Solving Problems with Optimal Substructure

BRUTE-FORCE DYNAMIC .
SOLUTTON: PROGRAMMING SELUNG ON EBRAY:
o(n) ALGORITHMS: O(r1)
. O (ﬂzzn)
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE
HEW VP
Xked.org

Slides adapted from Ran Libeskind-Hadas,David Kauchak,CS 460 JHU

Dynamic Programming: The Goal

Solve each subproblem once

Save solution in a table and refer back any
time we revisit the subproblem

“Store, don’t recompute” = Time-memory
trade-off

Two basic approaches: top-down with
memoization and bottom up

Problems with Optimal Substructure

* Combining optimal solutions to subproblems leads to
globally optimal solution

* Used for optimization problems:
— Find a solution with the optimal value
— Minimization and maximization

Identifying a dynamic
programming problem

The solution can be defined with respect to solutions to
subproblems

The subproblems created are overlapping, that is we
see the same subproblems repeated

Creating a dynamic programming Creating a dynamic programming
solution solution

Characterize the structure of an optimal solution Step 1: Identify a solution to the problem with respect to smaller
Recursively define the value of an optimal solution subproblems (pretend like you have a solver, but it only works on

3. Compute the value of an optimal solution, typically in bottom-up smaller problems):
fashion — F(n) =F(n-1) + F(n-2)

4. Construct an optimal solution from computed information
Step 2: bottom up - start with solutions to the smallest problems and

build solutions to the larger problems use an array to
FIBONACCI-DP(n) F1BONACCI-DP(n) _ store solutions
fib[l] « 1 1 fib[l] <1 * to subproblems

fib[2] — 1
fori«— 3 ton

fib[i] «— fibli — 1] + fib[i — 2]
return fib[n]

fib2] — 1
fori«— 3 ton / '/

fib[i] «— fibli — 1] + fib[i — 2]
return fib[n]

T W N
T W N

Important Questions to ask about the DP Table: Elements of a DP (revisited)

+ Meaning? . Easy? * Optimal substructure
« What do the cells mean? « What cells can you fill out (easily)? — Asolution tola plroblem consists of making a choice/computation that will lead
to an optimal solution
" Want? " Rule? Gi z hoi i d i hich subprobl i dh
+ What cell do you want? « What rule helps fill out other cells? — Given thisc .0|ce/compu'fat|on, etermine which subproblems arise and how
to characterize the resulting space of subproblems.
— Solutions to the sub-problems used within the optimal solution must
The DP table should include the possible inputs to the recursive call themselves be optimal. Otherwise, we’d see “cut-and-paste” error:
* Suppose that one of the subproblem solutions is not optimal
FiBoNAccI-DP(n) . Cutitout
fib[1] «— 1 .

Paste in an optimal solution

f'Lb[2.] —1 * Get a better solution to the original problem. Contradicts the optimality of
fori—3ton problem solutions

fib[i] «— fib[i — 1] + fib[i — 2] . How does this differ from
return fib[n] * OQverlapping subproblems greedy?

CUbh WK

: . Order Matters
Dyna micC P I’Og rammi ng http://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf

* Not a specific algorithm, but a technique (like divide-
and-conquer). < H x == x |

* Developed back in the day when “programming”
meant “tabular method” (like linear programming).

Doesn’t really refer to computer programming. A B ¢ D
50 x 20 20 x 1 1x10 10 x 100
* Used for optimization problems:
Parenthesization | Cost computation | Cost

— Find a solution with the optimal value
20-1-10+20-10- 100 + 50 - 20 - 100 | 120, 200

20-1-10+50-20-10+ 50-10-100 60, 200
50-20-1+4+1-10-100 + 50 -1 - 100 7,000

Ax ((BxC)x D)
— Minimization and maximization (Ax (BxC))xD
(Ax B) x (C xD)

Movi Ao\ Plicotion R a n ++ Motreix MoWRplicaton.
R euis red. R evisiyed.

Gl with o\\ Conventions 4{"‘\3&?} g buness?)
- 4w atwess 3!

iS Ceuisiding matrices[1:3]

matrices[1l]: p[0] x p[l]

matrices[1l:3] M, My M3 matrices[2]: p[l] x p[2]
M, My M3 matr%ces[l]: p[0] x p[1] e T B matrices[3]: p[2] x p[3]
lo x 1090 100 xS S »x $0 mat]’_‘:!_ceS[Z]: p[1] x p[2]
matrices[3]: p[2] x p[3] minMults (matrices[i:]j])
if i == j: return 0 # one matrix, no mults!
else:

b4 cal.n -
"ogenece best = Infinity # best cost so far

for k from i to j-1: # where shall we split?
N\, N\ NMn left = minMults[i:k]
right = minMults[k+1:7]
lastMult = p[i-1]1*p[k]l*p[]]
Ly, e, M) total = left + right + lastMult
M "N\'\'S (*Ms""“G‘*['-A‘2 if total < best: best = total

= 4 \
#* wolbs cegured return best

Mo MOoWp)
Revisived

Gwods Wit a\\
= Auwis Ceuitiiivg butinessd!

matrices[1l:3]
matrices[1]: p[0] x p[l]

M, My M3 matrices[2]: p[l] x p[2]
S Es HONES | SaE $0 matrices[3]: p[2] x p[3]
Meaning?
minMults (matrices[i:]j]) ¢ What do the cells
if i == j: return 0 # one matrix, no mults mean?
else: Want?
best = Infinity # best cost so far + What cell do you want?
for k from i to j-1: # where shall we Easy?
left = minMults[i:k] * What cells can you fill
right = minMults[k+1:]] out (easily)?
lastMult = p[i-1]*p[k]*pP[]] Rule?
total = left + right + lastMult * What rule helps fill out
if total < best: best = total other cells?

return best

minMults(matrices[i:j])
if i == j: return 0 # one matrix, no mults!
else:
best = Infinity # best cost so far

for k from i to j-1: # where shall we split?

left = minMults[i:k]

right = minMults[k+1:3j]
lastMult = p[i-1]*p[k]1*p[]]
total = left + right + lastMult
if total < best: best = total
return best

A1 A2 A3 A4
5x10 10x20 20x5 5x30

Fill this in in your notes!

‘f P3x Py
Ay
s

1

Txlo 10%0 &A0xS &$x%30
N\ 2 PR 3 &
1 minMults(matrices[i:3])
if i == j: return 0 # one matrix, no mults!
else:
ao best = Infinity # best cost so far
for k from i to j-1: # where shall we split?
3 left = minMults[i:k]
right = minMults[k+1:j]
lastMult = p[i-1]*p[k]*p[]]
total = left + right + lastMult
"' if total < best: best = total

mlL [‘j] return best

Another example: (CRLS)

m s

PRINT-OPTIMAL-PARENS (5.7, /)
ifi==j

print “A4”;
else print “(”
PRINT-OPTIMAL-PARENS (5.7, 5[i. j])
PRINT-OPTIMAL-PARENS (s.s[i. j] + 1. j)
print)"
Figure 15.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 and the follow-
ing matrix dimensions:

matrix | Ay As A3 Ag As Ag
dimension | 30x35 35x15 15x5 5x10 10x20 20x25

1
2
3
4
5
6

Longest increasing subsequence

Given a sequence of numbers X = x;, x,, ..., x,, find
the longest increasing subsequence

(i, iy, ..., i), thatis @ subsequence where numbers
in the sequence increase.

5286 7

Step 1: Define the problem with

respect to subproblems
52863697

include 5

5+LIS8 6 36 9 7)

What is this function exactly?

longest increasing longest increasing
sequence of the sequence of the
numbers numbers starting with 8

Step 1: Define the problem with

respect to subproblems
? 286 3697

Two options:
Either 5 is in the
LIS orit’'s not

Step 1: Define the problem with

respect to subproblems
52863697

include 5

5+LIS(8 6369 7)
—

longest increasing sequence of
the numbers starting with 8

Do we need to consider anything
else for subsequences starting at 57

Step 1: Define the problem with

respect to subproblems
52863697
include 5 T
5+LIS(8 6 3
5+LIS'(6 3 6
5+LIS'(6 9 7)
5+ LIS'(9 7)
5+ LIS'(7)

69 7)
9 7

)

Step 1: Define the problem with

respect to subproblems
LIS(X) = max{LIS'(i)}
Longest increasing sequence for X

is the longest increasing sequence
starting at any element

LIS'(G)= max {1+LIS'(X,)}

i:i>land x; >x

Longest increasing sequence starting at i

Step 1: Define the problem with

respect to subproblems
? 286 3697

don’t
include 5

LIS2 8 6 36 9 7)

Anything else?

Technically, this is fine, but now we have
LIS and LIS’ to worry about.

Can we rewrite LIS in terms of LIS’?

Step 2: build the solution from the

bottom up
LIS'(()= max {1+LIS'(X,)}

izi>1land x; >x,

LIS :
52863697

LIS(X) = max{LIS'(i)}

Step 2: build the solution from the
bottom up
LIS'(i))= max {l+LIS'(X,)}

ii>land x; >x;

What does my data structure for
storing answers look like?

Step 2: build the solution from the

bottom up

LIS(X)

1 n+« LENGTH(X)

2 create array lizs with n entries

3 forz— ntol

4 max «— 1

5 for j«— 2+ 1ton

6 if X[7] > X[¢]

7 if 1+ lis[j] > max

8 max «— 1 + lis[]]
9 lis[i] < max
10 max — 0
11 foriz« 1lton
12 if lis[i] > max

13 max «— lis[i]
14 return max

Step 2: build the solution from the

bottom up
LIS'())= max {1+LIS'(X,)}

1-D array: only one thing changes
for recursive calls, i

Another solution

Can we use LCS to solve this problem?

5286 9
566789

Top-down Alternative:
Memoization

* Memoizing is remembering what we have computed previously.

* Solve recursively (top-down)
— “Store, don’t recompute”
— Make a table indexed by subproblem
— When solving subproblem (top-down):
* Look-up in table
* If answer is there, use it
* Else, compute answer and store it.

* Bottom-up DP goes a step further: first determine the order in which the
table would be accessed, and fill it in that way

Memoization

Sometimes it can be a challenge to write the function in a
bottom-up fashion

Memoization:
— Write the recursive function top-down
Alter the function to check if we've already calculated the value

If so, use the pre-calculate value
If not, do the recursive call(s)

Recursion F(5)

The top-down approach

Normal memoized

F(4) FQ3)

http://www.agillo.net/getting-groovy-with-fibonacci/

Memoized fibonacci

FiBoNaccl(n)

1 ifn=1lorn=2

2 return 1

3 else

B return FiBoNnacci(n — 1) 4+ FiBoNnacci(n — 2)

FIBONACCI-MEMOIZED(7)
fib[1] « 1
fib[2] « 1
fori+ 3ton

fib[i] + oo
return FIB-LOOKUP(n)

UL W N

FI1B-LOOKUP(n)

1 if fib[n] < oo

2 return fib[n]

3 fib[n] « F1B-LOOKUP(n — 1) + FIB-LOOKUP(n — 2)
4 return fib[n]

Memoization Quick summary

Pros * Step 1: Define the problem with respect to subproblems

— Can be more intuitive to code/understand — We did this for divide and conquer too. What's the difference?

— You can identify a candidate for dynamic programming if there is

. . ’
— Can be memory savings if you don" t need answers to all overlap or repeated work in the subproblems being created

subproblems

* Step 2: build the solution from the bottom up

— Build the solution such that the subproblems referenced by larger
Cons problems are already solved

— Depending on implementation, larger overhead because — Memoization is also an alternative
of recursion (though often the functions are tail recursive)

Efficient greedy algorithm Greedy Strategy

Once you've identified a reasonable greedy * How do we find greedy strategies that work?
.. 1. Cast the optimization problem as one in which we make a
heuristic: choice and are left with one subproblem to solve.
— Prove that it always gives the correct answer 2. Prove that there’s always an optimal solution that makes
the greedy choice, so that the greedy choice is always
— Develop an efficient solution safe.

3. Demonstrate optimal substructure by showing that,
having made the greedy choice, combining an optimal
solution to the remaining subproblem with the greedy
choice gives an optimal solution to the original problem.

When is greed good? Greedy Recap
'l-l

¢ Theidea:

— When we have a choice to make, make the one that looks the
best right now!

— Make a locally optimal choice in hopes of a globally optimal

* No general way to tell whether
a problem can be solved
optimally using a greedy algorithm

* Two key ingredients: ‘ solution

1. Greedy-choice property — Can assemble a globally . ; ; .
optimal solution by making locally optimal (greedy) Key |ngred|ent§.)
choices. 1. Greedy-choice property — Can assemble a globally optimal

) .) solution by making locally optimal (greedy) choices.

2. Opbtlmalilsubstructu(lj’e —hShowéhat qpt‘lrpal ISO!UUOH tﬁ 2. Optimal substructure — Show that optimal solution to
subproblem + greedy choice = optimal solution to the subproblem + greedy choice = optimal solution to the
problem problem

Greedy vs. divide and conquer Greedy vs. divide and conquer
Divide and conquer Divide and conquer
To solve the general problem: To solve the general problem:
- -

Break into sum number of sub problems, solve:

The solution to the general problem is solved with
then possibly do a little work respect to solutions to sub-problems!

Greedy vs. divide and conquer

Greedy

To solve the general problem:

-

Pick a locally optimal solution and repeat

D&C vs. DP:0overlapping sub-problems

| |
divide and

conquer RS
| | |

| |
dynamic R

programming ‘ ‘
| |

Greedy vs. divide and conquer

Greedy

To solve the general problem:

| |
-
. |

The solution to the general problem is solved with respect to
solutions to sub-problems!

Slightly different than divide and conquer

Greedy Algorithm vs
Dynamic Programming

Dynamic = = = = =
Programming - EEEE
HEEEEN

Algorithm

-

&

Greedy vs. DP (overview)

* With DP: solve subproblems first, then use those solutions to
make an optimal choice

* With Greedy: make an optimal choice (without knowing
solutions to subproblems) and then solve remaining
subproblem(s)

* DP solutions are bottom up; greedy are top down

* Both apply to problems with optimal substructure: solutions
to larger problems contains solutions to (1 or more)
subproblems

Knapsack Problem

n items a thief’'s knapsack of
size W
2 L

]
q -

Knapsack problems: = !

~ <
5 =
Greedy or not:
| <=
0-1 Knapsack — A thief robbing a store finds n items ,)
worth vy, v,, .., v, dollars and weight w,, w,, ..., w, SR
pounds, where v;and w; are integers. The thief can

carry at most W pounds in the knapsack. Which items
should the thief take if he wants to maximize value.

Fractional knapsack problem — Same as above, but the thief happens
to be at the bulk section of the store and can carry fractional portions
of the items. For example, the thief could take 20% of item i for a
weight of 0.2w; and a value of 0.2v,.

Knapsack Problem

* 0-1 knapsack problem
- Each item must be either taken or left

behind. D D
* Fractional knapsack problem —

- The thief can take fractions of items. |:|

Knapsack Problem

n=4,
I I i

$60 $100 $120 $135
($6/unit) ($5/unit) ($4/unit) ($3/unit) ll:napsac

Fractional Knapsack Problem

Greedy algorithm: $240

greatest value per unit 20
/' %

45
30
I——) S0
20
$135 g0l 20 E—
X 4/unit $100 $60
($3/unit) 5

[unit ($6/unit) knapsac
II

= !

Solve and compare N g
N
* Break into groups of at 3-4 d,,
— Must contain someone from each row! I
* Find an efficient algorithm that calculates the most

valuable solution possible. Analyze:
— Optimality —is it guaranteed to be optimal?

— Runtime

- 0-1 Knapsack Fractional Knapsack

Greedy Group #1 Group #2

Dynamic Group #3 Group #4
Programming

0-1 Knapsack Problem

$220
$135

$60
($6/un|t) $160 30

20
$120

($4/un|t) 10
$100 $135 -

($5/unit) ($3/unit) value value optimal
per unit

0-1 Knapsack Problem

Difficult to get the
optimal solution with a
greedy strategy.

Dynamic
Programming : 7@ X W

$220
$135
$160 30
45
20
l
value value optimal

per unit

50

Greedy Algorithm vs
Dynamic Programming

Computes all subproblems Find a local optimum
Always finds the optimal solution ~ May not be able to find the optimal
solution

Compute all options before making Typically faster, less memory
choice, more memory

