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Why&Graphs?&
Why&

not?&

•  Shortest paths (Google Maps) 
•  Networks (social networks, computer networks) 
•  Problems that don’t even “look” graph 

theoretic! 
•  Clustering of data (recommendation systems) 
•  Optimization problems (Space shuttle 

payloads) 

Shortest&Paths&

Mmmm, 
strawberry 
donuts!

Network&Flow&
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What is a graph? 
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Types&/&CharacterisMcs&

• Undirected:

• Directed:

• Weighted:

Terminology&

• Path:

• Cycle:

• Connected:

• Strongly5Connected

Terminology&

• Tree:

• Dag:

• Complete:

• BiparMte:



Representing graphs 

• Adjacency List:

• Adjacency Matrix: Defi&

Let&

What are the relative 
merits of these two 
representations?

Convention: 
n denotes the number of vertices 
m denotes the number of edges  

Convention: 
n denotes the number of vertices 
m denotes the number of edges  

Adjacency list vs. 
adjacency matrix 

Adjacency list Adjacency matrix 



Other&RepresentaMons&

• Sparse:

• Weighted:

Graph algorithms/questions 

• Graph traversal (BFS, DFS)
• Shortest path from a to b

– unweighted
– weighted positive weights
– negative/positive weights

• Minimum spanning trees

DAGs 

Can represent dependency graphs 
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Topological sort 
A linear ordering of all the vertices such that for all 
edges (u,v) ∈ E, u appears before v in the ordering 

An ordering of the nodes that �obeys� the 
dependencies, i.e. an activity can’t happen until it’s 
dependent activities have happened 
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Worksheet:  Describe 
an algorithm in clear 
English and give its 
running time as a 
function of n (number 
of vertices) and m 
(number of edges).

Blah 

In-degree 

Breadth First Search (BFS) on 
Trees 

Tree BFS 
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Q: 



Running time of Tree BFS 

Adjacency list 
– How many times does it visit each vertex?
– How many times is each edge traversed?

Adjacency matrix 
– For each vertex visited, how much work is done?

BFS for graphs 

What needs to change for graphs? 
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Is BFS correct? 

Does it visit all nodes reachable from the starting node? 
Can you prove it? 

Assume we �miss� some node �u�, i.e. a path exists, but 
we don’t visit �u� 

S … U



Runtime of BFS 

Adjacency list: 
 Adjacency matrix:  

Depth First Search (DFS) Depth First Search (DFS) 



Tree DFS 
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DFS on graphs 

What does DFS do? 
Finds connected components 

Each call to DFS-Visit from DFS starts exploring a new set 
of connected components 

Helps us understand the structure/connectedness of a 
graph 

Is DFS correct? 

Does DFS visit all of the nodes in a graph? 



Running time? 

Like BFS 
– Visits each node exactly once
– Processes each edge exactly twice (for an

undirected graph)

DAGs 

Can represent dependency graphs 
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Topological sort 
A linear ordering of all the vertices such that for all 
edges (u,v) ∈ E, u appears before v in the ordering 

An ordering of the nodes that �obeys� the 
dependencies, i.e. an activity can’t happen until it’s 
dependent activities have happened 
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Running time? Topological sort 2 

Running time? 
How many times do we process each node? 
How many times do we process each edge? 

The&Union5Find&ADT!&



The&Union5Find&ADT!& The&Union5Find&ADT!&
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makeSet(x) # make a singleton set with element x !
findSet(x) # find the name of the set containing x !
unionSets(x, y) !# merge the sets containing!

! ! ! !# x and y into a single new set !

Connectedness 

Given an undirected graph, for every 
node u ∈ V, can we reach all other 
nodes in the graph? 

Running time: 

Strongly connected 

Given a directed graph, can we reach any 
node v from any other node u? 

Ideas? 



Transpose of a graph 
Given a graph G, we can calculate the transpose 
of a graph GR by reversing the direction of all the 
edges 
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Running time to calculate GR? 

Strongly connected 

Is it correct? 
What do we know after the first pass? 

– Starting at u, we can reach every node

What do we know after the second pass? 
– All nodes can reach u.  Why?
– We can get from u to every node in GR, therefore, if we reverse

the edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node. 
Given any two nodes s and t we can create a path 
through u 

s u t… …

Runtime? 


