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Coping With NP-Hardness

*Brute-force algorithms.
— Develop clever enumeration strategies.
— Guaranteed to find optimal solution.
— No guarantees on running time.

*Heuristics.
— Develop intuitive algorithms.
— Guaranteed to run in polynomial time.
— No guarantees on quality of solution.

*TODAY: Approximation algorithms.
— Guaranteed to run in polynomial time.
— Guaranteed to find "high quality" solution, say within 1% of optimum.

— Obstacle: need to prove a solution's value is close to optimum,
without even knowing what the optimum value is!

Admin

* Two more problem sets
— 13b due Tuesday after Thanksgiving
— 14b due following Tuesday

* Ahead
— Parallel Algorithms
— Wrap-up
— Review

* Midterm 2



Vertex Cover

Vertex cover: a subset of vertices which “covers” every edge.
An edge is covered if one of its endpoint is chosen.

The Minimum Vertex Cover Problem:
Find a vertex cover with minimum number of vertices.

Approximation Algorithms

Key: provably close to optimal.

Let OPT be the value of an optimal solution,
and let SOL be the value of the solution that our algorithm returned.

Additive approximation algorithms: SOL <= OPT + ¢ for some constant c.

Very few examples known: edge coloring, minimum maximum-degree spanning tree.

Constant factor approximation algorithms: SOL <= cOPT for some constant c.
Many more examples known.

Alternatives

< Special graph classes

e.g. vertex cover in bipartite graphs, perfect graphs.
+¢ Fixed parameter algorithms

find a vertex cover of size k efficiently for small k.
¢ Average case analysis

find an algorithm which works well on average.

<+ Approximation algorithms

find an algorithm which return solutions that are

guaranteed to be close to an optimal solution.

Approximation Algorithms

*Suppose we want to find a *minimum™ cost solution
to some problem (e.g., smallest vertex cover, minimum
cost tour of a graph, minimum cost Steiner tree, etc.)

*We define the relative cost of the solution S to be

:\:;ximizaﬁon 1/p = COSt(S)/COSt(SOpt) = p

where S°Ptis the best solution.

*An algorithm has ratio p if it always returns a solution
with relative cost at most p.



Approximation Algorithms and Schemes

*p-approximation algorithm.
— An algorithm A for problem X that runs in polynomial time.

— For every problem instance, A outputs a feasible solution within
ratio p of true optimum for that instance.

*Polynomial-time approximation scheme (PTAS).

— A family of approximation algorithms {A, : & >0} for a problem
X.

— A isa (1 +¢) - approximation algorithm for X.
— A, runs in time polynomial in the input size for a fixed e.

*Fully polynomial-time approximation scheme (FPTAS).
— PTAS where A, is runs in time polynomial in input size and 1 /

Vertex Cover: Greedy Algorithm 1

Idea: Keep finding a vertex which covers the maximum number of edges.

Greedy Algorithm 1:

1. Find a vertex v with maximum degree.

2. Add v to the solution and remove v and all its incident edges from the graph.

3. Repeat until all the edges are covered.

How good is this algorithm?

Vertex Cover Problem: Ideas?

Vertex Cover: Greedy Algorithm 1

OPT =6, all red vertices.

SOL = 11, if we are unlucky in breaking ties.
First we might choose all the blue vertices.
Then we might choose all the pink vertices.
And then we might choose all the orange vertices.



Vertex Cover: Greedy Algorithm 1 Approximate Vertex Cover

APPROX-VERTEX-COVER(G)

‘ k! vertices of degree k ‘ Nota c'onstént facto.r 1 C=0
: approximation algorithm! 2 E =G.E
3 while £ # 0
4 let (u, v) be an arbitrary edge of E’
- 5 C =CU{u,v}
Generalizing 6 remove from E’ every edge incident on either u or v
the example! 7 return C

b (¢) d
k!/k vertices of degree k ‘ ‘ k!/(k-1) vertices of degree k-1 ‘ ‘ k! vertices of degree 1
OPT = k|, all top vertices.
SOL=k! (1/k + 1/(k-1) + 1/(k-2) + ... + 1) = k! log(k), all bottom vertices. e 0 9

Worksheet: Vertex Cover: Greedy Algorithm 2

* Find an example graph for which ApprOX-VC In bipartite graphs, maximum matching = minimum vertex cover.
does not return an optimal Vertex Cover

How | thi be?
APPROX-VERTEX-COVER(G) n S E s LRl e

I C=0 @ 0 ©
2 EF=GE

3 while £/ # 0

4 let (4, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v

7 return C



Vertex Cover: Greedy Algorithm 2 Vertex Cover: Greedy Algorithm 2
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Fix a maximum matching. Call the vertices involved black. What about an optimal solution?

Since the matching is maximum, every edge must have a black endpoint. Each edge in the matching has to be covered by a different vertex!

So, by choosing all the black vertices, we have a vertex cover.
OPT >= size of a maximum matching

SOL <= 2 * size of a maximum matching

So, OPT <=2 SOL, and we have a 2-approximation algorithm!

Vertex Cover: Greedy Algorithm 2

Approximate min-max theorem:

Maximum matching <= minimum vertex cover <= 2*maximum matching

Hardness result: It is NP-complete even to approximate within a factor of 1.36!!




Vertex Cover: LP Alg 3

Traveling Salesperson Problem

*TSP: Given a graph G =(V, E), nonnegative
edge weights c(e), and an integer C, is there a
Hamiltonian cycle whose total cost is at most C?

. w

2 Is there a tour of length at most 1570?

Traveling Salesman Problem

*Given a complete graph with edge weights,
determine the shortest tour that includes all of the
vertices (visit each vertex exactly once, and get
back to the starting point)

Find the minimum cost tour

Traveling Salesperson Problem

*TSP: Given a graph G = (V, E), nonnegative
edge weights c(e), and an integer C, is there a
Hamiltonian cycle whose total cost is at most C?

Is there a tour of length at most 1570? Yes, red tour = 1565.



Hamiltonian Cycle Reduces to TSP

*HAM-CYCLE: given an undirected graph G = (V, E), does there exists a
simple cycle C that contains every vertex in V.

*TSP: Given a complete (undirected) graph G, integer edge weights
c(e) = 0, and an integer C, is there a Hamiltonian cycle whose total cost
is at most C?

*Claim. HAM-CYCLE is NP-complete.

*Proof. (HAM-CYCLE transforms to TSP)
— Given G = (V, E), we want to decide if it is Hamiltonian.
— Create instance of TSP with G' = complete graph.
— Setc(e)=1ifeEE, andc(e)=2ife&E, and choose C= |V].
— T Hamiltonian cyclein G < T has cost exactly |V] in G
T not HamiltonianinG < I hascostatleast |V|+1inG'".
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TSP Heuristic

*APPROX-TSP(G, c)
— Find @ minimum spanning tree T for (G, c).
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(assume Euclidean distances)
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TSP

*TSP-OPT: Given a complete (undirected) graph G = (V, E) with integer edge
weights c(e) = 0, find a Hamiltonian cycle of minimum cost?

*Claim. If P = NP, there is no p-approximation for TSP foranyp=1.

*Proof (by contradiction).
— Suppose A is p-approximation algorithm for TSP.
— We show how to solve instance G of HAM-CYCLE.
— Create instance of TSP with G' = complete graph.
— LetC=|V|,cle)=1ifeEE, andc(e)=p|V|+1life &E.
— TI"Hamiltonian cyclein G < T has cost exactly |V| in G'
T not HamiltonianinG < T has cost more thanp |V]| in G’

— Gap = If G has Hamiltonian cycle, then A must return it.
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TSP Heuristic
*APPROX-TSP(G, c)

— Find a minimum spanning tree T for (G, c).
— W < ordered list of vertices in preorder walk of T.
— H < cycle that visits the vertices in the order L.

)§ 5
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Preorder Traversal Full Walk W Hamiltonian Cycle H
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TSP Heuristic
«APPROX-TSP(G, c)

— Find a minimum spanning tree T for (G, c).
— W < ordered list of vertices in preorder walk of T.
— H < cycle that visits the vertices in the order L.

| o
L<STERENR <8

An Optimal Tour: 14.715 Hamiltonian Cycle H: 19.074

30 (assuming Euclidean distances)

TSP With Triangle Inequality

*Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
*Proof. Let H* denote an optimal tour. Need to show c(H) = 2c(H*).

— ¢(T) = c(H*) since we obtain spanning tree by deleting any edge from
optimal tour.

o
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MSTT An Optimal Tour, H*
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TSP With Triangle Inequality

*A-TSP: TSP where costs satisfy A-inequality
— Forallu, v, and w: c(u,w) = c(u,v) + c(v,w).

*Claim. A-TSP is NP-complete.
*Proof. Transformation from HAM-CYCLE satisfies A-
inequality.

*Ex. Euclidean points in the plane.

(-10, 5) (5,9)
(0,0)
.. — PTAS for Euclidean TSP (Arora 1996, Mitchell 1996)

TSP With Triangle Inequality

*Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
*Proof. Let H* denote an optimal tour. Need to show c(H) = 2¢c(H*).
— ¢(T) = c(H*) since we obtain spanning tree by deleting any edge from
optimal tour.
— ¢(W) = 2¢(T) since every edge visited exactly twice.
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TSP With Triangle Inequality

*Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
*Proof. Let H* denote an optimal tour. Need to show c(H) = 2¢c(H*).
— ¢(T) = c(H*) since we obtain spanning tree by deleting any edge from

optimal tour.
— ¢(W) = 2¢(T) since every edge visited exactly twice.
— ¢(H) = c(W) because of A-inequality.
)& 5
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Walk W Hamiltonian Cycle H
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Euclidean TSP TSP: Christofides Algorithm
* WORKSHEET: Suppose that the vertices for an *Theorem. There exists a 1.5-approximation
instance of the traveling-salesman problem algorithm for A-TSP.
are points in the plane and that the cost c(u,v) *CHRISTOFIDES(G, c)
is the Euclidean distance between points u — Find a minimum spanning tree T for (G, c).

and v.

e Can an optimal tour ever cross itself?
Why or why not?

- MSTT Matching M



*Theorem. There exists a 1.5-approximation *Theorem. There exists a 1.5-approximation
algorithm for A-TSP. algorithm for A-TSP.

«CHRISTOFIDES(G, c)
*CHRISTOFIDES(G, c)

— Find a minimum spanning tree T for (G, c).

— Find a minimum spanning tree T for (G, c). — M < min cost perfect matching of odd degree
—M < min cost perfect matching of odd degree nodesinT.
nodes in T. — G' < union of spanning tree and matching edges.

o—
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*Theorem. There exists a 1.5-approximation algorithm for A-

*Theorem. There exists a 1.5-approximation algorithm TSP.
for A-TSP.
*CHRISTOFIDES(G, c) *CHRISTOFIDES(G, c)
— Find a minimum spanning tree T for (G, c). — Find @ minimum spanning tree T for (G, c).
— M < min cost perfect matching of odd degree nodes in — M < min cost perfect matching of odd degree nodes in T.
T. — G' < union of spanning tree and matching edges.

E < Eulerian tourin G'.
H < short-cut version of Eulerian tour in E.

— G' < union of spanning tree and matching edges.
— E < EuleriantourinG'".

N
o

20 E = Eulerian tour in G' Matching M " E = Eulerian tour in G' Hamiltonian Cycle H




*Theorem. There exists a 1.5-approximation algorithm
for A-TSP.

*Proof. Let H* denote an optimal tour. Need to show
c(H) = 1.5 c(H*).
— ¢(T) = c¢(H*) as before.
—¢(M) = % c(T*) = % c(H*).
* second inequality follows from A-inequality
* even number of odd degree nodes
* Hamiltonian cycle on even # nodes comprised of two matchings

o
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., Optimal Tour I'* on Odd Nodes Matching M

Using Approximation Algorithms

* Approximation algorithms can give reasonable solutions to
NP-hard problems, but sometimes heuristics (without any
performance guarantees) can be even better

* Approximation algorithms with performance guarantees can
be used to get bounds (both lower and upper) on the best
achievable score

44

*Theorem. There exists a 1.5-approximation algorithm for A-
TSP.

*Proof. Let H* denote an optimal tour. Need to show c(H) =
1.5 c(H*).
— ¢(T) = c¢(H*) as before.
—c(M) = %c(lT*) < Yc(H*).
— Union of MST and and matching edges is Eulerian.
* every node has even degree
— Can shortcut to produce H and c(H) = ¢(M) + c(T).

o—

2 MST + Matching Hamiltonian Cycle H

Approaches for Local Search

1. Hill-climbing heuristics (which can get stuck in local optima)
Randomized algorithms for getting out of local optima

3. Approximation algorithms for MP (based upon Steiner Tree
approximation algorithms).

Local optimum
Cost /

Global optimum

Search Space
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