
Graph&Algorithms!&

Did&someone&same&

“G5raph”&?&

Slides&adapted&from&Ran&Libeskind5Hadas,David&Kauchak&

Why&Graphs?&
Why&

not?&

•  Shortest paths (Google Maps)
•  Networks (social networks, computer networks)
•  Problems that don’t even “look” graph

theoretic!
•  Clustering of data (recommendation systems)
•  Optimization problems (Space shuttle

payloads)

Shortest&Paths&

Mmmm,
strawberry
donuts!

Network&Flow&

42

7

10

13

12
20

21

15

100

23

18

What is a graph?

A

B

C

E
D

F

G

Types&/&CharacterisMcs&

• Undirected:

• Directed:

• Weighted:

Terminology&

• Path:

• Cycle:

• Connected:

• Strongly5Connected

Terminology&

• Tree:

• Dag:

• Complete:

• BiparMte:

Representing graphs

• Adjacency List:

• Adjacency Matrix: Defi&

Let&

What are the relative
merits of these two
representations?

Convention:
n denotes the number of vertices
m denotes the number of edges

Convention:
n denotes the number of vertices
m denotes the number of edges

Adjacency list vs.
adjacency matrix

Adjacency list Adjacency matrix

Other&RepresentaMons&

• Sparse:

• Weighted:

Graph algorithms/questions

• Graph traversal (BFS, DFS)
• Shortest path from a to b

– unweighted
– weighted positive weights
– negative/positive weights

• Minimum spanning trees

DAGs

Can represent dependency graphs

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort
A linear ordering of all the vertices such that for all
edges (u,v) ∈ E, u appears before v in the ordering

An ordering of the nodes that �obeys� the
dependencies, i.e. an activity can’t happen until it’s
dependent activities have happened

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

underwear

pants

belt

watch

shirt

tie

socks

shoes

jacket

Worksheet: Describe
an algorithm in clear
English and give its
running time as a
function of n (number
of vertices) and m
(number of edges).

Blah

In-degree

Breadth First Search (BFS) on
Trees

Tree BFS

A

B

C

E D

F G

Q:

Running time of Tree BFS

Adjacency list
– How many times does it visit each vertex?
– How many times is each edge traversed?

Adjacency matrix
– For each vertex visited, how much work is done?

BFS for graphs

What needs to change for graphs?

B

D E

F

A

C

G

B

D E

F

A

C

G

Is BFS correct?

Does it visit all nodes reachable from the starting node?
Can you prove it?

Assume we �miss� some node �u�, i.e. a path exists, but
we don’t visit �u�

S … U

Runtime of BFS

Adjacency list:
 Adjacency matrix:

Depth First Search (DFS) Depth First Search (DFS)

Tree DFS

A

B

C

E D

F G

DFS on graphs

What does DFS do?
Finds connected components

Each call to DFS-Visit from DFS starts exploring a new set
of connected components

Helps us understand the structure/connectedness of a
graph

Is DFS correct?

Does DFS visit all of the nodes in a graph?

Running time?

Like BFS
– Visits each node exactly once
– Processes each edge exactly twice (for an

undirected graph)

DAGs

Can represent dependency graphs

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort
A linear ordering of all the vertices such that for all
edges (u,v) ∈ E, u appears before v in the ordering

An ordering of the nodes that �obeys� the
dependencies, i.e. an activity can’t happen until it’s
dependent activities have happened

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

underwear

pants

belt

watch

shirt

tie

socks

shoes

jacket

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Running time? Topological sort 2

Running time?
How many times do we process each node?
How many times do we process each edge?

The&Union5Find&ADT!&

The&Union5Find&ADT!& The&Union5Find&ADT!&

T
Z

J

B
K

L

S
A

M
P

makeSet(x) # make a singleton set with element x !
findSet(x) # find the name of the set containing x !
unionSets(x, y) !# merge the sets containing!

! ! ! !# x and y into a single new set !

Connectedness

Given an undirected graph, for every
node u ∈ V, can we reach all other
nodes in the graph?

Running time:

Strongly connected

Given a directed graph, can we reach any
node v from any other node u?

Ideas?

Transpose of a graph
Given a graph G, we can calculate the transpose
of a graph GR by reversing the direction of all the
edges

A

B

C

E
D

A

B

C

E
D

G GR

Running time to calculate GR?

Strongly connected

Is it correct?
What do we know after the first pass?

– Starting at u, we can reach every node

What do we know after the second pass?
– All nodes can reach u. Why?
– We can get from u to every node in GR, therefore, if we reverse

the edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node.
Given any two nodes s and t we can create a path
through u

s u t… …

Runtime?

