Admin

* Midterm 2
— Due in exactly 1 week

— Possible topics:
* Greedy Algorithms
* Dynamic Programming
* Graph Algorithms
* Earlier materials?
— Review questions?

* If you have questions you’d like to see covered
Thursday, write them down on today’s worksheet!

Network Flow Network Flow (Key Ideas Preview)
* The idea: Use a graph to model material that flows through * Terminology / Notation:
conduits — Capacity:
— Each edge represents one conduit and has a capacity, which is an B Z.oirlce:
upper bound on the flow rate = units/time : F:ZW

— We want to compute max rate that we can ship material from a + Capacity constraint:
designated source to designated sink. + Flow conservation

* Value of flow:
* Maximum-flow problem
e Cuts:
— Net flow:
— Capacity:

Three Theorems about Flow

The Cut Theorem: For any cut S, T and flow f, the flow across the cut is

equalto |f]. That s S fwy) =11

zeS,yeT

The Capacity Theorem: For any cut S, T and flow f, the flow is bounded
by the capacity of the cut. Thatis: | f| < Z c(z,y)

zeS,yeT

Max Flow/Min Cut Theorem: For any cut S, T and flow f, if
‘f| — Z c(l" y) then fis max flow and S, T is a min cut.
zeS,yeT

Flow across cuts

In flow graphs, we’re interested in cuts that separate s from
t,thatissEAandt&EB

10/10

4/10

Network flow properties

If one of these is true then all are true (i.e. each
implies the the others):

e fisa maximum flow
* G (residual graph) has no paths fromstot
* |f| = minimum capacity cut

Flow across cuts

The net flow “across” a cut is the total flow from nodes
in A to nodes in B minus the total from from B to A

What is the flow across this cut?

Flow across cuts

The net flow “across” a cut is the total flow from nodes
in A to nodes in B minus the total from from B to A

10+10-6 = 14

Flow across cuts

Consider any cut where s € Aand t €B, i.e. the cut
partitions the source from the sink

4+6+4 =14

a/4
- 4/10
)
10/10
/9

4

Flow across cuts

Consider any cut where s € Aand t € B, i.e. the cut
partitions the source from the sink

4+10 = 14

10/10

4/10

Flow across cuts

Consider any cut where s € A and t €B, i.e. the cut
partitions the source from the sink

10+10-6 = 14

Flow across cuts

Consider any cut where s € Aand t € B, i.e. the cut
partitions the source from the sink

The flow across ANY such cut is the same and is the current
flow in the network

Why? Can you prove it?

a/4

Capacity of a cut

The “capacity of a cut” is the maximum flow that we could
send from nodes in A to nodes in B (i.e. across the cut)

Capacity is the sum of the edges from A to B

Capacity of a cut

The “capacity of a cut” is the maximum flow that we could
send from nodes in A to nodes in B (i.e. across the cut)

How do we calculate the capacity?

Quick recap

A cut is a partitioning of the vertices into two sets A
and B = V-A

For any cut wheres € Aand t €B, i.e. the cut
partitions the source from the sink

— the flow across any such cut is the same

— the maximum capacity (i.e. flow) across the cut is the
sum of the capacities for edges from Ato B

Maximum flow

For any cut wheres€& AandtEB
— the flow across the cut is the same

— the maximum capacity (i.e. flow) across the cut is the
sum of the capacities for edges from A to B

4/4

4/10 4/9

We can do no better than the minimum capacity cut!

Maximum flow

For any cut wheres& Aandt&B
— the flow across the cut is the same

— the maximum capacity (i.e. flow) across the cut is the
sum of the capacities for edges from Ato B

a/a

4/9

Are we done?
Is this the best we can do?

Maximum flow
What is the minimum capacity cut for this graph?

Capacity=10+4

4/4 \

4/10

4/10 4/9

flow = minimum capacity, so we can do no better

Algorithm idea Algorithm idea

send some flow down a path reroute some of the flow

4/4

4/10 4/9
During the search, if an edge
has some flow, we consider
“reversing” some of that flow

How do we determine the
path to send flow down?

The residual graph Algorithm idea

The residual graph G; is constructed from G G

For each edge e in the original graph (G):

— if flow(e) < capacity(e)
* introduce an edge in G; with capacity = capacity(e)-flow(e)
* this represents the remaining flow we can still push

— if flow(e) >0
* introduce an edge in G; in the opposite direction with

capacity = flow(e)

* this represents the flow that we can reroute/reverse

Algorithm idea

G
8/10
Find a path from
stotin G;
Gf
Algorithm idea
G 2/4

10/10

2/10 2/9

Find a path from
stotin G

G, \
2

Algorithm idea

2/4

G
8/10
Find a path from
2 stotin G;
Gf
Algorithm idea
G 4/4

10/10

4/9

Find a path from
stotin G

G, \
4

Algorithm idea

4/4

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow = 0 for all edges a simple path contains no
X repeated vertices

G, = residualGraph(G)

while a exists from s to tin G;
send as much flow along the path as possible
G; = residualGraph(G)

return flow

Ford-Fulkerson: runtime?

Ford-Fulkerson(G, s, t)
flow = 0 for all edges
G; = residualGraph(G)
a simple path exists from s to t in G;
send as much flow along path as possible
G; = residualGraph(G)
return flow

Overall runtime? O(max-flow * E)

max-flow!

increases ever iteration
integer capacities, so
integer increases

O(max-flow * E)
Can you construct a graph that could get this running time?
Hint:

100 100

100 100

O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?
100 100

100 100

O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?

O(max-flow * E)

Can you construct a graph that could get this running time?

What is the problem here?
Could we do better?

Faster variants

Edmunds-Karp
— Select the shortest path (in number of edges) from s
totin G;
* How can we do this?
— use BFS for search
— Running time: O(V E?)
* avoids issues like the one we just saw
* see the book for the proof

* or http://www.cs.cornell.edu/courses/C54820/2011sp/
handouts/edmondskarp.pdf

preflow-push (aka push-relabel) algorithms
—0(\3)

Other variations...

Method Complexity

Linear

OGN TABLE L. POLYNOMIAL-TIME ALGORITHMS FOR THE MAXIMUM FLOW PROBLEM®

Ford-Fulkerson Algorithm

a‘wmum e madizh) no. Date Discoverer Running time References
1 1969 Edmonds and Karp O(nm?) (51

oo ol Ve 2 1970 Dinic O(n’m) [4]

algorithm 3 1974 Karzanov o) (8]

Dinitz blocking ® 4 1977 Cherkasky 0(";"'”‘) 3]

flow algorithm aAVE) 5 1978 Malhotra, Pramodh Kumar, o(n’) (21)

and Maheshwari

oty 6 1978 Galil o(n**m*) (1

e |l 7 1978 Galil and Naamad; Shiloach O(nm(log n)’) [12,25]

fhow agorithen 8 1980 Sleator and Tarjan Orrm o 1) (27, 28]
9 1982 Shiloach and Vishkin o) 26]

Push-relabel 10 1983 Gabow O(nmlog U) {10]

algorithm with o 1" 1984 Tarjan o(n’y (31

FIFO vertex 12 1985 Goldberg o(n') [14)

sslection e 13 1986 Goldberg and Tarjan O(nm log(n*/m)) [16. 15]

Dinitz blocking 14 1986 Aluja and Oslin O(nen + n'log U) [

flow algorithm with | O(VEE log(V})
dynamic trees
Push-relabel

algorithm with O(VE log(VZ/E))

dynamic trees
Binary blocking
flow algorithm (1]
MPM (Malhotra,
Pramodh-Kumar
and Maheshwari)
algorithm

o)

O(Emin(v?/3,VE) log(V2/E) logU)

* Algorithm 13 is presented in this paper.

http://akira.ruc.dk/~keld/teaching/

http://en.wikipedia.org/wiki/Maximum_flow

algoritmedesign_f03/Artikler/08/Goldberg88.pdf

Application: bipartite graph matching

Bipartite graph — a graph where every vertex can be partitioned into
two sets X and Y such that all edges connect a vertex u € X and a

vertexveyY

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

matching

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

nota
matching

Application: bipartite graph matching Application: bipartite graph matching

A matching can be thought of as pairing the vertices Bipartite matching problem: find the /argest matching in a bipartite
graph
Where might this
problem come

up?
- CS department has n courses
and m faculty
- Every instructor can teach
some of the courses
- What course should each
person teach?
- Anytime we want to match n
. things with m, but not all .

things can match

Application: bipartite graph matching Application: bipartite graph matching
Bipartite matching problem: find the /argest matching in a bipartite Setup as a flow problem:
graph

® ®

ideas?
- greedy?
- dynamic programming?

Application: bipartite graph matching Application: bipartite graph matching

Setup as a flow problem: Setup as a flow problem:

edge weights? all edge weights are 1

Application: bipartite graph matching Application: bipartite graph matching
Setup as a flow problem: Setup as a flow problem:

after we find the flow, how do we find the matching? match those nodes with flow between them

S

Application: bipartite graph matching
Is it correct?

Assume it’s not
—there is a better matching

— because of how we setup the graph flow = # of
matches

— therefore, the better matching would have a higher
flow

— contradiction (max-flow algorithm finds maximal!)

Application: bipartite graph matching

Run-time?
Cost to build the flow?
— O(E)
* each existing edge gets a capacity of 1

* introduce V new edges (to and from s and t)
* Vis O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
— Basic Ford-Fulkerson: O(max-flow * E)
* max-flow = O(V)
* O(VE)

Application: bipartite graph matching

Run-time?
Cost to build the flow?
— O(E)
» each existing edge gets a capacity of 1
* introduce V new edges (to and from s and t)
* Vis O(E) (for non-degenerate bipartite matching problems)

Max-flow calculation?
— Basic Ford-Fulkerson: O(max-flow * E)
— Edmunds-Karp: O(V E?)
— Preflow-push: O(V3)

Application: bipartite graph matching

Bipartite matching problem: find the /argest matching in a bipartite
graph

- CS department has n courses
and m faculty .\
- Every instructor can teach some
of the courses
- What course should each
person teach?
- Each faculty can teach at most 3

courses a semester?

Change the s edge weights ’
(representing faculty) to 3

Survey Design

Design a survey with the following requirements:
— Design survey asking n consumers about m products

— Can only survey consumer about a product if they own
it

— Question consumers about at most g products
— Each product should be surveyed at most s times
— Maximize the number of surveys/questions asked

How can we do this?

Survey design

Is it correct?

— Each of the comments above the flow graph
match the problem constraints

— max-flow finds the maximum matching, given the
problem constraints

What is the run-time?
— Basic Ford-Fulkerson: O(max-flow * E)
— Edmunds-Karp: O(V E?)
— Preflow-push: O(V3)

Survey Design

consumers products

capacity 1 edge if

consumer owned product each product can be
questioned about at most
s times

each consumer can
answer at most q
questions

S

Edge Disjoint Paths

Two paths are edge-disjoint if they have no edge
in common

Edge Disjoint Paths

Two paths are edge-disjoint if they have no edge
in common

Edge Disjoint Paths Problem

Given a directed graph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint paths fromsto t

Why might this be useful?
— edges are unique resources (e.g. communications,
transportation, etc.)

— how many concurrent (non-conflicting) paths do we have
fromstot

Edge Disjoint Paths Problem

Given a directed graph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint paths from s to t

Why might this be useful?

Edge Disjoint Paths

Algorithm ideas?

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge

e
I S

What does the max flow
represent?
Why?

Max-flow variations

What if we have multiple sources and multiple
sinks (e.g. the Russian train problem has multiple
sinks)?

capacity

&
ﬁ network
&

e ¥

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge
14\
1 1
¢ e
1 \L 1 >i/

- max-flow = maximum number of disjoint paths
- correctness:
- each edge can have at most flow = 1, so can
only be traversed once
- therefore, each unit out of s represents a
separate path to t

Max-flow variations

Create a new source and sink and connect up
with infinite capacities...

/ capacity —

network;?

—

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of
flow through each vertex

15

20 10

20
10

What is the max-flow

-~

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of
flow through each vertex

15

20 10

20
10

How can we solve this problem?

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of
flow through each vertex

10/15

10/10

20 units

Max-flow variations

For each vertex v
- create a new node v’
- create an edge with the vertex capacity fromvtov

7

- move all outgoing edges fromvto Vv’

10

Can you now prove it’s correct?

Max-flow variations

Proof:

1. show that if a solution exists in the original graph,
then a solution exists in the modified graph

2. show that if a solution exists in the modified graph,
then a solution exists in the original graph

More problems:
maximum independent path

Two paths are independent if they have no
vertices in common

Max-flow variations

Proof:
— we know that the vertex constraints are satisfied

* no incoming flow can exceed the vertex capacity since we have a
single edge with that capacity from v to v’

— we can obtain the solution, by collapsing each v and v’
back to the original v node
* in-flow = out-flow since there is only a single edge from v to v’

* because there is only a single edge from v to v’ and all the in edges
goin to v and out to v/, they can be viewed as a single node in the
original graph

More problems:
maximum independent path

Two paths are independent if they have no
vertices in common

More problems:
maximum independent path

Find the maximum number of independent paths

Ideas?

More problems: wireless network

* The campus has hired you to setup the wireless network

* There are currently m wireless stations positioned at
various (x,y) coordinates on campus

* The range of each of these stations is r (i.e. the signal goes
at most distance r)

* Any particular wireless station can only host k people
connected

* You've calculate the n most popular locations on campus
and have their (x,y) coordinates

* Could the current network support n different people
trying to connect at each of the n most popular locations
(i.e. one person per location)?

* Prove correctness and state run-time

maximum independent path

Max flow formulation:
- assign unit capacity to every edge (though any value would work)
- assign unit capacity to every vertex

1 11 1/.1\
e

1

Same idea as the maximum edge-disjoint
paths, but now we also constrain the vertices

Another matching problem

* n people nodes and m station nodes

* if dist(p,w;) < r then add an edge from pi to wj with weight 1
(where dist is euclidean distance)

* add edges s -> p;, with weight 1
* add edges w; -> t with weight k

add edge if

dist(p, w) <r - solve for max-flow

check if flow=m

Correctness

If there is flow from a person node to a wireless node then that
person is attached to that wireless node

if dist(pi,wj) < r then add an edge from pi to wj with weigth 1
(where dist is euclidean distance)
o only people able to connect to node could have flow

add edges s -> pi with weight 1

o each person can only connect to one wireless node

add edges wj -> t with weight L

o at most L people can connect to a wireless node

If flow = m, then every person is connected to a node

Runtime
E = O(mn): every person is within range of every node
V=m+n+2

max-flow = O(m), s has at most m out-flow

* O(max-flow * E) = O(m?n): Ford-Fulkerson
* O(VE?) = O((m+n)m?2n?): Edmunds-Karp
* O(V3) = O((m+n)3): preflow-push variant

