Admin

Linear Programming

Adapted from CLRS, G. Blelloch, and K. Daniels

Getting Elected Motivation: A Political Problem

* Can spend money on advertising any of four ‘%

Goal: Win election by winning majority of votes in each region.

critical parts of your platform: 3
W
100,000 200,000 50,000
voters voters  voters
policy | urban  suburban  rural
build roads -2 5 3 Thousands of voters
gun control 8 2 -5 who could be won
farm subsidies 0 0 10 with $1,000 of ads
gasoline tax 10 0 -2

Subgoal: Win majority of votes in each region while minimizing advertising
cost.




Motivation: A Political Problem General Linear Programs

(continued)
. . real numbers
Linear function s n
* X is the number of thousands of dollars spent on advertising on building roads, f(x1,x2,...,: Xn) = a1 Xy + azxxo + -+ a,x, = Z ax; .
* X, is the number of thousands of dollars spent on advertising on gun control, \l I/dT' [-] /=1
real-valued variables
* x3is the number of thousands of dollars spent on advertising on farm subsidies,
and -~
: . — Li lit
* x4 is the number of thousands of dollars spent on advertising on a gasoline tax. Jxxa, .. Xp) = b tinearequalit
Linear C <
inimise Cr o 4 a4 constraints < f(.\1. Xoyuunsl X,) <b
squricatr:o P, R » and Linear inequalities
burban Y1 + 2v; 4+ On 4 Ox > 100 votre e
Surul:; " 3x; — 5x; 4+ 10x3 — 2x4 > 25 } re;.reslenting \_ .f(-\_b X2yeooys X ,,) > b
X1.X2, X3, X4 > 0. majority.
Why LP? Overview of Linear Programming
* 50+ software packages available
* 1300+ papers just on interior point methods Objective function
* 100+ books in the library maximize ¥ + x;
subject to SEA
. 4x; — xp < 8 - X4
* Dozens of companies S | b
* Delta Airlines claims they save $100 million a T 0 \
year with there optimization application

Convex feasible region

Objective value



Terminology Fundamental Theorem of LP

* Feasible solution: Theorem 29.13 (Fundamental theorem of linear programming)
e Infeasible solution: Any linear program L, given in standard form, either
* Objective value: 1. has an optimal solution with a finite objective value,
« Optimal solution: 2. is infeasible, or
. . L . . 3. is unbounded.
Optimal objective value: Unbounded
* (In)feasible LP: Feasible
* Unbounded: Region

Bounded "
Feasible \

Region AN

. . - - s =
https://people,ri&hIand,edu/james/ictcm/ZOOG/sIopeobjective.html

\=) Worksheet Standard Form

Worksheet

* Give three feasible solutions to the linear program:

In standard form, we are given n real numbers ¢y, cs, ..., ¢,; m real numbers
bi.by, ..., b, and mn real numbers a;; fori = 1,2,..., mand j = 1,2,...,
minimize X, +  x» + X3 + X4 We wish to find 7 real numbers x;, x5, .. .,. X, that
subject to R
—2x 8x 0x 10x, > 50 .
1t 2+ 3+ 4= maximize Z CjXj objective function
5xy + 2x, + Ox3 4+ Oxgy > 100 j=1
3x;, — 5x, + 10x35 — 2x, > 25 subjectto
X1,X2,X3, Xy > 0. Za,»_,-x»,- < b; fori=12,..., m
Jj=1 constraints
x; > 0 forj=12..., n

Cormen et al.



Standard Form (compact) Worksheet %

Worksheet
n-dimensional vectors * Convert the following LP into compact form:
\ \ minimize X1 + x» + X3 + X4
maximize c¢'x subject to
) —2x; + 8x, + Ox3 + 10x, > 50
subject to S5vi 4+ 2xa + Ox3; + Ox, > 100
. Ax S b <«———m-dimensional vector 3x; — 5x5 + 10x;3 — 2x, > 25
mxn matrix
x > 0 X1,X2,X3, Xy > 0 .

Can specify linear program in standard form by (A,b,c).

Converting to Standard Form

Converting to Standard Form (continued)

* Linear programs may not always fit into

standard form:
Transforming minimization to maximization

1. Objective function may be a minimization rather
than a maximization

2. There might be variables without nonnegativity Negate coefficients

constraints minimize —2x; + 3x, =P maximize 2x; — 3x,
' ) . subject to subject to
3. There might be equality constraints, rather than Xt oxn =17 X\%€ + x» = 7
less-than-or-equal-to X1 - 2 = g X, — 2%, < 4
. . . . X >
4. There might be inequality constraints that are o - Xy > 0

greater-than-or-equal-to



Converting to Standard Form
(continued)

Giving each variable a non-negativity constraint

maximize 2x; —
subject to
X +
X, -
X1

34"2

X2

ZX2

Al

v

X, has no non-negativity constraint

maximize

subject to

-3(x, = x,")
2x; — 3x, + 3x)
X1+ ox, — X3
Xy — 2x, + 2x)

X1. X5, X)

—

New non-negativity constraints

If x; has no non-negativity constraint,

replace each occurrence of x; with xj'

=X .

”

]

Converting to Standard Form

Changing sense of an inequality constraint

maximize 2x,;

|
w
b
Ky 8

subject to
X+ X

’
X+ X

X, -

Rationale:

A
3x5

i
X,
4
X,

"
2x,

IV IA IV DA

maximize 2x; — 3x, + 3x3
subject to
7 Xy + x2 = x3 =
7y, — x; + x; <
4 Xy — 2x, + 2x; <
0 X1.X2,X3 >

n
E ajjx; > b;
Jj=1

is equivalent to

n

> —ayx; < —b;

Jj=1

(Rename variables for
notational consistency.)

Al

v

Converting to Standard Form

<—_ <_-

(continued)

Transforming equality constraints to inequality constraints

maximize 2x,; 3x)
subject to

X1+ X,

Xy — 2x,

X1, X5, Xy

”
3x;5

n
X2

”n
2x,

maximize

subject to

4
0

IV IA

7 Vls {Xl

Converting Linear Programs into Slack Form

for algorithmic ease, transform all constraints except non-
negativity ones into equalities

for inequality ,,

constraint:
aijXj =

Jj=1
maximize 2x; — 3x, +
subject to
X1+ x2 =
X — X2 +
X — 2x, +
X1, X2, X3

2x3

IV IA IA IA

define $
slack

instead of s —

maximize
subject to

7 =
74 basic Xs =
0 variables\-Ye =

X1,X2,X3, Xy, X5,Xg

1 2

2x; — 3x, + 3x)

+ Xy, = x5 <7
X, + x5 = x5 =7
X — 2xy 4+ 2x) < 4

’ "
X1, X5, X, > 0
slack variable
n
bi =Y ayx;
Jj=1
> 0.
n
Xnti = bi — Zaij-\’/
j=1
2x;  — 3x2 4+ 3x;
non-basic, variables
7 - X = x2 4+ x3
-7 + xi + X2 — X3
4 — x1 + 2x — 2x;3
> 0



Converting Linear Programs into Slack
Form (continued)

maximize 2¢; — 3xp 4 30
subject to

Xg = 7 - X - i o+ X3

s = -7 + x + v -

o 4 - x; 4+ 2 = 2x

Xy, X2, X3, Xq, X5, X6 > 1§

objective  , , — 25, — 3 + 3u

function v = 7 - xq - x4+ m

x5 = -7 + x + X - 0

Xo = 4 — x; o+ 2v - 2x;

Applications

Selecting a mix: Oil mixtures: portfolio
selection,

Distribution: How much of a commodity
should distribute to different locations

Allocation: How much of a resource should we
allocate to difference tasks

Network flows!

Converting Linear Programs into Slack
Form (continued)

maximize  ¢'x z = v + E [SE
subject to jeN
set of indices of basic variable
Av b xi = b - E ax; forie BT
x > 0. J

JeN < set of indices of non-basic variables

Compact Form: (N, B, A, b, c, v)

Slack Form Example I — Compact Form

Lo uox % we have B = {I,2,4}, N = (3,5, 6},
; - 6 6 3 ay ais a —1/6 —1/6 173
0= 8 + B 405 _ 0% A=|an as an | = 83 2/3 -1/3
6 6 3 a4y dgs dge /2 =172
8x 2x
o= 4 - % - Tﬁ + %( b 8
A X3 :\‘5 b={b|=[ 4], negative of slack form coefficients
Xy = 18 — - + —_- by 18
2 2
T T
c=(a o5 ) = (=1/6 —1/6 —2/3)", and v = 28.

Shortest Paths

What problem is this?

Single-pair shortest path: minimize “distance” from source s to sink t.

maximize d,

subject to
dy < dy+ w(u,v) foreachedge (u,v)€E,

di = 0.
Why don’t we want minimize? B
/
( ‘ f) 2/
2
T4 %



Maximum Flow

maximize E fov —

veV
subject to
<
Capacity constraints Juw =
Flow conservation Z Jou =
veV
S =

D S
veV

c(u,v) foreachu,velV,

wa foreachu € V —{s,1} ,

veV
0 foreachu,v e V.

Multicommodity Flow

minimize 0

subject to

k
Zf,(u,v) < c{uv)
i=t

fitu,my = —filvou)
Zf,(u,u) =0
wey
Yo fiswv) = d
veV *\

should be s;

foreachu, v € V ,

foreachi = [.2,... kand
foreachu, ne VvV |
foreachi = 1.2,... 4 and
foreachu € V - {s;. 1;} .
foreachi = 1,2, ..., k.

JACAVED W ACAY

Minimum Cost Flow
minimize Z a(u,v) fu

. (u,v)eE
subject to
S =< c(u,v) foreachu,veV,

quu - quu = 0 foreachu € V. —{s,t} ,

veV veV
Z Jsv = Z Sfos = d. Flow target is prespecified.
veV veV

0 foreachu,v eV .

Juv

v

cx
@

>
2
N

Worksheet: Write the LP!

Edmonton Saskatoon

Calgary Regina

Figure 26.1 (a) A flow network G = (V. E) for the Lucky Puck Company’s trucking problem.
The Vancouver factory is the source s, and the Winnipeg warehouse is the sink #. The company ships
pucks through intermediate cities, but only ¢ (u. v) crates per day can go from city u to city v. Each
edge is labeled with its capacity. (b) A flow f in G with value | f| = 10. Each edge (u, v) is labeled
by f(u.v)/c(u,v). The slash notation merely separates the flow and capacity; it does not indicate
division.



Geometric Interpretation

maximize z = 2x; + 39

subject to xy — 2z, <4 _
o ' L x2 2x1 +x2<=18
221 + a9 S 18

29 < 10 A \ x2 <= 10
Ty, 29 >0

Direction of Fesible Roui
Objective easible Region

Function \
(2x1 + 3x2)

Where is the maximal point?
What are possible properties of
the feasible region?

Corner Points

x1-2x2<=4

Simplex Algorithm

1. Find any corner of the feasible region (if one exists)

2. Corner exists at the intersection of n hyperplanes.
For each plane, calculate the dot product of the
objective function cost vector ¢ with the unit vector
normal to the plan (facing inward).

3. If all dot products are negative, then DONE (problem
is maximized)

4. Else, select plane with max dot product.

5. Intersection of remaining n-1 hyperplanes forms a
line. Move along this line until next corner is
reached.

6. Goto 2.

Geometric Interpretation: slack

maximize z = 2x, + 3x9
subject to 1 — 229 + 23
2I1 + X9 + Xy

T2+ x5

Ir1,L92,T3,T4,T5

o)

1
1¢

o

1
0

AV [ |

A \

p

x1
x4

sz

Geometric View of Simplex

Departing

A /\ End
/ x5
x1 x4
C
x3
x2

Entering ——o

Start




Solving a Linear Program

* Simplex algorithm

— Geometric interpretation

 Visit vertices on the boundary of the simplex
representing the convex feasible region
— Transforms set of inequalities using process similar 1

Gaussian elimination (Ch. 28)
— Run-time
* not polynomial in worst-case

« often very fast in practice

* Ellipsoid method
— Run-time
¢ polynomial

* slow in practice
* Interior-Point methods

— Run-time

polynomial
« for large inputs, performance can be competitive with
simplex method
— Moves through interior of feasible region

Simplex Algorithm: Example

Reformulating the LP Model

Main Idea: In each iteration, reformulate the LP model so
basic solution has larger objective value

Select a nonbasic variable whose
objective coefficient is positive: x;

Increase its value as much as possible.

Identify tightest constraint on increase.

X4

For basic variable x, of that constraint, swap

role with x;.

Rewrite other equations with x; on RHS.

xg = 30
xs = 24
x¢ = 36

&
leaving variable

‘/entering variable

3x; + x2 + 2x;

X; — Xp — 3x3
2x; — 2x, — 5x3
4x; — X — 2x3

oot X _m
4 2 4
30 — X1 — X — 3X3
X X
m—@—l—i—
4 2
3x 5x
p) [
4 2
“ X
A7 X2
z = ‘7/‘ + n
xy = 9 - %
. = 21 3x,
Xo= 20 = ==
3)
xXs = 6 — %

PIVOT

I—)p

+

X3
2
X3

new objective value

3x¢
4
X6
4
X6
4
X6

2

Xy

X4

Xs

Simplex Algor

ithm: Example

Basic Solution
maximize 3x; 4+ x> + 2x3
subject to
X 3x3 < 30
Standard S 2ot Boo=
Form 2x;p 4+ 2xp + S5x3; = 24
4,\'1 + Xo + 2,\‘3 < 36
X1,X2,X3 > 0
Z 3x; +  x» + 2x3
= 30 - — - 3
Slack Form v Y 2 3
X5 = 24 — 2x 1 — 2.\'2 — 5,\'3
X6 36 — 4,Y1 — X — 2.\'3

Basic Solution:

Basic Solution: set each nonbasi

(%, %, -.Xg) = (0,0,0,30,24,36)

c variable to 0.

Simplex Algorithm: Example

Reformulating

the LP Model

Next Iteration: select x; as entering variable.

entering variable

< 3
X5 X3 3x6
=27 + =2 4+ =2 - =
4 2
- 9 _ X _ X _ X
4 52 4 pivot
3x, X3 X¢
=21 - = - === i ||
4 > T3
3x, X
\— 6 — -5 - 4x;  + 5
leaving variable
New Basic Solution: (x5 x,

new objective value

L
/111y Xs X5
z =l —= )+ = - =
4/ 16
ooz ¥ _oxn L5
T 16 B}
3 3x; X5
Yy = . -
2 8 4
69 3%, 55
X S —_— —_— -
4 s T 8

..x;) =(33/4,03/2,69/4,0,0)

11xe
16

Sxg

16

X6

8

Xo

16



Simplex Algorithm: Example
Reformulating the LP Model

Next Iteration: select x, as entering variable.

entering variable

1 L ®
ST 4 16
33 X
X o= = = =
4 16
N 3 3x;
Y2 )
69 3x,
X4\ = —_ =<
4 16

leaving variable

New Basic Solution: (i>%: -

_new objective value

X5 11x, N 5] A5

= L z =(28) - — - = .-
8 16 _ 6

X5 Sxg L A3 s
5 ~ T PvoT = 8 4 t 5 T
X o 8 2x

5x5 Xq ) x3 Xs

m i Xy = 18 — 2 + 5

%) = (8,4,0,18,0,0)

Simplex Algorithm: Pseudocode

initial basic
solution

—

W N =

0NN N B

SIMPLEX (A, b, ¢)

(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (A, b, ¢)
let A be a new vector of length n
while some index j € N hasc; > 0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;e >0
A,‘ = b,‘/(l,'(,
else A; = oo
choose an index / € B that minimizes A;
if A] =0
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A.b,c,v,l,e)
fori = 1ton
ifi e B
{, = b,‘
else x; =0
return (X, X, ..., Xn)

detects unboundedness

«—— optimal solution

2x4

X

Simplex Algorithm: Pivoting

leaving variable entering variable

PIvOT(N, B, A,b,c,v,l,e)

Rewrite the equation that 2
has x, on LHS to have x, on 3
4
LHS 5
6
7
Update remaining equations 8

by substituting RHS of new
equation for each occurrence
of x,.

Do the same for objective
function.

Update sets of nonbasic,
basic variables.

Correctness

Lemma 29.1: Pivot results

model is unbounded

\

Theorem 29.13: Fundamental Theorem of Linear Programming
For LP model in standard form, either:

// Compute the coefficients of the equation for new basic variable x,.

let A be a new m x n matrix
be = bi/aie
for each j € N — {e}

Aoy = ajj/a,
Ao = 1/ase
// Compute the coefficients of the remaining constraints.
for eachi € B — {/}

5, = b — a,-,)E,)

for each j € N — {e}

?li, = aijj _aiea(‘/

i) = —Qjd,l
// Compute the objective function.
D=v+ (’[.ZJ\I,
for each j € N — {e}

C; = ¢j — Collyj

C] = —Celyg]

// Compute new sets of basic and nonbasic variables.
N =N-—{eu{l}

B =B—{l}U{e}

return (N, B, A, b,¢, D)

: Roadmap (Key Pieces)

Lemma 29.3: Algebraic lemma Lemma 29.8: Weak

LP duality

Lemma 29.4: Slack form uniqueness

Corollary 29.9:

Lemma 29.6: Lemma 29.5: (t’:e};z;’tz'i}:n Conditions for which
Tie-breaking bound, cycling feasible solutions for
primal, dual
Lemma 29.11: L, Lemma 29.2: Basic 1 programs are optimal
\ solution feasible -> if
SIMPLEX finds Lemma 29.7: Basic solution
Lemma 29.12: solution it is feasible; feasible -> SIMPLEX either
Infeasibilit if reports reports unbounded or finds
detection Y unbounded, then ’ Theorem 29.10:

feasible solutionin (7+™"

iterations m LP duality: SIMPLEX
primal result is
optimal & dual is

optimal

7

1. exists optimal solution with finite objective function value & SIMPLEX returns one, or
2. infeasible & SIMPLEX returns INFEASIBLE, or
3. Unbounded & SIMPLEX returns UNBOUNDED



Simplex: Further reading

* See 29.5 to answer important remaining questions:
— How do we determine whether a linear program is
feasible?
— What do we do if the initial basic solution is not feasible?

— How do we determine whether a linear program is
unbounded?

— How do we choose the entering and leaving variables?
— How do we know it’s the optimal value?

Duality Example

maximize  3x; 4+ x; + 2x3

subject to
1+ x4+ 3x3 o< 30
2xp 4+ 2x3 4+ S5x3 < 24
4x;) + x + 2x3 < 36
> 0.

X1, X2, X3

N
minimize 30y, + 24y, + 36y
subject to
o+ 2y 4+ 4y
»n o+ 2y ¥3
3w+ S5y o+ 2w
Y Y2 ¥3

+

IV IV IV IV

w

N -

Linear Programming Duality

/7\47—777"7******”’7777 ~ maxbecomes min
\maxjmize Z Cj¥j +— xvariables go away

j=1
subject to

n
E aijx; S b fori=1.2,..., m
=

x; = 0 forj=1,2,..., n

m

(mivimize S by, < :

le mize ) 0iYi y variables appear

sense change! =
subject to

Optimality

Theorem 29.10 (Linear-programming duality)

Suppose that SIMPLEX returns values X = (X;,X,,....] X,) for the primal lin-
ear program (A4,b,c). Let N and B denote the nonbasic and basic variables for
the final slack form, let ¢’ denote the coefficients in the final slack form, and let
Yy=01D2--s Vm) be defined by equation (29.91). Then X is an optimal so-
lution to the primal linear program, y is an optimal solution to the dual linear
program, and

n m
Z ;X = Z b; y; . (29.92)
j=1 i=1



Worksheet: Communication Network Problem
Benchmarks

‘We have a network whose lines have the bandwidth shown in Figure 4. We wish to establish
three calls: One between A and B (call 1), one between B and C (call 2), and one between
A and C (call 3). We must give each call at least 2 units of bandwidth, but possibly more.

| Name | Simplex (Primal) I Simplex (Dual) I Barrier + Crossover | The link from A to B pays 3 per unit of bandwidth, from B to C pays 2, and from A to C

binpacking 295 62.8 560.6 pays 4. Nc?tice. that each call can be ropted in two Ways (Fhe long and the short path), (?1‘
—— - 5 by a combination (for example, two units of bandwidth via the short route, and three via

distribution 18,568.0 won't run 12,195,164 the long route). How do we route these calls to maximize the network’s income?
forestry 1,354.2 1,911.4 2,348.0 This is also a linear program. We have variables for each call and each path (long or
maintenance 57.916.3 89.890.9 3,240.8 short); for example 27 is the short path for call 1, and 2% the long path for call 2. We
crew 7.182.6 16.172.2 1,264.2 demand that (1) no edge bandwidth is exceeded, and (2) each call gets a bandwidth of 2.
airfleet 71,292.5 108,015.0 37,627.3 BO
energy 3,091.1 1,943.8 858.0 o
4color 45,870.2 won’t run 44,899,242

Table 10: Running Times of Large Models in seconds.

Source: M. Jordan

Figure 4: A communication network

Worksheet: Communication Network Problem

max 3z + 32 + 229 + 22 + 4wz + 4k

B T+ 2]+ +ay, < 10

O T+ gty <12

10 1'2—1—1:'2—1—1’34—1’3 < 8
ri+ah+ay <6

i+ w2l < 13

i+ ah+ay < 11

:B1+:U'1 > 2

SL‘2+CL’/2 > 2

A I3+IL’{3 > 2

r,2 .2 >0

Figure 4: A communication network

The solution, obtained via simplex in a few milliseconds, is the following: = = 0,2 =
7,29 =12 =1.523 =525 =4.5.



