NP-Completeness!

CRotonss romomd] [| | LDHECHy oo

<« APPENZERS —~ | . EXACTLY? UK.

MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK)
PROBLEM MIGHT HELP YOU OUT.

FRENCH FRIES 275 LISTEN, I HAVE 5ix OTHER

Slm SN-AD 32,25 TABLES TO GET T0 —
~ AS FAST AS POSSIBLE, OF COURSE. WANT

HOT WINGS 3.55 SOMETHING ON TRAVELING SALESMAN?
MOZZAREUA STICXKS — 4-20 \\
SAMPUR PLATE 580 o %Ob %

—— SANDWICHES ~— ?%; %E]

RARRENNE et

Xkcd.com

Slides adapted from Ran Libeskind-Hadas,David Kauchak

“Easy” and “Hard” problems...

(a first attempt at a definition)

* Easy: The problem can be solved in
p0|ynomia| time: nc\ Some constant

problem size

* Hard: The problem cannot be solved in
polynomial time, but it can be solved in
“exponential time:” 2™

)XY

=

“very very hard”, “incredibly
_super hard” problems, etc.)

ﬂ/There are also “very hard”,

Run-time analysis

We've spent a lot of time in this class putting algorithms
into specific run-time categories:

— O(logn)

— O(n)

— O(n log n)

— 0(n?)

— O(n log log n)

— O(n1.67)

When | say an algorithm is O(f(n)), what does that mean?

/t\c \
2 3 n uddff{\/a —
n% and n3 versus 2 W

The Mudd-O-Matic performs 10° operations/sec

n=10 n =30 n =50 n=70
n 2 100 900 2500 4900
<1sec <1sec <1lsec <1sec
3 1000 27000 125K 343K
N <1sec <1sec <1lsec <1sec
n 1024 10°
2 <1sec 1sec

nZ and n3 versus 2" \w:“;"/‘%é nZ and n3 versus 2" \Waw‘%:
il\" . \/

The Mudd-O-Matic performs 10° operations/sec The Mudd-O-Matic performs 10° operations/sec
n=10 n =30 n=>50 n=70 n=10 n =30 n=>50 n=70
n2 100 900 2500 4900 n2 100 900 2500 4900
<1sec <1sec <1sec <1sec <1sec <1sec <1sec <1sec
3 1000 27000 125K 343K 3 1000 27000 125K 343K
N <1sec <1sec <1sec <1sec N <1sec <1sec <1sec <1sec
1024 10° 13 days 1024 10° 13 days 37
2n <1sec 1sec 2n <1sec 1sec thousand
" Assuming computers double in) years

~ \| speed every year, let’s just wait
.10 years!)
=

n2 and n3 versus 2"

Tractable vs. intractable problems

The Ran-O-Matic performs 10° operations/sec

adj.
n=10 n =30 n=>50 n=70 1. Easily managed or controlled; governable.
2. Easily handled or worked; malleable.
n2 100 900 2500 4900
<1sec <1sec <1lsec <1sec
3 1000 27000 125K 343K
N <1sec <1sec <1lsec <1sec
1024 109 13 days 37 What |S d ”traCtab|6” pI"Oblem?
2n <1sec 1sec thousand
years

37 thousand years -> 37 years

Tractable vs. intractable problems

ag.
1. Easily managed or controlled; governable.
2. Easily handled or worked; malleable.

Tractable problems can be solved
in O(f(n)) where f(n) is a polynomial

Tractable vs. intractable problems

ag.
1. Easily managed or controlled; governable.
2. Easily handled or worked; malleable.

Technically O(n'®) is tractable by our definition

Why don’t we worry about problems like this?

Tractable vs. intractable problems

ag.
1. Easily managed or controlled; governable.
2. Easily handled or worked; malleable.

What about...

0(n1%)?

O(nlog log log log n)’,)

Tractable vs. intractable problems

ag.
1. Easily managed or controlled; governable.
2. Easily handled or worked; malleable.

Technically O(n'%) is tractable by our definition

* Few practical problems result in solutions like this

* Once a polynomial time algorithm exists, more
efficient algorithms are usually found

* Polynomial algorithms are amenable to parallel
computation

Solvable vs. unsolvable problems

solv-a-ble <

adj.

(s3l'va-bal, sél'-)

Possible to solve: solvable problems; a solvable riddle.

What is a “solvable” problem?

Sorting

Given n integers, sort them from smallest to
largest.

Tractable/intractable?

Solvable/unsolvable?

Solvable vs. unsolvable problems

solv-a-ble <

adj.
Possible to solve: solvable problems; a solvable riddle.

(s3l'va-bal, sél'-)

A problem is solvable if given enough
(i.e. finite) time you could solve it

Sorting

Given n integers, sort them from smallest to
largest.

Solvable and tractable:
Mergesort: ©(n logn)

Enumerating all subsets Enumerating all subsets

Given a set of n items, enumerate all possible Given a set of n items, enumerate all possible
subsets. subsets.

Tractable/intractable?
Solvable, but intractable: ©(2") subsets

Solvable/unsolvable?
For large n this will take a very, very long time

Halting problem Halting problem
Given an arbitrary algorithm/program and a Given an arbitrary algorithm/program and a
particular input, will the program terminate? particular input, will the program terminate?
Tractable/intractable? Unsolvable ®

Solvable/unsolvable?

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly
once

0< \/.

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly
once

0< \/.

Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian
cycle is a cycle that visits every vertex V exactly
once

¢ L

Hamiltonian cycle Hamiltonian cycle

Given an undirected graph G=(V, E), a hamiltonian Given an undirected graph, does it contain a
cycle is a cycle that visits every vertex V exactly hamiltonian cycle?
once

Tractable/intractable?

Solvable/unsolvable?

Hamiltonian cycle NP problems

NP is the set of problems that can be verified in

Given an undirected graph, does it contain a S
polynomial time

hamiltonian cycle?

A problem can be verified in polynomial time if you
can check that a given solution is correct in

Solvable: Enumerate all possible paths (i.e.
polynomial time

include an edge or don’t) check if it’s a
Hamiltonian cycle

(NP is an abbreviation for non-deterministic polynomial time)

Hamiltonian cycle

Given an undirected graph, does it contain a
hamiltonian cycle?

Solvable: Enumerate all possible paths (i.e.

include an edge or don’t) check if it’s a
Hamiltonian cycle

How would we do this check exactly,
specifically given a graph and a path?

Checking hamiltonian cycles

HAM-CYCLE-VERIFY(G, p)

for i + 1 to |V|
visited[i] + false
n + lengthlp)
if pr#pnorn#|V|+1
return false
visited[p1] « true
fori+—1lton—1
if visited[p;]
return false
if (pi,pi1) ¢ E
return false
visited[pi] « true
for i+ 1to |V|
if lvisited|[i]
15 return false
return true

00 ~] O T = [0 DO =

[el
N = O

—
o

—
(=2}

Hamiltonian cycle

Given an undirected graph, does it contain a
hamiltonian cycle?

cyc\e pe

Checking hamiltonian cycles

HAM-CYCLE-VERIFY(G, p)

for i + 1 to |V|
visited[i] + false
n + lengthlp)

if pr#pnorn#|V|+1
return false

00 ~] O T = [0 DO =

[el
N = O

visited[p1] « true
fori+—1lton—1
if visited[p;]
return false
if (pi,pi1) ¢ E
return false
visited[pi] « true

—
o

15

—
(=2}

for i + 1 to |V|
if lvisited|[i]
return false
return true

Make sure the path starts and
ends at the same vertex and is
the right length

Can’t revisit a vertex

Edge has to be in the graph

Check if we visited all the vertices

Checking hamiltonian cycles NP problems

HAM-CYCLE-VERIFY(G, p) Why might we care about NP problems?

y e 1;2.:“]:;'[1.] o fatse Running time? — If we can’t verify the solution in polynomial time
i ne lengthlp] 0(V) adjacency matrix then an qlgorlthnj cqnnot exist that determines
ik ?él";:trur"jf'l’lls:l .) the solution in this time (why not?)

6 visited[p] « true O(V+E) adjacency list — All algorithms with polynomial time solutions are
7 fori(—l.to_n.—l in NP

S if m‘mefe[i’:hm false What does that say about the

10 if (pi,pis1) ¢ E hamilonian cycle problem?

n mitedﬁfgﬁﬂﬁm It belongs to NP The NP prol_oler_ns that are currently not soIva.bIe
13 for i li;?v]i‘;]ted[i] in polynomial time could in theory be solved in

polynomial time

15 return false
return true

—
(=2}

So what is NP really?

* P: The set of decision problems that can be
solved in time polynomial in the problem size

* NP: The set of decision problems whose
solutions can be verified in time polynomial in
the problem size

Examples of problems in P:
¢ Shortest path decision
e MST decision
* Network flow decision

Notice that P is a subset of
NP! But whether the two

sets are equal is one of the Example of problems in NP:
most famous open e All of the above!

~ \| problems in computer e 3SAT
science and mathematics! « Vertex Cover

N e Traveling salesperson

Reduction function

Given two problems P, and P, a reduction function,
f(x), is a function that transforms a problem
instance x of type P, to a problem instance of type

P,

such that: a solution to x exists for P, iff a solution

for f(x) exists for P,

X—

P, instance

— f(x)

P, instance

Reduction function

X —

P, instance

— flx)

P, instance

Allow us to solve P, problems if we have a solver for P,

answer

X f(x)

yes

Problem P, o

| yes
o

Problem P,

Reduction function

Where have we seen reductions before?
— Bipartite matching reduced to flow problem

— All pairs shortest path through a particular vertex
reduced to single source shortest path

Why are they useful?

X —

P, instance

o

P, instance

Reduction function

X f(x)

Problem P,

P, solution|

Problem P,

P, solution

Most of the time we’ll worry about yes no
question, however, if we have more complicated
answers we often just have to do a little work to
the solution to the problem of P, to get the

answer

Reduction function: Example

X f(x) I

f Problem P,

P, solution

Problem P, P, solution
P1 = Bipartite matching
P2 = Network flow

Reduction function (f): Given any bipartite matching
problem turn it into a network flow problem

What is fand what is f'?

Reduction function: Example

X f(x) I

f Problem P,

P, solution

Problem P, P, solution

P1 = Bipartite matching
P2 = Network flow

Reduction function (f): Given any bipartite matching
problem turn it into a network flow problem

A reduction function reduces problems instances

NP-Complete

A problem is NP-complete if:
1. it can be verified in polynomial time
(i.e.in NP)
2. any NP-complete problem can be
reduced to the problem in polynomial
time (is NP-hard)

The hamiltonian cycle problem is NP-complete

What are the implications of this?

What does this say about how hard the hamiltonian
cycle problem is compared to other NP-complete
problems?

NP-Complete

A problem is NP-complete if:
1. it can be verified in polynomial time (i.e. in NP)

2. any NP-complete problem can be reduced to the
problem in polynomial time (is NP-hard)

The hamiltonian cycle problem is NP-complete

It’s at least as hard as any of the other NP-complete
problems

NP-complete

If a polynomial-time solution to the hamiltonian cycle problem
is found, we would have a polynomial time solution to any NP-
complete problem

— Take the input of the problem

— Convert it to the hamiltonian cycle problem (by definition, we know
we can do this in polynomial time)

— Solve it

— If yes output yes, if no, output no
NP problem answer

x| f(x) | e

Ham-Problem: P, m o

NP problem

NP-Complete

A problem is NP-complete if:
1. it can be verified in polynomial time (i.e. in NP)

2. any NP-complete problem can be reduced to the
problem in polynomial time (is NP-hard)

If | found a polynomial-time solution to the
hamiltonian cycle problem, what would this mean
for the other NP-complete problems?

NP-complete

Similarly, if we found a polynomial time solution to any
NP-complete problem we’d have a solution to al/l NP-
complete problems

NP problem answer

yes

x flx |y
f Solved NP-Problem: P, m o

NP problem

NP-complete problems

Longest path

Given a graph G with nonnegative edge weights
does a simple path exist from s to t with weight at
least g?

Integer linear programming

Linear programming with the constraint that the
values must be integers

P vs. NP

NP-complete
Polynomial time solutions exist (and no polynomial time
solution currently exists)

Shortest path Longest path
Bipartite matching 3D matching
Integer linear programming

Linear programming

Minimum cut Balanced cut

NP-complete problems

3D matching
Bipartite matching: given two sets of things and pair
constraints, find a matching between the sets
3D matching: given three sets of things and triplet
constraints, find a matching between the sets

Chet Alice

Bob Beatrice

Carol

Armadillo Bobcat Canary

Figure from Dasgupta et. al 2008

(&

| =%

I can’t find an efficient algorithm, | guess I’'m just too dumb.

From Garey and Johnson, “Computers and Intractability: A Guide to the Theory of NP-completeness”

MOLLL L L

’ -
(: *
? 3
C— w
I can’t find an efficient algorithm, because no such I can’t find an efficient algorithm, but neither can all these
algorithm is possible! famous people!
From Garey and Johnson, “Computers and Intractability: A Guide to the Theory of NP-completeness” From Garey and Johnson, “Computers and Intractability: A Guide to the Theory of NP-completeness”

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

* Birch and Swinnerton-Dyer
Conjecture

In order to celebrate ics in the new millennium, The Clay * Hodge Conjecture
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven 1

Prize Problems. The Scientific Advisory Board of CMI selected these problems,
focusing on important classic questions that have resisted solution over the S
years. The Board of Directors gf€MIdesignated a $7 million prize fund for the » Riemann Hvoathesis
solution to these problems, Ww located to each. During the

N » Yang-Mills Theory
Millennium Meeting held on May 24266073t the Collége de France, Timothy

Millennium Problems

S1 million

Vinay Deolalikar

Proving NP-completeness

A problem is NP-complete if:
1. it can be verified in polynomial time (i.e. in NP)

2. any NP-complete problem can be reduced to the
problem in polynomial time (is NP-hard)

ldeas?

Proving NP-completeness

Show that a solution exists to the NP-Complete problem IFF a
solution exists to the NEW problem generate by f
— Assume we have an NP-Complete problem instance that
has a solution, show that the NEW problem instance
generated by f has a solution

— Assume we have a problem instance of NEW generated by
fthat has a solution, show that we can derive a solution to
the NP-Complete problem instance

Other ways of proving the IFF, but this is often the easiest

Proving NP-completeness

Given a problem NEW to show it is NP-Complete

1. Show that NEW is in NP
a. Provide a verifier
b. Show that the verifier runs in polynomial time
2. Show that all NP-complete problems are reducible to
NEW in polynomial time
a. Describe a reduction function f from a known NP-
Complete problem to NEW
b. Show that f runs in polynomial time

c. Show that a solution exists to the NP-Complete problem
IFF a solution exists to the NEW problem generated by f

~Ne — Ne :\v
*No p——= &
K ~ *No Notice that just because...
_m.(" P“"‘:":f AWl possible
instonce M shnagof
o e FOO <, BAR

does not mean that...

BAR <, FOO

ThiS Mapping iS net
necetsSon [=40=) nec
onto ! 2% Vmay be Masy - |

Proving NP-completeness Proving NP-completeness

Show that all NP-complete problems are Show that all NP-complete problems are
reducible to NEW in polynomial time reducible to NEW in polynomial time

Why is it sufficient to show that one NP-complete All others can be reduced to NEW by first reducing to
problem reduces to the NEW problem? the one problem, then reducing to NEW. Two

polynomial time reductions is still polynomial time!

Proving NP-completeness

Show that all NP-complete problems are reducible
to NEW in polynomial time

@ “Every decision problem in NP can be (quickly)

Leonid Levin

Stephen Cook

converted into a corresponding 3SAT decision

. . problem" (i.e., 3SAT is “NP-complete”)
Show that any NP-complete problem is reducible to

NEW in ponnomiaI time Polynomial time conversion >
<

BE CAREFUL! —bp

. . Ve Y Ve
Show that NEW is reduci =complete Why 3SAT? Why not
. . ~\| 2SAT or something
m In polynomial time @ completely different?

=

If 3SAT could be)

solved in poly time
then...

NP-complete: 3-SAT

A boolean formula is in n-conjunctive normal form (n-CNF) if:
— itis expressed as an AND of clauses
— where each clause is an OR of no more than n variables

(av-av-b)n(cvbvd)an(mav-cv-d)

3-SAT: Given a 3-CNF boolean formula, is it satisfiable?

3-SAT is an NP-complete problem

CLIQUE

A cligue in an undirected graph G = (V, E) is a subset V’
€ V of vertices that are fully connected, i.e. every
vertex in V' is connected to every other vertex in V’

CLIQUE problem: Does G contain a clique of size k?

Is there a clique of size 4 in this graph?

NP-Complete problems

Why do we care about showing that a problem is NP-
Complete?

— We know that the problem is hard (and we probably won’t
find a polynomial time exact solver)

— We may need to compromise:
* reformulate the problem
* settle for an approximate solution

— Down the road, if a solution is found for an NP-complete
problem, then we’d have one too...

CLIQUE

A cligue in an undirected graph G = (V, E) is a subset V’
€ V of vertices that are fully connected, i.e. every
vertex in V' is connected to every other vertex in V’

CLIQUE problem: Does G contain a clique of size k?

CLIQUE is an NP-Complete problem

The Clique Problem is NP-Complete

Ci = X1V Xy V—X3

C3=Xx, VXV X3

Cy=—-X, VX,V X3

NP-complete: SAT

Given a boolean formula of n boolean variables joined by
m connectives (AND, OR or NOT) is there a setting of the
variables such that the boolean formula evaluate to true?

(anb)v(=an-b)

((=(bv=c)na)v(arbrc))Ncr=b

Is SAT an NP-complete problem?

NP-complete: SAT

Given a boolean formula of n boolean variables joined by m
connectives (AND, OR or NOT) is there a setting of the variables
such that the boolean formula evaluate to true?

(=(bv=c)na)v(arbrc))NcN=b

1. Show that SAT is in NP
a. Provide a verifier
b. Show that the verifier runs in polynomial time
2. Show that all NP-complete problems are reducible to SAT in polynomial
time
a Describe a reduction function f from a known NP-Complete problem to SAT
b. Show that f runs in polynomial time

c. Show that a solution exists to the NP-Complete problem IFF a solution exists
to the SAT problem generate by f

NP-Complete: SAT

1. Show that SAT isin NP
a. Provide a verifier
b. Show that the verifier runs in polynomial time

Verifier: A solution consists of an assignment of the variables
* If clause is a single variable:
* return the value of the variable
* otherwise
» for each clause:
¢ call the verifier recursively
* compute a running solution

polynomial run-time?

NP-Complete: SAT

2 Show that all NP-complete problems are reducible to SAT in polynomial time
a Describe a reduction function f from a known NP-Complete problem to SAT
b Show that f runs in polynomial time

c Show that a solution exists to the NP-Complete problem IFF a solution exists to the
SAT problem generate by f

Reduce 3-SAT to SAT:
- Given an instance of 3-SAT, turn it into an instance of SAT

Reduction function:
e DONE ©

- Runsin constant time! (or linear if you have to copy the problem)

NP-Complete: SAT

Verifier: A solution consists of an assignment of the variables
* If clause is a single variable:
* return the value of the variable
* otherwise
» for each clause:
* call the verifier recursively linear time
* compute a running solution

- at most a linear number of recursive calls (each call
makes the problem smaller and no overlap)
- overall polynomial time

NP-Complete: SAT

Show that a solution exists to the NP-Complete problem IFF a solution exists to the NEW
problem generate by f
— Assume we have an NP-Complete problem instance that has a solution, show that
the NEW problem instance generated by f has a solution
— Assume we have a problem instance of NEW generated by f that has a solution,
show that we can derive a solution to the NP-Complete problem instance

- Assume we have a 3-SAT problem with a solution:
- Because 3-SAT problems are a subset of SAT problems, then the SAT
problem will also have a solution

- Assume we have a problem instance generated by our reduction with a solution:

- Our reduction function simply does a copy, so it is already a

3-SAT problem
- Therefore the variable assignment found by our SAT-solver will also be a

solution to the original 3-SAT problem

| |

