Dynamic Programming

Because sometimes greed fails..

g Lost™ jped fauch
Lest iPod Touh T

.’-50 Reward Call

Ulo-8s4-

Call Caroline
Maclkvre

3o 621-IH

Slides adapted from Ran Libeskind-Hadas and David Kauchak

Greedy Strategy

How do we find greedy strategies that work?

Cast the optimization problem as one in which we make a
choice and are left with one subproblem to solve.

Prove that there’s always an optimal solution that makes
the greedy choice, so that the greedy choice is always
safe.

Demonstrate optimal substructure by showing that,
having made the greedy choice, combining an optimal
solution to the remaining subproblem with the greedy
choice gives an optimal solution to the original problem.

Greedy Algorithms

* The idea:

— When we have a choice to make, make the one
that looks the best right now!

— Make a locally optimal choice in hopes of a
globally optimal solution

— Don’t always generate optimal solutions, but can.
* General characteristics of when greed is good (optimal)

When is greed good?
’I-I

* No general way to tell whether

a problem can be solved

optimally using a greedy algorithm
* Two key ingredients:

1. Greedy-choice property — Can assemble a globally
optimal solution by making locally optimal (greedy)
choices.

2. Optimal substructure — Show that optimal solution to

subproblem + greedy choice = optimal solution to the
problem

Boeclk to Greed !

\‘\\tac
P >
@»@ Denoninaodken.s &
p)

1, © \0‘,...) LW

Obsecuo®RW [I¥ s neveC optimal
4o use b oc wmece <cowns of

decominainen | o¢ v af .. b““,\[\h
(Athome)

Worksheet!
‘Obsecuakeon &' WA ok wesy Co-t) /

of eadn of cowme {,b,..., Lt
we con wake oF wost..

change(amount) # greedy version for coins 1, b, b? ..., bk
« Choose the largest coin b’ that doesn’t exceed amount
« Recurse on change(amount-b')

Making Change!

change(42, [1, 5, 10, 25, 50])
change (42, [1, 5, 21, 28]) # greed?
change(amount, coins[l:i])
if amount = 0: return 0
elif i == 0: return Infinity
elif coinvValue[i] > amount:
return change(amount, coins[l:i-1])
else:
uselt = 1 + change(amount-coinvValue[i],
coins[1l:i])
loseIt = change(amount, coins[l:i-1])
return min(useIt, loselt)

Proving Correctness

Proof by strong induction on amount, n
(not on our coin set 1, b, b? ..., bY)

Basis: n=0
Induction hypothesis: Assume that the greedy algorithm uses the
optimal number of coins for any amount from 0 to n.

Induction step: Consider an amount n+1. The greedy algorithm
uses the largest coin b' (i between 0 and k) that doesn’t exceed n+1.
We first claim that this choice is safe in the sense that there exists
an optimal solution that uses a b' coin.

Consider an optimal solution S (a multiset of coins) for amount n+1.

If S contains bithen our claim is true. If not, then S must make up at
least b' from smaller coins 1, b, ..., b1,

But, by Observation 1, since S is optimal, it uses no more than b-1 of
each of these coins.

By Observation 2, we can’t make up b' using at most b-1 of each of
these coins. So, S must contain coin b'.

Now, the remaining amount (n+1)-b' must be made up using the
least number of coins. But, our algorithm recurses on this amount
and, by the induction hypothesis, it uses the least number of coins
for that amount since (n+1)-b' is between 0 and n. Q.E.D.

Dynamic Programming

* Not a specific algorithm, but a technique (like divide-
and-conquer).

* Developed back in the day when “programming”
meant “tabular method” (like linear programming).
Doesn’t really refer to computer programming.

* Used for optimization problems:
— Find a solution with the optimal value
— Minimization and maximization

Greedy Recap

¢ Theidea:

— When we have a choice to make, make the one that looks the
best right now!

— Make a locally optimal choice in hopes of a globally optimal
solution

* Key ingredients:

1. Greedy-choice property — Can assemble a globally optimal
solution by making locally optimal (greedy) choices.

2. Optimal substructure — Show that optimal solution to
subproblem + greedy choice = optimal solution to the
problem

Dynamic programming
One of the most important algorithm tools!

Very common interview question

Method for solving problems where optimal solutions can be
defined in terms of optimal solutions to sub-problems

AND

the sub-problems are overlapping

Where did “dynamic programming” come from?

“I spent the Fall quarter (of 1950) at RAND. My first task
was to find a name for multistage de
“An interesting question is,

name,
dynamic programming. come from? The 1950s were not
good years for mathematical research. We had a very inter-
ing gentleman in Washington named Wilson. He was
retary of Defense, and he actually had a pathological
fear and hatred of the word. research. I'm not using the

term lightly: I'm using it precisely. His face would suffuse,
he would tum red, and he would get violent if people used

an imagine how he Richard Bellman On the Birth of
The RAND Cor- Dynamic Programming

the term, research, in his presence. You

felt, then. about the term, mathemat
poration was employed by the Air Force. and the Air Force
had Wilson as its boss, essentially. H I felt T had to do
something to shield Wilson and the Air Force from the fact Stuart Dreyfus
that I was really doing mathematics inside the RAND Cor-
poration. What title. what name. could I choose? In the first

place I was interested in planning. in decision making. in http://www.eng.tau.ac.il/~ami/cd/
thinking. But planr is not a good word for various rea- _ _ _50-01-

sons. I decided therefore to use the word, ‘programming.’ 0r50/1526-5463-2002-50-01-0048
I wanted to get across the idea that this was dynamic, this pdf
was multistage. this was time-varying—I thought. let’s kill

two birds with one stone. Let’s e a word that has an

absolutely precise meaning, namely dynamic. in the clas-
sical pk cal sense. It also has a very interesting property
ctive, and that is it’s impossible to use the word,

as an adj
dyna in a pejorativ
bination that will possibly

Try thinking of some com-
it a pejorative meaning.
It’s impossible. Thus. I thought dynamic programming was
a good name. It was something not even a Congressman
could object to. So I used it as an umbrella for my activi-
ties™ (p. 159).

Fibonacci: a first attempt

FI1BoNACcCI(n)
ifn=1lorn=2

return 1
else

W N -

return FiBoNAcci(n — 1) + FIBoNAccI(n — 2)

Fibonacci numbers

1,1,2,3,5,8, 13, 21, 34, ...
What is the recurrence for the nth Fibonacci number?

F(n) = F(n-1) + F(n-2)

The solution for n is defined with respect to the
solution to smaller problems (n-1 and n-2)

A lot of repeated work!
Fib(n)

Fib(n-1) Fib(n-2)
Fib(n-2) Fib(n-3) Fib(n-3) Fib(n-4)

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5) Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6)

AAA /

Identifying a dynamic
programming problem

The solution can be defined with respect to solutions to
subproblems

The subproblems created are overlapping, that is we
see the same subproblems repeated

Overlapping sub-problems

divide and
conquer

dynamic
programming

Hi

The Goal

* Solve each subproblem once

* Save solution in a table and refer back any
time we revisit the subproblem

* “Store, don’t recompute” = Time-memory
trade-off

* Two basic approaches: top-down with
memoization and bottom up

Differences?
DIVIDE AND CONQUER DYNAMIC PROGRAMMING
Example: merge sort
/ 1.8 \ Fib(n)
1.4 5.8 Fib(n-1) Fib(n-2)
1..2/ \3..4 5..6/ \7..8 /\ /\
/ \ / \ / \ / \ Fib(n-2) Fib(n-3) Fib(n-3) Fib(n-4)
1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8

Creating a dynamic programming
solution

Characterize the structure of an optimal solution
Recursively define the value of an optimal solution

3. Compute the value of an optimal solution, typically in bottom-up
fashion

4. Construct an optimal solution from computed information

FiBoNAccI-DP(n)
fib[l] «— 1
fib[2] «— 1
fori«— 3 ton
fib[z] « fib[i — 1] + fib[i — 2]
return fib[n]

T W N

Important Questions to ask about the DP Table:

* Meaning? * Easy?

¢ What do the cells mean? ¢ What cells can you fill out (easily)?
* Want? * Rule?

* What cell do you want? * What rule helps fill out other cells?

The DP table should include the possible inputs to the recursive call

FiBoNAccI-DP(n)
fib[l] «— 1
fib[2] — 1
fori«— 3 ton
fibli] «— fibli — 1] + fib[i — 2]
return fib[n]

CUbh WK

Creating a dynamic programming
solution

Step 1: Identify a solution to the problem with respect to smaller
subproblems (pretend like you have a solver, but it only works on
smaller problems):

— F(n) = F(n-1) + F(n-2)

Step 2: bottom up - start with solutions to the smallest problems and

build solutions to the larger problems use an array to
F1BONACCI-DP(n) store solutions
1 fi:[l] —1 to subproblems
2 b[2] «— 1
3 {or[i]<— 3ton ‘/ '/
4 Fibli] — fibli — 1] + fib[i — 2]
5 return fib[n]

FiBoNAccI-DP(n)
fib[l] «— 1
fib[2] «— 1
fori«— 3 ton
fib[z] « fib[i — 1] + fib[i — 2]
return fib[n]

Ul W+

Is it correct?

Running time?

Longest common subsequence
(LCS)

For a sequence X = xy, X,, ..., X,,, @ subsequence is a
subset of the sequence defined by a set of increasing
indices (iy, iy, ..., i,) where

1<ij<i,<..<i<n

X=ABAC BAB

LCS problem

Given two sequences X and Y, a common subsequence is a
subsequence that occurs in both X and Y

Given two sequences X = X;, X,, ..., X, and
Y = yll yz; ceey ynl

What is the longest common subsequence?

X=ABCBDAB
Y=BDCABA

LCS problem

Given two sequences X and Y, a common subsequence is a
subsequence that occurs in both Xand Y

Given two sequences X = Xy, Xy, ..., X, and

Y=y1’ y2' b ym
horseback

s ringtime
Examples: / / / / . n\o /

wflake

ma/el\st7m ero:.cal/
becalm

LCS problem

Given two sequences X and Y, a common subsequence is a
subsequence that occurs in both X and Y

Given two sequences X = X;, X,, ..., X, and
Y = yll yz; ey ynl

What is the longest common subsequence?

X=ABCB
Y = C A

Step 1: Define the problem with
respect to subproblems

X=ABCBDAB

Y=BDCABA

Assume you have a solver for smaller problems

Step 1: Define the problem with
respect to subproblems
X=ABCBD AA

LCS

Y =‘ B D C A B 'AT\ What is the recursive

relationship?

If they’re the same

LCS(X,Y)=LCS(X, , .Y, ,)+x,

Step 1: Define the problem with
respect to subproblems

X=ABCBDA’%

Y=BDCAB’.?

Whiteboard: Specify the solution to this problem
as a combination of subproblems

Hint: Is the last character part of the LCS?

Step 1: Define the problem with
respect to subproblems
X=ABCBD A|§

LCS

Y=BDCABAT\

If they’re different

LCS(Xs Y) = LCS(Xln—l’ Y)
LCS(X,Y)=LCS(X.Y,)

Step 1: Define the problem with
respect to subproblems
X=ABCBDA I?

Y=BDCABAT\

l+LCS(X1...n—1’Yl...m—1) if xn =ym

LCS(X,Y) =
() {max(LCS(XI__n_l,Y),LCS(X,Yl"_m_l) otherwise

(for now, let’s just worry about counting the length of the LCS)

Step 2: Build the solution from the
bottom up

LCS(X,Y) 1+ LCS(X, .5,) if x, =y,
7 | max(LCS(X, . Y),LCS(X,Y, ;) otherwise
What types of subproblem
solutions do we need to store?

LCS(X4 j Y1 k)

1+ LCS[i—1,;-1] if x, =y,

LCSTi, 1=
1771 {max(LCS[i—l, J1LCS[i, j—1] otherwise

Step 2: Build the solution from the
bottom up

1+ LCS(X, , .Y 1) itx, =y,
LCS(X,Y) = :
max(LCS(X, ,.,.Y),LCS(X,Y, ,_,) otherwise
What types of subproblem
solutions do we need to store?

LCS(Xy j, Yi. g)

\/

two different indices

1+ LCSGE -1,/ =1 ifx, =y,

rnaX(LC LC otherwise

LCSTi, j] = {

Worksheet:

¥ BDCABA Meaning?

* What do the cells mean?

Want?

* What cell do you want?

Easy?

* What cells can you fill out
(easily)?

Rule?

cells? (whiteboard)

NoOo A WN 2O |-
WP 0w W >Xx

* What rule helps fill out other

LCS[i,j]={ 1+L-CS[z"—1,j—1]- , if x, = LCS[M]JT 1+L-CS[z"—1,j—1]- , if x, =,
max(LCS[i-1, j],LCS[i, j—1] otherwise]max(LCS[z—1,]],LCS[1,]—1] otherwise
i10123456 10123456
| ijDCABA i ijDCABA
Ox |000000O0 Ox |000000O0
TA O Need to initialize values within 1 1TA 10000111 LCS(ABCB, BDCAB)
2 B | 0 gmallerin either dimension. 2B 0111122
3C|0 3C| 0112222
4B |0 4B|011227
5D |0 5D |0
6 AIO0 6 AIO0
7B 0 7B O
LCS[i /] = 1+ LCS[i—1,j—1] if x, =y, .
7 _{max(LCS[i—l,j],LCS[i,j—l] otherwise The algorithm
j 0123456 LCS—LENGTH(tX,Y) . .
i y, BDCABA Z{;{)]zii';‘(i)h”&i? Running time?
0x | 0000000 , i foricirom
1A 10000111 goReEls, ¢ wriiion
2B | 0111122 § fricitom
3C| 0112222 10 ifzi=yz-[. it
4 B 0 1 1 22 3 3 Lﬁ elseifc[i[;‘i],j] >[-c[i,]1'—‘]1],]
5 D 0 1 2 22 3 14 else s
6 A 0 1 2 2 3 3 12 return c[m, n| ol elhng =l
7B 0122344

Keeping track of the solution sestn- | 1+ LCSTi, /] iy =,

max(LCS[i-1, j],LCS[i, j—1] otherwise
Our LCS algorithm only calculated the length of the LCS

between X and Y
What if we wanted to know the actual sequence? 1101234586
quence: i y. BDCABA
Keep track of this as well... 0x 000 0.00.0
8 fori 1t 1 A \0 0 0 1‘;1 1
o " forje1ton 2B | 0411122 We can follow the
}(1) if z; = yé[i,j] 1ol 1] LN 3 C 0™ 1 9 HY92.92 arrows tg generate
12 elseif cfi — 1,5] > cli,j — 1] Aw, A A the solution
3 1 cli, 7] — cfi — 1, 4] 1 4 B 0 J J 2 ¥ \3
15 cli, j] « cli,j — 1] «— 5 D 0 \1 2 2 2\ 3
16 return c[m,n] 6 A 0 1 2 2 3 3
7B 012234

Elements of a DP (revisited) Matrix Multiplication

* Optimal substructure

— Asolution to a problem consists of making a choice/computation that will lead A * B = C
to an optimal solution

— Given this choice/computation, determine which subproblems ariseandhow —F ¢ R

to characterize the resulting space of subproblems. i - ql e = Multiplication

time = pqr

— Solutions to the sub-problems used within the optimal solution must Pl i o i
themselves be optimal. Otherwise, we’d see “cut-and-paste” error: S r

* Suppose that one of the subproblem solutions is not optimal

+ Cutitout q

¢ Paste in an optimal solution

* Get a better solution to the original problem. Contradicts the optimality of

problem solutions Flg 7: Matrix Multiplication.
How does this differ from

* OQverlapping subproblems greedy?
http://www.cs.sunysb.edu/~jgao/CSE548-fall07/David-mount-DP.pdf

Matrix Multiplication Matrix Multiplication

http://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf http://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf

184 Algorithms
Figure 6.6 A x Bx(Cx D= (Ax (B xC))xD.
(a) (b)
< X == X ‘ I] D
< |x=x 7] x ~
A B C D) A BxC D
A B C D
50 x 20 20x1 1x10 10 x 100 © @
«~ T
-If(lix(') D (Ax(BxC)x D
50 % 10 10 % 100 50 x 100
How many possible orderings of multiplication?
Order Matters Which parentheses match to each diagram?
http://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf
((Ax B)xC)xD (Ax (B xC))xD Ax ((BxC)xD)
x H X = X | “)@(
D)
/3{ ¢ Aij
@ ®
A B C D
50 x 20 20 x 1 1 x10 10 x 100
Ak+1_j
Parenthesization | Cost computation | Cost
Ax ((BxC)xD)|20-1-10+ 20-10-100 + 50 - 20 - 100 | 120, 200
(Ax (BxC))xD| 20-1-10+50-20-10+ 50-10-100 60, 200 it o berkel ot
AxB)x (CxD)| 50-20-14+1-10-100+ 50 -1 - 100 7,000 S S o o A)
() () A|A|+1 - Ak Ak+1 ...AJ

Mot Mo plicoton.

R evisived.

et witw o\
2 Auis ceuititing utavess D!

Ran++
Conventions

M, My N3

lo xX a0 190 xS S =

E TN aq.i\cfs\ -

matrices[1l:3]
matrices[1l]: p[0] x p[1l]
matrices[2]: p[l] x p[2]

=5 matrices[3]: p[2] x p[3]

Mn

Pr-t X P

Lany, e, M

Mo\ts (marvices Ci:
i) e o

Mot MoK plication.
R evisived.

et witw ol
= s ceuisiding utness !

M, My M3

1o x a0 100 xS S x S0

P

+ote\

matrices[1l:3]

matrices[1]: p[0] x p[l]
matrices[2]: p[l] x p[2]
matrices[3]: p[2] x p[3]

minMults (matrices[i:]j])
if i == j: return 0 # one
else:
best = Infinity # bes
for k from i to j-1:

matrix, no mults!

t cost so far
where shall we split?

return best

Moein Mo plicaton.
Revisived.

ot witw all
= Auwis Ceuitiiing butinessd!

matrices[1l:3]

matrices[1l]: p[0] x p[l]

M, My M3

1o x1tao LR S x SO

minMults (matrices[i:]j])
if i |
else:
best = Infinity # best cost so far
for k from i to j-1: # where shall we split?

return best

Mot MoK plication.
R evisived.

et witw ol
= AwWs ceuisiding utness !

matrices[1l:3]

matrices[2]: p[l] x p[2]
matrices[3]: p[2] X p[3]

matrices[1l]: p[0] x p[l]

M, My M3

1o x a0 100 xS S$x S0

matrices[2]: p[l] x
matrices[3]: p[2] x

minMults (matrices[i:]j])
if i == j: return 0 # one matrix, no mults!
else:
best = Infinity # best cost so far
for k from i to j-1: # where shall we split?
left = minMults[i:k]
right = minMults[k+1:7]

return best

pl2]
pl3]

Mo Mo plicaton.
Revisived

1§!> Gwods Wit a\\
= Auwis Ceuitiiivg butinessd!

M, My M3

1o x 100 100 xS S x SO

matrices[1l:3]

matrices[1l]: p[0] x p[l]
matrices[2]: p[l] x p[2]
matrices[3]: p[2] X p[3]

minMults(matrices[i:j])
if i == j: return 0 # one
else:
best = Infinity # bes
for k from i to j-1:
left = minMults[i:k]
right = minMults[k+1
lastMult = p[i-1]*p[

matrix, no mults!

t cost so far
where shall we split?

131
k]*p[]]

return best

Dyne ic Peoa

S

4
‘/"""P' }P a Paxpa

Fill this in in your notes!

! P3x Py

i § %

K

Txlo 10%X20 &0xs S$x30

Mot Ao\ P
Revisived

1§!> Gods Wit a\l
= Auwis Ceuitiiing butinessd!

wvow.

matrices[1l:3]
matrices[1]: p[0] x p[l]

M, My M3 matrices[2]: p[l] x p[2]
1o x a0 Qo xS S = SO matrices[3]: p[z] X p[3]
) . L Meaning?
minMults (matrices[i:j]) « What do the cells
if i == j: return 0 # one matrix, no mults
mean?
else: ;
best = Infinity # best cost so far Want?
for k from i to j-1: # where shall we ° Whatcelldoyou
left = minMults[i:k] want?
right = minMults[k+1:7] Easy?
lastMult = p[i-1]*p[k]*p[]] * What cells can you
total = left + right + lastMult fill out (easily)?
if total < best: best = total Rule?
return best * What rule helps fill

.
N 2 2 3 4
1 minMults(matrices[i:j])
if i == j: return 0 # one matrix, no mults!
else:
2 best = Infinity # best cost so far
for k from i to j-1: # where shall we split?
3 left = minMults[i:k]
right = minMults[k+1:j]
lastMult = p[i-1]*p[k]*p[]]
total = left + right + lastMult
9 if total < best: best = total
.

return best

Another example: (CRLS)

m

PRINT-OPTIMAL-PARENS (5.7, /)
ifi ==j

print “A4”;
else print ("
PRINT-OPTIMAL-PARENS (s. 7. 5[i. j])
PRINT-OPTIMAL-PARENS (5. 5[i. j] + L. j)
print)"

1
2
3
4
5
6

Figure 15.5 The m and s tables computed by MATRIX-CHAIN-ORDER for 7 = 6 and the follow-
ing matrix dimensions:

matrix | 4y As Az Ag As Ag

dimension|30><35 35x15 15x5 5x10 10x20 20x25

Top-down Alternative:
Memoization

Memoizing is remembering what we have computed previously.
Solve recursively (top-down)
— “Store, don’t recompute”
— Make a table indexed by subproblem
— When solving subproblem (top-down):
* Look-up in table
* If answer is there, use it
* Else, compute answer and store it.

Bottom-up DP goes a step further: first determine the order in which the
table would be accessed, and fill it in that way

Quick summary

Step 1: Define the problem with respect to subproblems
— We did this for divide and conquer too. What's the difference?

— You can identify a candidate for dynamic programming if there is
overlap or repeated work in the subproblems being created

Step 2: build the solution from the bottom up

— Build the solution such that the subproblems referenced by larger
problems are already solved

— Memoization is also an alternative

Normal
Recursion

The top-down approach

memoized

F(4)

FQ3)

http://www.agillo.net/getting-groovy-with-fibonacci/

DIRECTOR ProfJum

CAMERA
DATE

