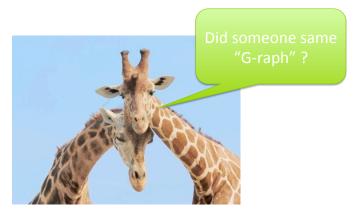
Graph Algorithms!



Slides adapted from Ran Libeskind-Hadas, David Kauchak

Why Graphs?

- Shortest paths (Google Maps)
- Networks (social networks, computer networks)
- Problems that don't even "look" graph theoretic!
 - Clustering of data (recommendation systems)
 - Optimization problems (Space shuttle payloads)

Shortest Paths

Mmmm,

donuts!

 $\overline{\mathbf{\cdot}}$

strawberry

1 50

GET DIRECTIONS

9.7 mi, 46 mins

41 n

301 Platt Boulevard, Claremont CA The Donut Man, East Route 66, Glendora, CA

Bicycling directions are in beta.

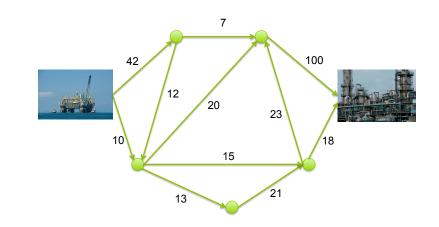
Suggested routes

E Baseline Rd

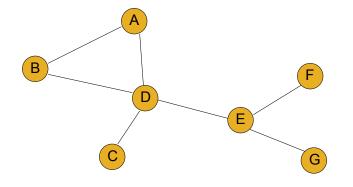
Or take Public Transit (Bus)

Use caution and please report unmapped bike

routes, streets that aren't suited for cycling, and



What is a graph?



Types / Characteristics

- Undirected:
- Directed:
- Weighted:

Terminology

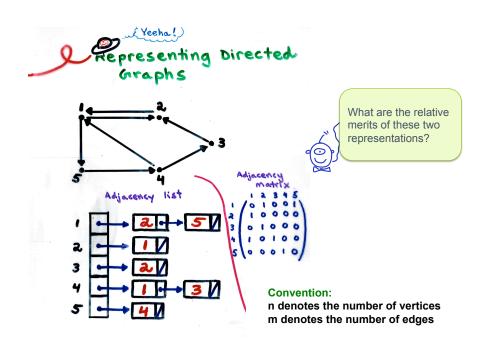
- Path:
- Cycle:
- Connected:
- Strongly-Connected

Terminology

- Tree:
- Dag:
- Complete:
- Bipartite:

Representing graphs

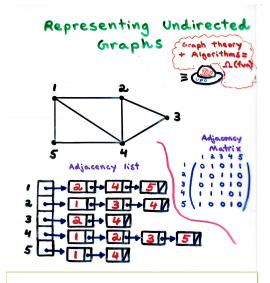
- Adjacency List:
- Adjacency Matrix:



Adjacency list vs. adjacency matrix

Adjacency list

Adjacency matrix



Convention: n denotes the number of vertices m denotes the number of edges

Other Representations

- Sparse:
- Weighted:

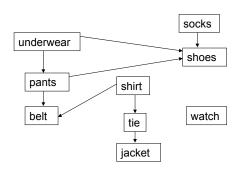
Graph algorithms/questions

- Graph traversal (BFS, DFS)
- Shortest path from a to b

 unweighted
 - weighted positive weights
 - negative/positive weights
- Minimum spanning trees

DAGs

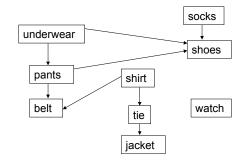
Can represent dependency graphs

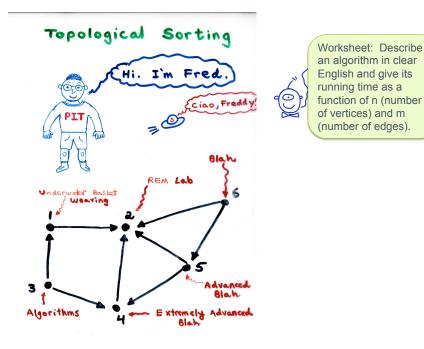


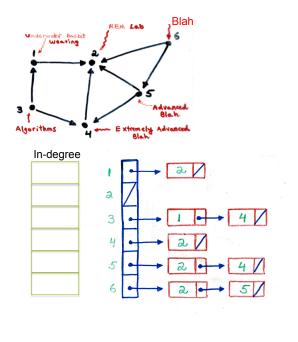
Topological sort

A linear ordering of all the vertices such that for all edges $(u,v) \in E$, u appears before v in the ordering

An ordering of the nodes that "obeys" the dependencies, i.e. an activity can't happen until it's dependent activities have happened







Breadth First Search (BFS) on Trees

TREEBFS(T)

- 1 ENQUEUE(Q, ROOT(T))
- 2 while !Empty(Q)

3
$$v \leftarrow \text{Dequeue}(Q)$$

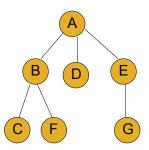
4
$$VISIT(v)$$

- 5 for all $c \in \text{CHILDREN}(v)$
- 6 ENQUEUE(Q, c)

Tree BFS

TREEBFS(T)

- 1 Enqueue(Q, Root(T))
- 2 while !Empty(Q)
- 3 $v \leftarrow \text{Dequeue}(Q)$
- 4 VISIT(v)
- 5 for all $c \in \text{CHILDREN}(v)$
- 6 Engueue(Q, c)



Running time of Tree BFS

Adjacency list

- How many times does it visit each vertex?
- How many times is each edge traversed?

Adjacency matrix

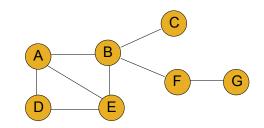
- For each vertex visited, how much work is done?

TREEBFS(T) 1 ENQUEUE(Q, ROOT(T)) 2 while !EMPTY(Q)3 $v \leftarrow DEQUEUE(Q)$

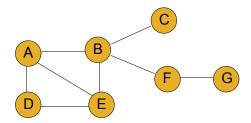
- 5 for all $c \in \text{CHILDREN}(v)$ 6 ENQUEUE(Q, c)

BFS for graphs

What needs to change for graphs?



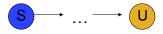
		TI	$\operatorname{REEBFS}(T)$
BF	S(G, s)	1	ENQUEUE(Q, ROOT(T))
1	for each $v \in V$	2	while $!EMPTY(Q)$
2	$dist[v] = \infty$	3	$v \leftarrow \text{DEQUEUE}(Q)$
3	dist[s] = 0	4	VISIT(v)
4	$\operatorname{Enqueue}(Q, s)$	5	for all $c \in \text{CHILDREN}(v)$
5	while $!Empty(Q)$	6	$E_{NQUEUE}(Q, c)$
6	$u \leftarrow \text{Dequeue}(Q)$		• (•,)
7	VISIT(U)		
8	for each edge $(u, v) \in E$		
9	if $dist[v] = \infty$		
10	$\operatorname{Enqueue}(Q, u)$)	
11	$dist[v] \leftarrow dist[$	[u] + 1	l



Is BFS correct?

Does it visit all nodes reachable from the starting node? Can you prove it?

Assume we "miss" some node 'u', i.e. a path exists, but we don't visit 'u'



Runtime of BFS

Adjacency list: Adjacency matrix:

BF	S(G,s)
1	for each $v \in V$
2	$dist[v] = \infty$
3	dist[s] = 0
4	ENQUEUE(Q, s)
5	while $!Empty(Q)$
6	$u \leftarrow \text{Dequeue}(Q)$
7	VISIT(U)
8	for each edge $(u, v) \in E$
9	if $dist[v] = \infty$
10	$\operatorname{Enqueue}(Q, v)$
11	$dist[v] \leftarrow dist[u] + 1$

Depth First Search (DFS)

TREEDFS(T)

6

- 1 PUSH(S, ROOT(T))
- 2 while !EMPTY(S)

3
$$v \leftarrow \operatorname{Pop}(S)$$

- 4 VISIT(v)
- 5 for all $c \in \text{CHILDREN}(v)$
 - $\operatorname{Push}(S,c)$

Depth First Search (DFS)

 $\mathbf{3}$

4

 $\mathbf{5}$

6

TREEDFS(T)

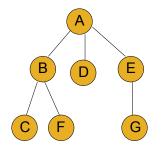
6

- 1 PUSH(S, ROOT(T))2 while !EMPTY(S)
- 3 $v \leftarrow \operatorname{Pop}(S)$
- 4 VISIT(v)5 for all $c \in CHILD$
 - for all $c \in \text{CHILDREN}(v)$ PUSH(S, c)

TREEBFS(T)

- 1 ENQUEUE(Q, ROOT(T))
- 2 while !Empty(Q)
 - $v \leftarrow \text{Dequeue}(Q)$
 - VISIT(v)
 - for all $c \in \text{CHILDREN}(v)$
 - ENQUEUE(Q, c)

Tree DFS



DFS on graphs

DFS(G)

- 1 for all $v \in V$
- $visited[u] \gets false$ 2
- 3 for all $v \in V$
- 4 if !visited[v]
- 5DFS-VISIT(v)

DFS-VISIT(u)

- 1 $visited[u] \leftarrow true$
- 2 PreVisit(u)
- 3 for all edges $(u, v) \in E$
- 4 if !visited[v]
- $\mathbf{5}$ DFS-VISIT(v)
- 6 POSTVISIT(U)

What does DFS do?

Finds connected components

Each call to DFS-Visit from DFS starts exploring a new set of connected components

Helps us understand the structure/connectedness of a graph

Is DFS correct?

Does DFS visit all of the nodes in a graph?

DFS(G)

1 for all $v \in V$ $visited[u] \leftarrow false$ 2 3 for all $v \in V$ if !visited[v]

- $\mathbf{4}$
- $\mathbf{5}$ DFS-VISIT(v)

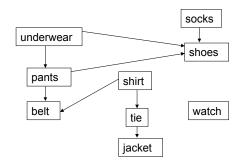
Running time?

Like BFS

- Visits each node exactly once
- Processes each edge exactly twice (for an undirected graph)

DAGs

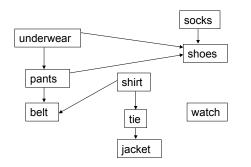
Can represent dependency graphs



Topological sort

A linear ordering of all the vertices such that for all edges $(u,v) \in E$, u appears before v in the ordering

An ordering of the nodes that "obeys" the dependencies, i.e. an activity can't happen until it's dependent activities have happened

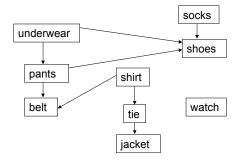


watch
underwear
pants
shirt
belt
tie
socks
shoes
jacket

Topological sort

Topological-Sort1(G)

- 1 Find a node v with no incoming edges
- $2 \quad \text{Delete } v \text{ from } G \\$
- 3 Add v to linked list
- 4 Topological-Sort1(G)



Running time?

TOPOLOGICAL-SORT1(G)

- 1 Find a node v with no incoming edges
- $2 \quad \text{Delete } v \text{ from } G \\$
- 3 Add v to linked list
- 4 Topological-Sort1(G)

Topological sort 2

Topological-Sort2(G)

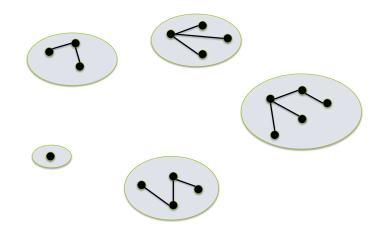
1	for all edges $(u, v) \in E$
2	$active[v] \leftarrow active[v] + 1$
3	for all $v \in V$
4	if $active[v] = 0$
5	$\operatorname{Enqueue}(S, v)$
6	while $!Empty(S)$
$\overline{7}$	$u \leftarrow \text{Dequeue}(S)$
8	add u to linked list
9	for each edge $(u, v) \in E$
10	$active[v] \leftarrow active[v] - 1$
11	if $active[v] = 0$
12	ENQUEUE(S, v)

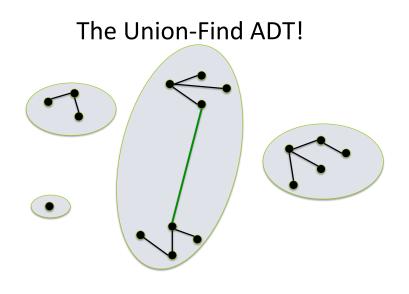
Running time?

How many times do we process each node? How many times do we process each edge?

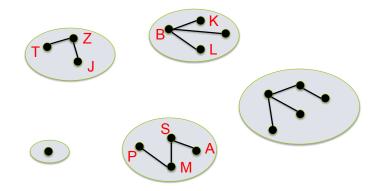
```
TOPOLOGICAL-SORT2(G)
1 for all edges (u, v) \in E
2
              active[v] \leftarrow active[v] + 1
3 for all v \in V
              if active[v] = 0
4
5
                       ENQUEUE(S, v)
    while !Empty(S)
6
              u \leftarrow \text{DEQUEUE}(S)
7
8
              add u to linked list
9
              for each edge (u, v) \in E
10
                       active[v] \leftarrow active[v] - 1
                       if active[v] = 0
11
12
                               ENQUEUE(S, v)
```

The Union-Find ADT!





The Union-Find ADT!



Connectedness

Given an undirected graph, for every node $u \in V$, can we reach all other nodes in the graph?

Strongly connected

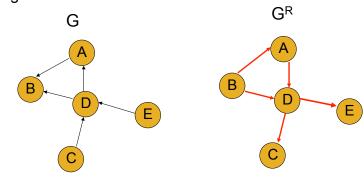
Given a directed graph, can we reach any node v from any other node u?

Ideas?

Running time:

Transpose of a graph

Given a graph G, we can calculate the transpose of a graph G^{R} by reversing the direction of all the edges



Running time to calculate G^R?

Is it correct?

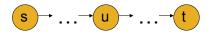
What do we know after the first pass?

- Starting at u, we can reach every node

What do we know after the second pass?

- All nodes can reach u. Why?
- We can get from u to every node in G^R, therefore, if we reverse the edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node. Given any two nodes s and t we can create a path through u



Strongly connected

STRONGLY-CONNECTED(G)

- 1 Run DFS or BFS from some node u
- 2 if not all nodes are visited
- 3 return false
- 4 Create graph G^R by reversing all edge dirctions
- 5 Run DFS or BFS on G^R from node u
- 6 **if** not all nodes are visited
- 7 return false
- 8 return true

Runtime?

Strongly-Connected(G)

- 1 Run DFS or BFS from some node u
- 2 **if** not all nodes are visited
- 3 return false
- 4 Create graph G^R by reversing all edge dirctions
- 5 Run DFS or BFS on G^R from node u
- 6 if not all nodes are visited
- 7 return false
- 8 return true