Network Flow!

Slides adapted from Ran Libeskind-Hadas,David Kauchak

Where are we?

e Last time:

— Discussed three different algorithms for
computing APSP

* This week:
— Network flow
* Ahead:
— Linear Programming
— NP-Completeness
— Parallel Algorithms

Admin

* Midterm 2
— Due in exactly 1 week

— Possible topics:
* Greedy Algorithms
* Dynamic Programming
* Graph Algorithms
* Earlier materials?

— Review questions?

* If you have questions you’d like to see covered
Thursday, write them down on today’s worksheet!

All-Pairs Shortest Paths

* Run Bellman-Ford, once from each vertex
— O(V2E)
— O(V¥) if dense (E in B(V?))
* Run Dijkstra’s, once from each vertex
— Limited to graphs with non-negative edges
— O(VElog V) with binary heap
* O(VPlog V) if dense
— O(VPlog V+VE) with Fibonacci heap
* O(\?) if dense 7
* Wouldn’t it be nice to get the best of both worlds:
— General algorithm that runs on any graph
— O(V3) worst-case runtimes?
— No funny complex data structures




Floyd-Warshall Floyd-Warshall

* DP over the distance matrix (store values per edge, rather FLOYD-WARSHALL (W, n)
than per node) DO — W
— Intermediate vertex: o ’, fork = 1ton . .
(M 0%%0 let D® = (di(j. )) be a new n X n matrix
fori = 1ton
all intermediate vertices in {1,2, .., k-1} for j = 1ton
— Recursive formulation: d,'(jk) = min (d,-(jkil).di(:il) + d,ilfl))
return D™
4% = Wi itk =0, .
77| min (di(j(‘_l),di(:_l) +d,$_')) ifk>1. Time

On?)

Johnson’s Algorithm Johnson’s Algorithm

* The Problem: e The idea:

— If graph is sparse, running Dijkstra fom each vertex would be faster
— O(Vlog V+VE) (Requires Fibonacci heap)
* Idea:

— Reweight edges so that they are non-negative

* And still give you correct shortest paths (paths that are min-weight in the
original graph)

Reweight edges so that they are non-negative

* And still give you correct shortest paths (paths that are min-weight in the original 2 L
graph) @h(w) =-1
1. Add new node g, connect to each of the other nodes with zero-
weight edges hx) =7
2. Run Bellman-Ford from g to calculate min path to every node h(v);
return false if negative cycle is found h(y) = —4 h(z)=0
3. Reweight all edge weights w’ using the rule w’(u,v) = w(u,v)+h(u)-h(v) -3 1
Remove g, run Dijsktra’s from every node original graph shortest path tree reweighted graph with
with negative edges found by Bellman-Ford no negative edges

Credit: wikimedia.org



Worksheet: Johnson’s ++? All pairs shortest paths

Simple approach
— Call Bellman-Ford |V| times
- O(IVI2|El)

* Proposal:

— Save steps 1-3 by using simpler
reweighting function:

Floyd-Warshall — ©(|V[?)

w¥=min, ., w(u,v)

A~ ’ i - 2
w(u’v) _ w(u’v) o V(u,v) cE Johnson’s algorithm — O(|V|? log |V| + |V| |E])

Pettie’s algorithm — O(VE+V2log log V)
* Why doesn’t this work?

Snowball [Planken et al. 2011]
For Midterm 2: It’s a good idea to study WHY graph algorithms work:

e.g., What makes an edge “safe” to include in a solution? Why does a
greedy choice work? When does a DP approach converge?,... etc. @) (nmc) g O (n2 Wd)

Max Credit Flow

On your worksheet:
— Select two integers A & B such that
* ABin{0,1,2,3,4,5,6,7,8,9}
+ A+B <10

Rules of the game:

1. You can only pass forward or to your right (if there is someone in
front or to the right of you)

2. You can only pass up to A units forward, B units to the right.

3. 1 will pass out 10 extra credit points in the back-left corner of the
room.

4. Everyone gets extra credit participation points in proportion to
the number of points that flow to the front, right-most student.



Network Flow Network Flow (Key Ideas Preview)

* The idea: Use a graph to model material that flows through * Terminology / Notation:
conduits — Capacity:
— Each edge represents one conduit and has a capacity, which is an - Zf’“krlce:
upper bound on the flow rate = units/time ~ F:ZW
— We want to compute max rate that we can ship material from a + Capacity constraint:
designated source to designated sink. * Flow conservation

*  Value of flow:
*  Maximum-flow problem
* Cuts:

— Net flow:
— Capacity:

Three Theorems about Flow

Student networking

The Cut Theorem: For any cut S, T and flow f, the flow across the cut is

equal to |f|. Thatis: Z Fla,y) = |f] .
vES T You decide to create your own campus network:
— You get three of your friends and string some network cables
— Because of capacity (due to cable type, distance, computer, etc)
The Capacity Theorem: For any cut S, T and flow f, the flow is bounded you can only send a certain amount of data to each person
by the capacity of the cut. That is: If| < Z c(z,y) — If edges denote capacity, what is the maximum throughput you
2€SyeT can you send from Sto T?
20 10
Max Flow/Min Cut Theorem: For any cut S, T and flow f, if
lfl = Z c(z,y) thenfis maxflow and S, Tis a min cut.
zeS,yeT



Student networking

* You decide to create your own campus network:
— You get three of your friends and string some network cables

— Because of capacity (due to cable type, distance, computer, etc)
you can only send a certain amount of data to each person

— If edges denote capacity, what is the maximum throughput you
can you send from Sto T?

20/20

30 units

Another flow problem

14 units

Another flow problem

How much water flow
can we continually
send from s to t?

Flow graph/networks

Flow network
— directed, weighted graph (V, E)
— positive edge weights indicating the “capacity” (generally,
assume integers)
— contains a single source s € V with no incoming edges
— contains a single sink/target t € V with no outgoing edges
— every vertexis on a pathfromstot

20 10

10
20



Flow

What are the constraints on flow in a network?

20 10

10
20

Max flow problem

Given a flow network: what is the maximum
flow we can send from s to t that meet the flow
constraints?

20 10

10
20

Flow

Flow Conservation:
in-flow = out-flow for every vertex (except s, t)

Capacity Constraint:
flow along an edge cannot exceed the edge capacity

Value of flow:
flows are positive

20 10

10
20

Applications?

network flow
— water, electricity, sewage, cellular...
— traffic/transportation capacity

bipartite matching

sports elimination



Max flow origins

Rail networks of the Soviet Union in the 1950’s

The US wanted to know how quickly the Soviet Union could get
supplies through its rail network to its satellite states in Eastern
Europe.

In addition, the US wanted to know which rails it could destroy

most easily to cut off the satellite states from the rest of the
Soviet Union.

These two problems are closely related, and that solving the max
flow problem also solves the min cut problem of figuring out the
cheapest way to cut off the Soviet Union from its satellites.

Source: lbackstrom, The Importance of Algorithms, at www.topcoder.com

Max Credit Flow:
Double down challenge

Double or nothing?!? IT’S REAI.!

Using the same A&B that you chose earlier:
* ABin{0,1,2,3,4,5,6,7,8,9}
* A+B<10

You have 2:00 as a class to double your take!

The Double Down is coming April 12.

Rules of the game:

1. You can only pass forward or to your right (if there is someone in
front or to the right of you)

2. You can only pass up to A units forward, B units to the right.

3. 1 will pass out 10 extra credit points in the back-left corner of the
room.

4. Everyone gets extra credit participation points in proportion to
the number of points that flow to the front, right-most student.

Algorithm ideas?

graph algorithm?
— BFS, DFS, shortest paths...
— MST

divide and conquer?
20

greedy?

dynamic programming?

10

20



Algorithm idea

20 10

10
20

Algorithm idea

send some flow down a path

Now what?

Algorithm idea

send some flow down a path

Algorithm idea

reroute some of the flow

Total flow?



Algorithm idea

reroute some of the flow

30

Algorithm idea

send some flow down a path

Algorithm idea

Algorithm idea

send some flow down a path

2/4




Algorithm idea

send some flow down a path

2/4

Algorithm idea

Are we done?
Is this the best we can do?

Algorithm idea

reroute some of the flow

4/4

Cuts

A cut is a partitioning of the vertices into two sets A and
B=V-A




Flow across cuts

In flow graphs, we're interested in cuts that separate s from
t,thatiss€&Aandt&EB

10/10

4/10

Flow across cuts

The flow “across” a cut is the total flow from nodes in A
to nodes in B minus the total from from B to A

10+10-6 = 14

Flow across cuts

The net flow “across” a cut is the total flow from nodes
in A to nodes in B minus the total from from B to A

What is the flow across this cut?

Flow across cuts

Consider any cut wheres € A and t € B, i.e. the cut
partitions the source from the sink

What do we know about the flow across the any such cut?




Flow across cuts

Consider any cut wheres € Aand t € B, i.e. the cut
partitions the source from the sink

The flow across ANY such cut is the same and is the current
flow in the network

Flow across cuts

Consider any cut wheres € A and t € B, i.e. the cut
partitions the source from the sink

4+6+4 =14

4

4/
I 6

Flow across cuts

Consider any cut wheres € A and t € B, i.e. the cut
partitions the source from the sink

4+10=14

10/10

4/10

Flow across cuts

Consider any cut wheres € A and t € B, i.e. the cut
partitions the source from the sink

10+10-6 = 14




Flow across cuts

Consider any cut where s € Aand t €B, i.e. the cut
partitions the source from the sink

The flow across ANY such cut is the same and is the current
flow in the network

Why? Can you prove it?

4/4

Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Base case: A=s

- Flow is total from from s to t: therefore total
flow out of s should be the flow

- Allflow froms getsto t
- everyvertexis on a path fromstot
- in-flow = out-flow

Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Inductively?

O every vertex is on a path fromstot

* in-flow = out-flow for every vertex (except s, t)

» flow along an edge cannot exceed the edge capacity
* flows are positive

Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Inductive case: Consider moving a node x from Ato B

Is the flow across the different partitions the
same?




Flow across cuts

The flow across ANY such cut is the same and is the current
flow in the network

Inductive case: Consider moving a node x from Ato B

flow = left-inflow(x) — left-outflow(x) flow = right-outflow(x) — right-inflow(x)
e
>
left-inflow(x) + right-inflow(x) = left-outflow(x) + right-outflow(x) in-flow = out-flow

left-inflow(x) - left-outflow(x) = right-outflow(x) — right-inflow(x)

Capacity of a cut

The “capacity of a cut” is the maximum flow that we could
send from nodes in A to nodes in B (i.e. across the cut)

Capacity is the sum of the edges from A to B
Why?

Capacity of a cut

The “capacity of a cut” is the maximum flow that we could
send from nodes in A to nodes in B (i.e. across the cut)

How do we calculate the capacity?

Capacity of a cut

The “capacity of a cut” is the maximum flow that we could
send from nodes in A to nodes in B (i.e. across the cut)

Capacity is the sum of the edges from A to B

- Any more and we would violate the edge capacity
constraint

- Any less and it would not be maximal, since we
could simply increase the flow



Quick recap

A cut is a partitioning of the vertices into two sets A
and B=V-A

For any cut where s € Aand t €B, i.e. the cut
partitions the source from the sink

— the flow across any such cut is the same

— the maximum capacity (i.e. flow) across the cut is the
sum of the capacities for edges from A to B

Worksheet: The kid’s aren’t alright

Professor Adam has two children who, unfortunately, dislike each other. The prob-
lem is so severe that not only do they refuse to walk to school together, but in fact
each one refuses to walk on any block that the other child has stepped on that day.
The children have no problem with their paths crossing at a corner. Fortunately
both the professor’s house and the school are on corners, but beyond that he is not
sure if it is going to be possible to send both of his children to the same school.
The professor has a map of his town. Show how to formulate the problem of de-
termining whether both his children can go to the same school as a maximum-flow
problem.

Maximum flow

For any cut wheres&€ Aandt&EB
— the flow across the cut is the same

— the maximum capacity (i.e. flow) across the cut is the
sum of the capacities for edges from Ato B

4/4

4/9

Are we done?
Is this the best we can do?



Maximum flow

For any cut wheres& Aandt&EB
— the flow across the cut is the same

— the maximum capacity (i.e. flow) across the cut is the
sum of the capacities for edges from Ato B

4/4

4/9

We can do no better than the minimum capacity cut!

Maximum flow
What is the minimum capacity cut for this graph?

Capacity=10+4

4/4 \\\\\\

4/10

4/10 4/9

flow = minimum capacity, so we can do no better

Maximum flow
What is the minimum capacity cut for this graph?

Capacity=10+4

4/4 \\\\\\

4/10

4/10 4/9

Is this the best we can do?

Algorithm idea

send some flow down a path

How do we determine the
path to send flow down?



Algorithm idea

send some flow down a path

Search for a path with
remaining capacity fromstot

Algorithm idea

2/9

During the search, if an edge
has some flow, we consider
“reversing” some of that flow

4/10

4/10

Algorithm idea

reroute some of the flow

4/4

4/9

How do we handle
“rerouting” flow?

Algorithm idea

reroute some of the flow

4/4

4/9

During the search, if an edge
has some flow, we consider
“reversing” some of that flow



The residual graph

The residual graph G; is constructed from G

For each edge e in the original graph (G):

— if flow(e) < capacity(e)
* introduce an edge in G; with capacity = capacity(e)-flow(e)
* this represents the remaining flow we can still push

— if flow(e) >0
* introduce an edge in G; in the opposite direction with

capacity = flow(e)

* this represents the flow that we can reroute/reverse

Algorithm idea

20 10

Find a path from

G 10 stotin G;
20

Algorithm idea
20 10
10
20
20 10
10
20

Algorithm idea

20 10

20

Find a path from
stotin G

Find a path from
stotin G



Algorithm idea

20 10

None exist... done!

20

Algorithm idea

8/10

Find a path from
stotinG;

Algorithm idea

Algorithm idea

2/4

8/10

Find a path from
stotinG;



Algorithm idea Algorithm idea

2/4 a/4

G G
10/10 10/10
2/9 4/10 4/9
Find a path from Find a path from
2 stotinG; stotinG;
G; Gy

4/4




Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow = 0 for all edges a simple path contains no

. repeated vertices
G; = residualGraph(G)

while a@gle/p@ exists fromstotin G;
send as much flow along the path as possible

G; = residualGraph(G)
return flow

Ford-Fulkerson: is it correct?

Does the function terminate?
— Every iteration increases the flow from s to t
— the flow is bounded by the min-cut

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
G; = residualGraph(G)
while a simple path exists from s to tin G;
send as much flow along path as possible
G; = residualGraph(G)
return flow

Ford-Fulkerson: is it correct?

Does the function terminate?
Every iteration increases the flow fromsto t
* Every path must start with s
* The path has positive flow (or it wouldn’t exist)
* The path is a simple path (so it cannot revisit s)
* conservation of flow

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
G; = residualGraph(G)
while a simple path exists from s to t in G;
send as much flow along path as possible
G; = residualGraph(G)
return flow

Ford-Fulkerson: is it correct?

When it terminates is it the maximum flow?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
G; = residualGraph(G)
while a simple path exists from s to tin G;
send as much flow along path as possible
G; = residualGraph(G)
return flow



Ford-Fulkerson: is it correct?

When it terminates is it the maximum flow?
Assume it didn’t
— We know then that the flow < min-cut

therefore, the flow < capacity across EVERY cut

therefore, across each cut there must be a forward edge in G;

thus, there must exist a path from s to tin G;
* startats(and A=s)
* repeat until tis found
— pick one node across the cut with a forward edge
— add this to the path
— add the node to A (for argument sake)
— However, the algorithm would not have terminated... a contradiction

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
. - traverse the graph
‘ Gy = residualGraph(G) ‘ - at most add 2 edges
while a simple path exists from s to t in G; for original edge
send as much flow along path as possible -
‘Gf = residualGraph(G) ‘
return flow Can we simplify this expression?

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
G; = residualGraph(G)
while a simple path exists from s to t in G;
send as much flow along path as possible
G; = residualGraph(G)
return flow

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
‘Gf =residualGraph(G) ‘

- traverse the graph
- at most add 2 edges

while a simple path exists from s to t in G; for original edge
send as much flow along path as possible - O(V +E) = O(E)
‘Gf= residualGraph(G) ‘ - (all nodes exists on

return flow paths exist from s to t)



Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
G; = residualGraph(G) - BFS or DFS
while‘a simple path exists from s to tin G; - O(V+E)=0(E)
send as much flow along path as possible
G; = residualGraph(G)
return flow

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges

G; = residualGraph(G)  maxflowl

a simple path exists from s to t in G; - increases ever iteration
send as much flow along path as possible - integer capacities, so
G; = residualGraph(G) integer increases

return flow

Overall runtime?  O(max-flow * E)

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges

G; = residualGraph(G)
a simple path exists from s to t in G;

send as much flow along path as possible
G; = residualGraph(G)

return flow

Can we bound the number of
times the loop will execute?

O(max-flow * E)

- max-flow!
- increases ever iteration
- integer capacities, so

integer increases

Can you construct a graph that could get this running time?

Hint:

100

100

100

100



O(max-flow * E)

Can you construct a graph that could get this running time?

100 100

100 100

O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?




O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?

What is the problem here?
Could we do better?

O(max-flow * E)

Can you construct a graph that could get this running time?

Faster variants

Edmunds-Karp
— Select the shortest path (in number of edges) from s
totin G;

* How can we do this?
— use BFS for search

— Running time: O(V E?)
* avoids issues like the one we just saw
* see the book for the proof
* or http://www.cs.cornell.edu/courses/C54820/2011sp/
handouts/edmondskarp.pdf
preflow-push (aka push-relabel) algorithms
— O(V3)



Other variations...

Method Complexity

Linear

programming TABLE L. POLYNOMIAL-TIME ALGORITHMS FOR THE MAXIMUM FLOW PROBLEM’

Ford-Fulke Algorithm

a‘;mh‘,‘n N o maxt 1) no. Date Discoverer Running time References
1 1969  Edmonds and Karp O(nm?) (5]

Edmonds—Karp | o) 2 1970 Dinic o(n*'m) [41

algorithm 3 1974 Karzanov on’) (3]
4 1977 Cherkasky o(n’m'?) 3]

Dinitz blocki

ow dgonme OB 5 1978 Malhotra, Pramodh Kumar,  O(n’) 21

and Maheshwari

A— 6 1978 Galil [ ann

e 7 1978 Galil and Naamad; Shiloach O(nm(log n)?) [12,25]

flow algorthm 8 1980  Sheator and Tajan Onurr oy 1) (27, 28]
9 1982 Shiloach and Vishkin o(n’) 26]

Push-relabel 10 1983 Gabow O(nm log U) {10]

algorithm with ) 1" 1984  Tarjan o(n?) 31

FIFO vertex 12 1985 Goldberg o(r’) [14)

selection rule 13 1986  Goldberg and Tarjan O(nm log(n*/m)) [16. 15]

Dinitz blocking 14 1986 Aluja aud Oslin Ofnen + n'log U) (13}

gj:;"f:’::::sw"h QAVElog(V)) * Algorithm 13 is presented in this paper.
Push-relabel

algorithm with O(VE log(VZ/E))
dynanic roes http://akira.ruc.dk/~keld/teaching/

e bk”ki"?ﬂ O(Emin(v2/3 VE) 1og(v2/E) log ) : : ;

flow agorithm algoritmedesign_f03/Artikler/08/Goldberg88.pdf
MPM (Malhotra,
Pramodh-Kumar
and Maheshwari)
algorithm

http://en.wikipedia.org/wiki/Maximum_flow

o)

Three Theorems about Flow

Network Flow (Key Ideas)

The Cut Theorem: For any cut S, T and flow f, the flow across the cut is

equal to |f|. Thatis: Z flx,y) =|f]

* Terminology / Notation: 2€SyET

— Capacity:

— Source:

— Sink: . .

B F:ZW. The Capacity Theorem: For any cut S, T and flow f, the flow is bounded
Capacity constraint by the capacity of the cut. Thatis: |f| < Z oz, )
i . vesyer

*  Maximum-flow problem
* Cuts:

_ Net flow: Max Flow/Min Cut Theorem: For any cut S, T and flow f, if

— Capacity: |f| = Z C(gj’ y) then f is max flow and S, T is a min cut.

zeS,yeT

Proof / Applications next time!




