Why Graphs?

Graph Algorithms!

» Shortest paths (Google Maps)
Networks (social networks, computer networks)
* Problems that don’t even “look” graph
theoretic!
» Clustering of data (recommendation systems’

» Optimization problems (Space shuttle
payloads)

Slides adapted from Ran Libeskind-Hadas,David Kauchak

Shortest Paths Network Flow

®m R £ 4

@ 301 Platt Boulevard, Claremont CA

e The Donut Man, East Route 66, Glendora, CA

" Add Destination - Show options

Bicycling directions are in beta.
Use caution and please report unmapped bike

42 100

12

routes, streets that aren't suited for cycling, and

20

other problems here.

23

~ Suggested routes e 5 Mmmm‘ : 10 /s
E Baseline Rd 9.7 mi, 46 mins N strawberry & ., 5
' - = > X
Or take Public Transit (Bus) 41 mins 5 o)l donuts! 7 G ’

13 21

What is a graph?

\
o
®
@/

Terminology

Path:
Cycle:
Connected:

Strongly-Connected

Types / Characteristics

* Undirected:
* Directed:

* Weighted:

Terminology

* Tree:

* Dag:

Complete:

Bipartite:

Representing graphs

» Adjacency List:

+ Adjacency Matrix:

O Twe -~

Represenh‘ns Un&irgc*ed,
GWT‘QP»\.S (ff(:r;p/h 'ﬂ\ufy \

b+ Algecithms =

(S L Choe)
=
] & h g
3
Adjo.cancy
s q \ Matri !s
Adjocency Nst \
Q

1

v

®)

le

B

mn

H

IS
™

LTwp o
——
- =0 =0 ~
0 ==0=»
0o ~0=-0¢
-0 == ads

Convention:
n denotes the number of vertices
m denotes the number of edges

i

Jj_Yee.ha, 1)

ée pre s’e.n-h' ng Directed
Grophs

| ' W—— a What are the relative

[
. merits of these two
3 !‘5 representations?

4 v
Adjocency T¥3] 123438
o oo}
s 00
 [F-ER-ER . oo
20N b
3 (&l
4 :_'EE_. Convention:
S .._,EE n denotes the number of vertices
— m denotes the number of edges
Adjacency list vs.
adjacency matrix
Adjacency list Adjacency matrix

Other Representations

* Sparse:

* Weighted:

DAGs

Can represent dependency graphs

underwear
shoes

Graph algorithms/questions

» Graph traversal (BFS, DFS)
» Shortest path fromato b

— unweighted

— weighted positive weights

— negative/positive weights
* Minimum spanning trees

Topological sort

A linear ordering of all the vertices such that for all
edges (u,v) € E, u appears before v in the ordering

An ordering of the nodes that “obeys” the
dependencies, i.e. an activity can’t happen until it's
dependent activities have happened

underwear -

underwear
pants

shirt

T|lol|le o é
o128 | |=] |2 =1
all8 |z]™ Gl
~ | |0 ||l»

Topological Sorting

//’

Worksheet: Describe

an algorithm in clear
o « English and give its
g !; running time as a
=

@,‘L{ function of n (number

of vertices) and m

= \\(-numberofedges). /

EC
ﬁ@?{
N\
@
(]
4

30 ‘Advenced.
t \ 8la\.
Algorithms @ o~ E xiremely Advanced

s H MR

Breadth First Search (BFS) on
Trees

TrREEBFS(T)

1 ENQUEUE(Q,RooT(T))
2 while 'EMPTY(Q)

3 v +— DEQUEUE(Q)

p! Visit(v)

5 for all ¢ € CHILDREN(v)
6 ENQUEUE(Q. ¢)

REM Leb Blah
Wnderwaed n:l-x.ht ‘6

‘Advenced
Blaw.

e~ E xiremely Advanced.
Blew

In-degree

— [V]

CETATErERNT

Tree BFS

TREEBFS(T)

ENQUEUE(Q,RooT(T"))
while 'EMPTY(Q) \
v «— DEQUEUE(Q)
VisiT(v) e
for all ¢ € CHILDREN(?)
ENQUEUE(Q,. ¢) é

DO = WD =

TrREEBFS(T)
BFS(G, s) 1 ENQUEUE(Q,RooT(T))
1 foreachveV 2 while |EMPTY(Q)
2 dist[v] = 3 v +— DEQUEUE(Q)
3 dist[s] =0 4 Visit(v)
4 ENQUEUE(Q.s) 5
5 while !EMPTY(Q) 6
6 uw +— DEQUEUE(Q)
7 VisiT(U)
8 for each edge (u,v) € £
9 if dist[v] = oc
10 ENQUEUE(Q.v)
11 dist[v] «— dist[u] + 1

Running time of Tree BFS

Adjacency list
— How many times does it visit each vertex?
— How many times is each edge traversed?

Adjacency matrix
— For each vertex visited, how much work is done?

TREEBFS(T')
1 ENQUEUE(Q,RooT(T))

2 while 'EMPTY(Q)

3 v+ DEQUEUE(Q)

4 Visit(v)

5 for all ¢ € CHILDREN(v)
6 ENQUEUE(Q. ¢)

for all ¢ € CHILDREN(v)
ENQUEUE(Q.¢)

BFS for graphs

What needs to change for graphs?

Is BFS correct?

Does it visit all nodes reachable from the starting node?
Can you prove it?

Assume we “miss” some node ‘u’, i.e. a path exists, but
we don't visit ‘U’

® . O

Depth First Search (DFS)

TrREEDFS(T')
1 PusH(S,Roo1(T))

2 while 'EMPTY(S)

3 v «— Popr(S)

4 Visit(v)

5 for all ¢ € CHILDREN(?)
6 PusH(S.e)

Runtime of BFS

Adjacency list:
Adjacency matrix:

for each edge (u,v) € £
if dist[v] = o

BFS(G. s)

1 foreachveV

2 dist[v] = o
3 tli.wt[s] =0

4 ENQUEUE(Q,s)

5 while !EmMPTY(Q)

6 u +— DEQUEUE(Q)
7 VisiT(u)

8

9
10

—
=

ENQUEUE(Q.v)
dist[v] — dist[u] + 1

Depth First Search (DFS)

TrReEeDFS(T)

1 PusH(S,RooT(T))

2 while 'EMPTY(S)

3 v« Pop(S)

4 VisiT(v)

5 for all ¢ € CHILDREN(?)
PusH(S.¢)

)

o>

TREEBFS(T)

1 ENQUEUE(Q, RooT(T"))

2 while 'EMPTY(Q)

3 v — DEQUEUE(Q)

4 VisiT(v)

5 for all ¢ € CHILDREN(v)
G ENQUEUE(Q.¢)

B
®
Py

What does DFS do?

Finds connected components

Each call to DFS-Visit from DFS starts exploring a new set
of connected components

Helps us understand the structure/connectedness of a
graph

DFS on graphs

DFS(G)
1 forallveV

2 visited[u] «— false

3 forallveV

4 if lvisited[v]

5 DFES-VisiT(v)

DFS-VisiT(u)
visited[u] — true
PrEVISIT(U)
for all edges (u,v) € E
if lvisited[v]
DFS-VisiT(v)

Ol = W o =

PostVisiT(U)

(=]

Is DFS correct?

Does DFS visit all of the nodes in a graph?

DFS(G)
1 forallveV

2 visited[u] «— false

3 forallveV

4 if lvisited[v]

5 DFES-VisiT(v)

Running time?

Like BFS
— Visits each node exactly once

— Processes each edge exactly twice (for an
undirected graph)

Topological sort

A linear ordering of all the vertices such that for all
edges (u,v) € E, u appears before v in the ordering

H “ ” t h
An ordering of the nodes that “obeys” the
dependencies, i.e. an activity can’t happen until it's

dependent activities have happened
P P

underwear -

DAGs

Can represent dependency graphs

underwear
shoes

Topological sort

ToOPOLOGICAL-SORT1(G)

1 Find a node v with no incoming edges
Delete » from G

Add v to linked list
TOPOLOGICAL-SORT1(()

socks

underwear -

= o

Running time? Topological sort 2

i i TOPOLOGICAL-SORT2(G)
ToPOLOGICAL-SORT1(G)

. . . . 1 for all edges (u.v) € £
1 Find a 11()'(10 v _vnh no incoming edges 9 (l.Ctit‘c'[U] .:_ (lCt‘il'C‘[l’] 4
2 Delete » from G
3 Add v to linked list 3 forallveV
4 TOPOLOGICAL-SORT1(G) 4 if active[v] =0
5 ENQUEUE(S, v)
6 while !EMPTY(S)
7 u +— DEQUEUE(S)
8 add u to linked list
9 for each edge (u.v) € E
10 active[v] «— active[v] — 1
11 if active[v] =0
12 ENQUEUE(S, v)

Running time? The Union-Find ADT!

How many times do we process each node? —

How many times do we process each edge? ” ./& _ %

TOPOLOGICAL-SORT2(G)
for all edges (u.v) € F
active[v] — active[v] + 1 A
for allw e V' T
if active[v] =0 () S

ENQUEUE(S, v) o
while 'EMPTY(S)
w +— DEQUEUE(S) Yy,

1S O W=

8 add = to linked list

9 for each edge (u.v) € E -
10 active[v] — active[v] — 1

11 if active[v] =0

12 ENQUEUE(S,v)

The Union-Find ADT!

-/K.

I~

Connectedness

Given an undirected graph, for every
node u €V, can we reach all other
nodes in the graph?

Running time:

The Union-Find ADT!

K
7 B'%‘
T'/& L
J

[] P.\I\. A
M

makeSet(x) # make a singleton set with element x
flndSet(X) # find the name of the set containing x

unionSets(x, Y) # merge the sets containing
x and y into a single new set

Strongly connected

Given a directed graph, can we reach any
node v from any other node u?

|deas?

Transpose of a graph

Given a graph G, we can calculate the transpose
of a graph GR by reversing the direction of all the
edges

o
—
©

Running time to calculate GR?

GR

f;l\ o
G

Is it correct?

What do we know after the first pass?
— Starting at u, we can reach every node

What do we know after the second pass?
— All nodes can reach u. Why?

— We can get from u to every node in GR, therefore, if we reverse
the edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node.
Given any two nodes s and t we can create a path

Strongly connected

STRONGLY-CONNECTED(G)

1 Run DF'S or BF'S from some node u

2 if not all nodes are visited

3 return false

4 Create graph GHR by reversing all edge dirctions
5 Run DFS or BFS on G® from node u

6 if not all nodes are visited

return false

¥ return true

Runtime?

STRONGLY-CONNECTED(G')

S o= W =

0 -1 D

Run DF'S or BF'S from some node u
if not all nodes are visited
return false
Create graph GR by reversing all edge dirctions
Run DFS or BFS on G from node u
if not all nodes are visited
return false
return true

