* The idea:

Give Me Greed, Now!”

Anatomy of aBig- Israel’s Booming
Bucks Legal Scam Tech Economy !

OR
WALL STREET 2005/

STIL!
DOL W
e I.;.;..' ... *ﬁ
AW
110
* Use greed with extreme caution) o ,
Slides adapted from Ran Libeskind-Hadas and David Kauchak
Greedy Algorithms

— When we have a choice to
make, make the one that
looks the best right now!

— Make a locally optimal choice in hopes of a
globally optimal solution

— Don’t always generate optimal solutions, but can.
* General characteristics of when greed is good (optimal)

Administrative

Assignment out today (back to the normal
routine)

Midterm

Interval scheduling

Given n activities A = [a,,a,, .., a,] where each activity has
start time s; and a finish time f. Schedule as many as
possible of these activities such that they don’t conflict.
Could also optimize for utilization, rental fees, etc.

Interval scheduling Interval scheduling

Given n activities A = [a,,a,, .., a,] where each activity Given n activities A = [a,,a,, .., a,] where each activity
has start time s; and a finish time f. Schedule as many has start time s; and a finish time f. Schedule as many
as possible of these activities such that they don’t as possible of these activities such that they don’t
conflict. conflict.
— —e — o G—t) —e — o
Which activities conflict? Which activities conflict?
Simple recursive solution Simple recursive solution
Enumerate all possible solutions and find Is it correct? _
which schedules the most activities — max{all possible solutions}
Running time?
INTERVALSCHEDULE-RECURSIVE(A) - O(nl)
1 ifA={}
2 return 0
3 else INTERVALSCHEDULE-RECURSIVE(A)
4 max = —oo 1 if A={}
5 forallac A 2 return 0
6 A’ «— A minus a and all conflicting activites with a 3 else
7 s = INTERVALSCHEDULE-RECURSIVE(A’) 4 mar = —oo
8 if s > maz 5 foralla€ A
9 maz — s 6 A’ «— A minus a and all conflicting activites with a
10 return 1 + magz 7 5= INTERVALSCHEDULE-RECURSIVE(A')
8 if s > maz
lg return 1 + maz e =

Can we do better? Overview of a greedy approach

Dynamic programming (next class) Greedily pick an activity to schedule
— 0(n?)
Greedy solution — Is there a way to repeatedly make local
decisions?
— Key: we’d still like to end up with the optimal solution

Add that activity to the answer

Remove that activity and all conflicting activities. Call this A’ .

-— Repeaton A’ until A’ is empty

Worksheet Greedy options

* List possible strategies for selecting an activity

Select the activity that starts the earliest, i.e.
to add to our schedule.

argmin{s,;, s,, S5, ..., 5,,}?

Homework 6a

Greedy options

Select the shortest activity, i.e.
argmin{f;-s,, f,-s,, f3-s;, ..., f.-s,.}

Homework 6a

Greedy options

Select the activity that ends the earliest, i.e.
argmini{f, f,, f5, ..., f }?

C—

remove the conflicts

Greedy options

Select the activity with the smallest number of
conflicts

Homework 6a

Greedy options

Select the activity that ends the earliest, i.e.
argmini{f, f,, f5, .., f }?

L o 4

remove the conflicts

Greedy options Greedy options

Select the activity that ends the earliest, i.e. Select the activity that ends the earliest, i.e.
argmin{f,, f,, f5, ..., f.}? argmin{f,, f,, f5, ..., f.}?

Multiple optimal

solutions
Greedy options Greedy options
Select the activity that ends the earliest, i.e. Select the activity that ends the earliest, i.e.

argmin{f,, f,, f5, ..., f }? argmin{f,, f,, f5, .., f }?

Efficient greedy algorithm

Once you’ve identified a reasonable greedy
heuristic:

— Prove that it always gives the correct answer
— Develop an efficient solution

Is our greedy approach correct?

“Stays ahead” argument:

show that no matter what other solution someone proviq,es you, the
solution provided by your algorithm always “stays ahead", in that no
other choice could do better

an example of a “safety argument

An efficient solution

INTERVALSCHEDULE-GREEDY(A)

1 sort A based on finish times f;
2 fori—1lton

3 add a; to R

4 finish «— f;

5 while s; < finish
6 t— i+ 1
7 return R

Is our greedy approach correct?

“Stays ahead” argument

Letry, ry, 13, ..., 1, be the solution found by our approach

*-—
r r, ry = e
Let 0, 0,, 0, ..., 0, Of another optimal solution
-—
0, 0, 0, [

Show our approach “stays ahead” of any other solution

Stays ahead

r r £ I

04 0, 03 0,

Compare first activities of each solution

what do we know?

Greedy Strategy

How do we find greedy strategies that work?

Cast the optimization problem as one in which we make a
choice and are left with one subproblem to solve.

Prove that there’s always an optimal solution that makes
the greedy choice, so that the greedy choice is always
safe.

Demonstrate optimal substructure by showing that,
having made the greedy choice, combining an optimal
solution to the remaining subproblem with the greedy
choice gives an optimal solution to the original problem.

Stays ahead

We have at least as much time
as any other solution to schedule
the remaining 2...k tasks

Proving that the Greedy Algorithm is Correct: Safety and Induction!

Claim: The greedy algorithm finds the largest number of non-
overlapping courses

Proof: Strong induction on the number of intervals, n.
Basis: n=0.

Induction hypothesis: Assume the claim is true for any set with any
number of intervals between 0 and n.

Induction Step: Consider any set of n+1 intervals. We wish to
show that the greedy algorithm finds the largest number of non-
overlapping intervals. (Notice no induction pitfall here!)

First, we claim that there exists some optimal solution that uses the
first course (the one with the earliest ending time) which we’ll
denote C.

Consider any optimal solution S. If it includes C, our claim is true.
If it doesn’t include C, let C’ be the course in S that ends first.

Now, we know that C is contained in some optimal
solution.

Your turn to be greedy! Scheduling all intervals

* Break into groups of 3-4 Given n activities, we need to schedule all activities.

)) minimize the number of resources required.
 Select one of the following variants to solve: g

— Schedule all activities using as few rooms as
possible in the Shan

— If each activity has a value associated with it,
select a schedule that maximizes total value of
schedule

Greedy approach? Calculating max conflicts efficiently

The best we could ever do is the maximum
number of conflicts for any time period

Calculating max conflicts efficiently Calculating max conflicts efficiently

—e —e
——e —0 ————— —oe o—1 —————
-~ ————— —————— —————
— o — o

Max-Count-Algorithm Greedy algorithms

We can do no better then the max number
of conflicts. This exactly counts the max What is a greedy algorithm?
number of conflicts.

ALLINTERVALSCHEDULECOUNT(A) Algorithm that makes a local decision with the goal of creating a

1 Sort the start and end times, call this X . .

2 current < 0 globally optimal solution

3 max «— 0

4 for i < 1 to length[X] . . .

5 if z, is a start node Method for solving problems where optimal solutions can be
6 current + + defined in terms of optimal solutions to sub-problems

7 else

8 current — —

9 if current > mazx What does this mean? Where have we seen this before?
10 max «— current
11 return mazx

Greedy vs. divide and conquer Greedy vs. divide and conquer

Divide and conquer Divide and conquer
To solve the general problem: To solve the general problem:
I — I —
R R
Break into sum number of sub problems, solve: B e
B .
The solution to the general problem is solved with
then possibly do a little work respect to solutions to sub-problems!
Greedy vs. divide and conquer Greedy vs. divide and conquer
Greedy Greedy
To solve the general problem: To solve the general problem:
I — I —
R R
Pick a locally optimal solution and repeat - _

The solution to the general problem is solved with respect to
solutions to sub-problems!

Slightly different than divide and conquer

Warning: Greed is generally bad! Safety and Induction Revisited
| GREED IS
oT

When is greed good?

’I-I

* No general way to tell whether -
a greedy algorithm is optimal

* Two key ingredients:

1. Greedy-choice property — Can assemble a globally
optimal solution by making locally optimal (greedy)
choices.

2. Optimal substructure — Show that optimal solution
to subproblem + greedy choice = optimal solution
to the problem

Worksheet

* How many bills/coins does it take to make the
following amounts of change:
—31¢
—$47.32
—$9.99

* What is the greedy strategy for optimally
making change?

Back to Greed!

“*‘3"’
- oty
@s@ Denoninadnen.s &

', o, \gi-,..., LW

ObsecuoRW (1 I¥ s nevec optimal
4o use b oc wmece cowns of

decominaknen | o¢ % af .. b"‘",\

Worksheet!
‘Obsecuakeon &' WA ok wesy (b;\)
% eadn of coms 1,b,..., 0"
we can weoke oF wost..

change(amount) # greedy version for coins 1, b, b? ..., bk
« Choose the largest coin b’ that doesn’t exceed amount
« Recurse on change(amount-b)

Making Change!

change(42, [1, 5, 10, 25, 50]) 7
change (42, [1, 5, 21, 28]) # greed?
change (amount, coins[l:i])
if amount = 0: return 0
elif i == 0: return Infinity
elif coinvValue[i] > amount:
return change(amount, coins[1l:i-1])
else:
uselt = 1 + change(amount-coinValue[i],
coins[1l:i])
loseIt = change(amount, coins[l:i-1])
return min(useIt, loseIlt)

Proving Correctness

Proof by strong induction on amount, n
(not on our coin set 1, b, b? ..., bY)

Basis: n=0
Induction hypothesis: Assume that the greedy algorithm uses the
optimal number of coins for any amount from 0 to n.

Induction step: Consider an amount n+1. The greedy algorithm
uses the largest coin b' (i between 0 and k) that doesn’t exceed n+1.
We first claim that this choice is safe in the sense that there exists
an optimal solution that uses a b' coin.

Consider an optimal solution S (a multiset of coins) for amount n+1.

If S contains bithen our claim is true. If not, then S must make up at least bi
from smaller coins 1, b, ..., b1,

Knapsack problems:

Greedy or not? Recap

0-1 Knapsack — A thief robbing a store finds n items worth v, * Theidea:

V,, .., V, dollars and weight w;, w,, ..., w, pounds, where v, and — When we have a choice to make, make the one that looks the
w; are integers. The thief can carry at most W pounds in the best right now! o ,
knapsack. Which items should the thief take if he wants to - Is\él’?ﬁgoan/oca//y optimal choice in hopes of a globally optimal

maximize value. * Key ingredients:

1. Greedy-choice property — Can assemble a globally optimal
Fractional knapsack problem — Same as above, but the thief solution by making locally optimal (greedy) choices.
h to be at the bulk sect fthe st d 2. Optimal substructure — Show that optimal solution to
appens 1o be at the bulk section of the store and can carry subproblem + greedy choice = optimal solution to the
fractional portions of the items. For example, the thief could problem

take 20% of item i for a weight of 0.2w; and a value of 0.2v,.

