

Linear Programming

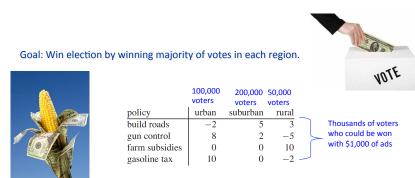
Adapted from CLRS, G. Blelloch, and K. Daniels

Getting Elected

 Can spend money on advertising any of four critical parts of your platform:

Admin

Motivation: A Political Problem



Subgoal: Win majority of votes in each region while minimizing advertising cost.

Motivation: A Political Problem (continued)

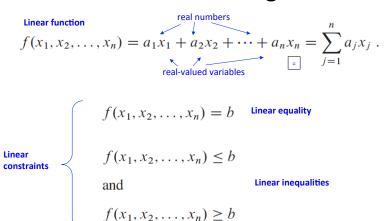
- x_1 is the number of thousands of dollars spent on advertising on building roads,
- x_2 is the number of thousands of dollars spent on advertising on gun control,
- x₃ is the number of thousands of dollars spent on advertising on farm subsidies, and
- x_4 is the number of thousands of dollars spent on advertising on a gasoline tax.


```
minimize x_1 + x_2 + x_3 + x_4 subject to urban -2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50 suburban 5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100 rural 3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25 Thousands of voters representing majority.
```

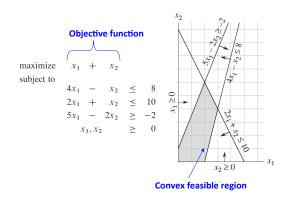
Why LP?

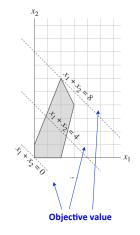
- 50+ software packages available
- 1300+ papers just on interior point methods
- 100+ books in the library
- Dozens of companies
- Delta Airlines claims they save \$100 million a year with there optimization application

General Linear Programs



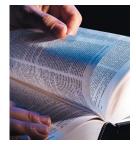
Overview of Linear Programming





Terminology

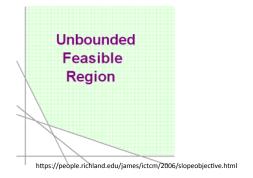
- Feasible solution:
- Infeasible solution:
- Objective value:
- · Optimal solution:
- Optimal objective value:
- (In)feasible LP:
- Unbounded:



Fundamental Theorem of LP

Theorem 29.13 (Fundamental theorem of linear programming) Any linear program L, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.



Worksheet

Worksheet

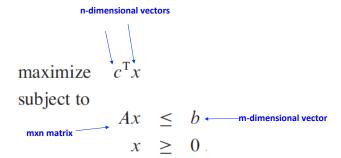
• Give three feasible solutions to the linear program:

Standard Form

In **standard form**, we are given n real numbers c_1, c_2, \ldots, c_n ; m real numbers b_1, b_2, \ldots, b_m ; and mn real numbers a_{ij} for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$. We wish to find n real numbers x_1, x_2, \ldots, x_n that

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 objective function subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \text{ for } i=1,2,\ldots,m$$
 constraints
$$x_{j} \geq 0 \text{ for } j=1,2,\ldots,n$$

Standard Form (compact)



Can specify linear program in standard form by (A,b,c).

Converting to Standard Form

- Linear programs may not always fit into standard form:
 - 1. Objective function may be a minimization rather than a maximization
 - 2. There might be variables without nonnegativity constraints
 - 3. There might be equality constraints, rather than less-than-or-equal-to
 - 4. There might be inequality constraints that are greater-than-or-equal-to

Worksheet

Convert the following LP into compact form:

Converting to Standard Form

(continued)

Transforming minimization to maximization

Negate coefficients

minimize
$$-2x_1 + 3x_2$$
 maximize $2x_1 - 3x_2$ subject to $x_1 + x_2 = 7$ $x_1 - 2x_2 \le 4$ $x_1 = 2$ $x_1 + x_2 = 7$ $x_1 - 2x_2 \le 4$ $x_1 = 2$ $x_1 + x_2 = 7$ $x_1 - 2x_2 \le 4$ $x_2 = 0$

Converting to Standard Form

(continued)

Giving each variable a non-negativity constraint

maximize
$$2x_1 - 3x_2$$
 maximize $2x_1 - 3x_2' + 3x_2''$ subject to $x_1 + x_2 = 7$ subject to $x_1 + x_2' - x_2''$ $x_1 - 2x_2 \le 4$ $x_1 - 2x_2' + 2x_2''$ x_1, x_2', x_2''

x₂ has no non-negativity constraint

$$-3(x_2'-x_2'') \\ -3x_2'+3x_2''$$

New non-negativity constraints

If x_i has no non-negativity constraint, replace each occurrence of x_i with $x_i' - x_i''$.

Converting to Standard Form

(continued)

Transforming equality constraints to inequality constraints

maximize
$$2x_1 - 3x_2' + 3x_2''$$
 maximize $2x_1 - 3x_2' + 3x_2''$ subject to
$$x_1 + x_2' - x_2'' = 7$$

$$x_1 - 2x_2' + 2x_2'' \le 4$$

$$x_1, x_2', x_2'' \qquad \ge 0$$

$$x_1 + x_2' - x_2'' \le 7$$

$$x_1 + x_2' - x_2'' \ge 7$$

$$x_1 - 2x_2' + 2x_2'' \le 4$$

$$x_1, x_2', x_2'' \qquad \ge 0$$

Converting to Standard Form

(continued)

Changing sense of an inequality constraint

maximize
$$2x_1 - 3x_2' + 3x_2''$$
 maximize $2x_1 - 3x_2 + 3x_3$ subject to
$$x_1 + x_2' - x_2'' \le 7$$
 $x_1 + x_2 - x_3 \le 7$
$$x_1 + x_2' - x_2'' \ge 7$$

$$x_1 - 2x_2' + 2x_2'' \le 4$$

$$x_1, x_2', x_2''$$

$$\ge 0$$

$$x_1, x_2, x_3$$

$$\ge 0$$

(Rename variables for

notational consistency.)

Converting Linear Programs into Slack Form

for algorithmic ease, transform all constraints except nonnegativity ones into equalities

for inequality
$$n$$
 constraint:
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$

for inequality
$$a_i$$
 constraint: $\sum_{j=1}^n a_{ij} x_j \le b_i$ define $a_{ij} x_j < b_i$ $a_{ij} x_j < b_i$ $a_{ij} x_j < b_i$ $a_{ij} x_j < b_i$ $a_{ij} x_j < b_i$

instead of s
$$\longrightarrow x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j$$

maximize
$$2x_1 - 3x_2 + 3x_3$$
 maximize $2x_1 - 3x_2 + 3x_3$ subject to $x_1 + x_2 - x_3 \le 7$ $-x_1 - x_2 + x_3 \le -7$ $x_1 - 2x_2 + 2x_3 \le 4$ x_1, x_2, x_3 ≥ 0 maximize $2x_1 - 3x_2 + 3x_3$ $x_4 = 7 - x_1 - x_2 + x_3$ $x_5 = -7 + x_1 + x_2 - x_3$ $x_6 = 4 - x_1 + 2x_2 - 2x_3$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$.

Converting Linear Programs into Slack Form (continued)

maximize
$$2x_1 - 3x_2 + 3x_3$$
subject to
$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$x_5 = -7 + x_1 + x_2 - x_3$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$

Applications

- Selecting a mix: Oil mixtures: portfolio selection, ...
- Distribution: How much of a commodity should distribute to different locations
- Allocation: How much of a resource should we allocate to difference tasks
- Network flows!

Converting Linear Programs into Slack Form (continued)

$$c = (c_3 \ c_5 \ c_6)^{\mathrm{T}} = (-1/6 \ -1/6 \ -2/3)^{\mathrm{T}}$$
, and $v = 28$.

Shortest Paths

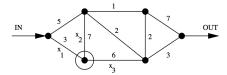
What problem is this?

Single-pair shortest path: minimize "distance" from source s to sink t.

maximize d_t subject to $d_v \leq d_u + w(u,v) \quad \text{for each edge } (u,v) \in E \; ,$ $d_s = 0 \; .$

Why don't we want minimize?

Maximum Flow



Multicommodity Flow

minimize
$$0$$
 subject to
$$\sum_{i=1}^k f_i(u,v) \leq c(u,v) \quad \text{for each } u,v \in V \;,$$

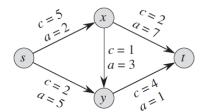
$$f_i(u,v) = -f_i(v,u) \quad \text{for each } i=1,2,\ldots,k \text{ and for each } u,v \in V \;,$$

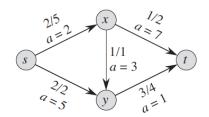
$$\sum_{v \in V} f_i(u,v) = 0 \quad \text{for each } i=1,2,\ldots,k \text{ and for each } u \in V - \{s_i,t_i\} \;,$$

$$\sum_{v \in V} f_i(s,v) = d_i \quad \text{for each } i=1,2,\ldots,k \;.$$

$$\sum_{v \in V} f_i(s,v) = d_i \quad \text{for each } i=1,2,\ldots,k \;.$$

Minimum Cost Flow





Worksheet: Write the LP!

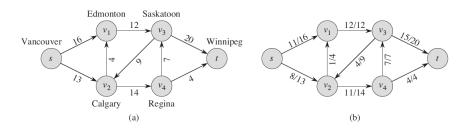
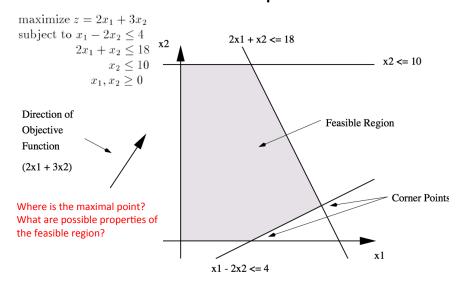
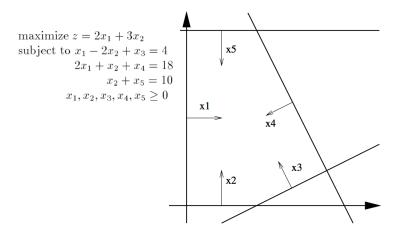


Figure 26.1 (a) A flow network G = (V, E) for the Lucky Puck Company's trucking problem. The Vancouver factory is the source s, and the Winnipeg warehouse is the $\sin t$. The company ships pucks through intermediate cities, but only c(u, v) crates per day can go from city u to city v. Each edge is labeled with its capacity. (b) A flow f in G with value |f| = 19. Each edge (u, v) is labeled by f(u, v)/c(u, v). The slash notation merely separates the flow and capacity; it does not indicate division.

Geometric Interpretation



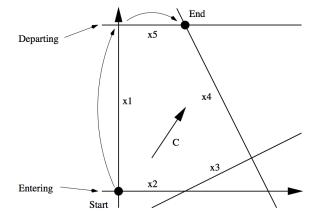
Geometric Interpretation: slack



Simplex Algorithm

- 1. Find any corner of the feasible region (if one exists)
- 2. Corner exists at the intersection of n hyperplanes. For each plane, calculate the dot product of the objective function cost vector *c* with the unit vector normal to the plan (facing inward).
- 3. If all dot products are negative, then DONE (problem is maximized)
- 4. Else, select plane with max dot product.
- 5. Intersection of remaining n-1 hyperplanes forms a line. Move along this line until next corner is reached.
- 6. Goto 2.

Geometric View of Simplex



Solving a Linear Program

Simplex algorithm

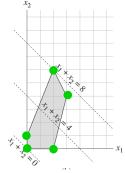
- Geometric interpretation
 - Visit vertices on the boundary of the simplex representing the convex feasible region
- Transforms set of inequalities using process similar t Gaussian elimination (Ch. 28)
- Run-time
 - not polynomial in worst-case
 - · often very fast in practice

Ellipsoid method

- Run-time
 - · polynomial
 - slow in practice

· Interior-Point methods

- Run-time
 - polynomial
 - · for large inputs, performance can be competitive with simplex method
- Moves through interior of feasible region



Simplex Algorithm: Example Reformulating the LP Model

Main Idea: In each iteration, reformulate the LP model so basic solution has larger objective value

Select a nonbasic variable whose objective coefficient is positive: x₁

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

Increase its value as much as possible.

$$4 = 30 - x_1 - x_2 - 3x_3$$

= $30 - \left(9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}\right) - x_2 - 3x_3$

Identify tightest constraint on increase.

$$= 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}.$$

For basic variable x₆ of that constraint, swap

Rewrite other equations with x₆ on RHS.

entering variable
$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_3}{2}$$
leaving variable
$$z = 27 + \frac{x_3}{4} + \frac{x_3}{2} - \frac{3x_3}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_3}{2}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_3}{2}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_3}{2}$$

Simplex Algorithm: Example **Basic Solution**

Standard Form
$$\begin{cases} \text{maximize} & 3x_1 + x_2 + 2x_3 \\ \text{subject to} & x_1 + x_2 + 3x_3 \leq 30 \\ 2x_1 + 2x_2 + 5x_3 \leq 24 \\ 4x_1 + x_2 + 2x_3 \leq 36 \\ x_1, x_2, x_3 & \geq 0 \end{cases}$$

$$\begin{cases} z = 3x_1 + x_2 + 2x_3 \\ x_4 = 30 - x_1 - x_2 - 3x_3 \\ x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \\ x_6 = 36 - 4x_1 - x_2 - 2x_3 \end{cases}$$

$$\begin{cases} x_5 = 24 - 2x_1 - 2x_2 - 5x_3 \\ x_6 = 36 - 4x_1 - x_2 - 2x_3 \end{cases}$$
Rasic Solution:
$$(x_1, x_2, x_3, x_4) = (0.0, 0.30, 24, 36)$$

Basic Solution: set each nonbasic variable to 0.

Basic Solution:

Simplex Algorithm: Example Reformulating the LP Model

Next Iteration: select x₂ as entering variable.

entering variable
$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$
 $z = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} - \frac{x_6}{4}$ PIVOT $z = \frac{33}{4} - \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$ $z = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$ $z = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$ $z = \frac{33}{4} - \frac{3x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$ $z = \frac{33}{4} - \frac{3x_2}{16} + \frac{x_5}{8} - \frac{x_6}{16}$ $z = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$ leaving variable

New Basic Solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (33/4, 0, 3/2, 69/4, 0, 0)$

Simplex Algorithm: Example Reformulating the LP Model

Next Iteration: select x_2 as entering variable.

entering variable
$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$
entering variable
$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

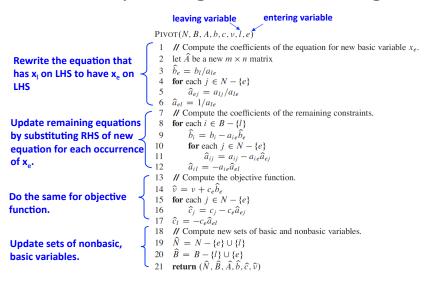
$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
leaving variable

New Basic Solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (8,4,0,18,0,0)$

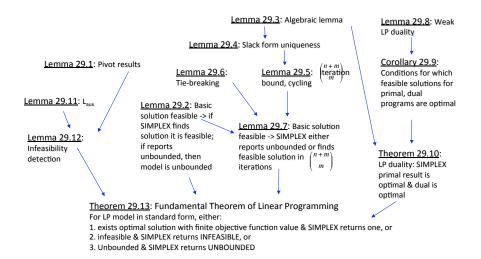
Simplex Algorithm: Pseudocode

```
SIMPLEX(A, b, c)
initial basic
                    → 1 (N, B, A, b, c, \nu) = INITIALIZE-SIMPLEX (A, b, c)
solution
                       2 let \Delta be a new vector of length n
                       3 while some index j \in N has c_i > 0
                                choose an index e \in N for which c_e > 0
                       4
                       5
                                for each index i \in B
                       6
                                     if a_{ie} > 0
                       7
                                          \Delta_i = b_i/a_{ie}
                       8
                                     else \Delta_i = \infty
                       9
                                choose an index l \in B that minimizes \Delta_i
                      10
                                if \Delta_I == \infty
                                                                detects unboundedness
                     11
                     12
                                else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
                     13
                          for i = 1 to n
                                if i \in B
                     14
                     15
                                    \bar{x}_i = b_i
                                else \bar{x}_i = 0
                     17 return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n) optimal solution
```

Simplex Algorithm: Pivoting



Correctness: Roadmap (Key Pieces)

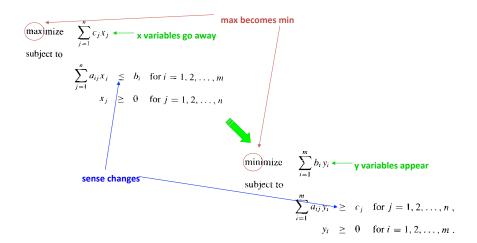


Simplex: Further reading

- See 29.5 to answer important remaining questions:
 - How do we determine whether a linear program is feasible?
 - What do we do if the initial basic solution is not feasible?
 - How do we determine whether a linear program is unbounded?
 - How do we choose the entering and leaving variables?
 - How do we know it's the optimal value?

Duality Example

Linear Programming Duality



Optimality

Theorem 29.10 (Linear-programming duality)

Suppose that SIMPLEX returns values $\bar{x}=(\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_n)$ for the primal linear program (A,b,c). Let N and B denote the nonbasic and basic variables for the final slack form, let c' denote the coefficients in the final slack form, and let $\bar{y}=(\bar{y}_1,\bar{y}_2,\ldots,\bar{y}_m)$ be defined by equation (29.91). Then \bar{x} is an optimal solution to the primal linear program, \bar{y} is an optimal solution to the dual linear program, and

$$\sum_{i=1}^{n} c_{j} \bar{x}_{j} = \sum_{i=1}^{m} b_{i} \bar{y}_{i} . \tag{29.92}$$

Benchmarks

Name	Simplex (Primal)	Simplex (Dual)	Barrier + Crossover
binpacking	29.5	62.8	560.6
distribution	18,568.0	won't run	12,495,464
forestry	1,354.2	1,911.4	2,348.0
maintenance	57,916.3	89,890.9	3,240.8
crew	7,182.6	16,172.2	1,264.2
airfleet	71,292.5	108,015.0	37,627.3
energy	3,091.1	1,943.8	858.0
4color	45,870.2	won't run	44,899,242

Table 10: Running Times of Large Models in seconds.

Worksheet: Communication Network Problem

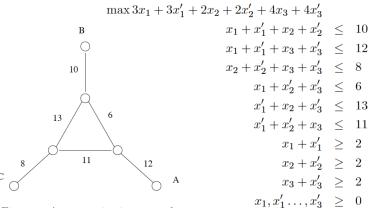


Figure 4: A communication network

The solution, obtained via simplex in a few milliseconds, is the following: $x_1=0, x_1'=7, x_2=x_2'=1.5, x_3=.5, x_3'=4.5.$

Worksheet: Communication Network Problem

We have a network whose lines have the bandwidth shown in Figure 4. We wish to establish three calls: One between A and B (call 1), one between B and C (call 2), and one between A and C (call 3). We must give each call at least 2 units of bandwidth, but possibly more. The link from A to B pays 3 per unit of bandwidth, from B to C pays 2, and from A to C pays 4. Notice that each call can be routed in two ways (the long and the short path), or by a combination (for example, two units of bandwidth via the short route, and three via the long route). How do we route these calls to maximize the network's income?

This is also a linear program. We have variables for each call and each path (long or short); for example x_1 is the short path for call 1, and x'_2 the long path for call 2. We demand that (1) no edge bandwidth is exceeded, and (2) each call gets a bandwidth of 2.

Source: M. Jordan

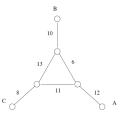


Figure 4: A communication network