Total amortized cost:
* Upper bound on actual cost!

Accounting Method Overview

Letc; = actual cost of i th operation ,

~

¢; = amortized cost of ith operation .

n n
Then require Z ¢ > Z c; for all sequences of n operations.

i=1 i=1

n n
Total credit stored = Z G — Zc,- > 0.
e

had better be

i=1

Accounting Method: Binary Counter

Letc; = actual cost of i th operation ,
¢; = amortized cost of ith operation .
n n

Then require Z ¢ > Z ¢; for all sequences of n operations.

i=1 i=1

n [
Total credit stored = Z ¢ — Zc,- > 0.
i=1 =l ——

had better be

Actual cost | Amortized
cost
Alk]1>1 1 ?
Alk]=>0 1 ?

* Total amortized cost:

* Upper bound on actual cost!

everyday .
Potential Method o) (e The Potential Function Jol01ia1ils] s

YoUuRE

think of credit as potential stored with
the entire data structure

N
=
;3 . . nlimited v wetake 3t full
o) & Potential function ® : D; — R 0sshiltes =
* Similar to accounting method, but we =
&
Q|

®(D;) is the potential associated with data structure D, .
¢ = ¢+ dD;)—-D(Diy)

* Key ldeas: = ¢+ AP(D;) .
— Accounting method stores credit with specific objects .) . . .
— Potential method stores potential in the data structure as a whole merease 1n potentlal due to i th operation
— Can release potential to pay for future operations D. = data structure after i th operation
— Most flexible of the amortized analysis : L
D, = imitial data structure ,
¢; = actual cost of ith operation ,
¢; = amortized cost of ith operation .

The (amortized) costs of having potential The (amortized) costs of having potential

Potential function ® : D; — R

®(D;) is the potential associated with data structure D;. If we require:
G = ¢+0D)-d(Diy) .
n . . .
Total amortized cost = Z Ci = G+40(0D) . Potental funcion © : D ~ R (I)(Dl) = (I)(DO)Vl
! - Ci el) . ®(D;) is the potential associated with data structure D;.
i=1 increase in potential due to ith operation & = ¢ +0(D)-d(Dyy) then amortized cost is always
n
= ¢ +AdD,) . an upper bound on actual cost
= > (ci+O(Di) = (D)) — .
i=1 increase in potential due to /th operation * In practice:

(telescopling sum: every term other than Dy and D,
1s added once and subtracted once)

R d(D,)=0;D(D,)=0Vi

Potential Method: Stack Potential Method: Stack

il TR

d = #of ObJeCtS 1n stack operation actual cost ~ A® amortized cost g
o) PUSH 1 +D)—s=1 1+1=2 \
(= #of $1 bills in accounting method) where s = # of objects initially ﬁ
Pop 1 (s—1)—s=-1 1-1=0
MuLtipoP k' = min(k,s) (s—k')—s = -k’ K—k'=0
(I)(D 0) = O ‘7 Yes! D, represents an empty stack. Therefore, amortized cost of a sequence of 1 operations = O(n). %

Yes! # of objects on stack is aiways

O(D,)=0Vi?

. TR

Potential Method: Binary Counting
® = b, = # of 1’s after i th INCREMENT

« Suppose it operation reset A®(D;) < (i —ti +1) —biy

t;bitsto 0 = 1-1.
* ¢Strl(resetstbits, setss & = ¢, + AD(D;)
1bitto1)
< G+D+1A-1n)

* b<b;—t+1
2.

If counter starts at 0, (D) = 0.

Therefore, amortized cost of n operations = O(n).

Algorithms Review!
Computer Science 140
Spring 2013
Boerkoel & Chen

Problem 1: Sounds Like a Duck!
A quack is an abstract data type that is part queue and part stack. Specifically, a quack
supports the following three operations:

e PusH(z) takes a value x and puts it at the “top” of the stack;
e PoP() removes and returns the element at the “top” of the stack.; and

e DEQUEUE() removes and returns the item at the “bottom” of the stack (the element
that has been in the stack the longest).

Your goal is to implement a quack using only stacks. However, in order to conserve memory,
each item can only appear on one of the three stacks at any given time!

a. Describe an algorithm that implements a quack using three stacks such that any sequence
of n operations takes a total of O(n) time. (You don’t need to do the amortized analysis
in this part, just describe the algorithm.)

b. Prove that your algorithm takes O(n) time for any n sequence of n operations using an
accounting argument.

c. Prove that your algorithm takes O(n) time for any n sequence of n operations using a
potential method argument.

Problem 2: Max Priori-d Heap
A max priori-d heap supports the typical operations of a priority queue ADT:

e INSERT(S, x): inserts the element x into the set .S, which is equivalent to the operation

S =Su{z}.
o MAXIMUM(S) returns the element of S with the largest key.
e EXTRACT-MAX(S) removes and returns the element of S with the largest key.

e INCREASE-KEY(S, z, k) increases the value of element xs key to the new value k, which
is assumed to be at least as large as xs current key value.

A d-ary heap is like a binary heap, but (with one possible exception) non-leaf nodes have
d children instead of 2 children.

a. How would you represent a d-ary heap in an array?

b. What is the height of a d-ary heap of n elements in terms of n and d?

c. Give an efficient implementation of EXTRACT-MAX in a d-ary max-heap. Analyze its
running time in terms of d and n.

d. Give an efficient implementation of INSERT in a d-ary max-heap. Analyze its running
time in terms of d and n.

e. Give an efficient implementation of INCREASE-KEY, which flags an error if k < A[i], but
otherwise sets A[i] = k and then updates the d-ary maxheap structure appropriately.
Analyze its running time in terms of d and n.

Problem 3: All things being equal, I'd prefer my sort Quick
ur in class analysis of the expected running time of randomized quicksort assumes that all
element values are distinct. In this problem, we examine what happens when they are not.

a. Suppose that all element values are equal. What would be randomized quicksorts running
time in this case?

b. The PARTITION procedure returns an index ¢ such that each element of A[p..q — 1] is
less than or equal to A[g] and each element of Alg + 1..r] is greater than A[g]. Modify
the PARTITION procedure to produce a procedure PARTITION’ A, p, r, which permutes the
elements of A[p..r] and returns two indices ¢ and ¢, where p < ¢ <t < r such that

e all elements of A[g..t] are equal,
e cach element of A[p..q — 1] is less than A[q], and
e cach element of At + 1..r] is greater than A[q|.

Like PARTITION, your PARTITION’ should take O(r — p).

¢. Modify the QUICKSORT procedure to QUICKSORT’, which calls RANDOMIZED-PARTITION’
and recurses only on partitions of elements not known to be equal to each other.

d. Using QUICKSORT’, how would you adjust the analysis in Section 7.4.2 to avoid the
assumption that all elements are distinct?

