Parallel Algorithms

Slides adapted from R. Libeskind-Hadas, |. Potapov

What is Parallel Computing?
(basic idea)

* Consider the problem of stacking
(reshelving) a set of library books.

— A single worker trying to stack all the
books in their proper places cannot
accomplish the task faster than a
certain rate.

— We can speed up this process,
however, by employing more than
one worker.

Parallel Algorithms:

I

* This week we will

— introduce techniques for the design of
efficient parallel algorithms and

— discuss for implementing parallel
algorithms.

Solution 1

* Assume that books are organized into E/
shelves and that the shelves are grouped 5%
into bays *

* One simple way to assign the task to the workers is:

— To divide the books equally among them.
— Each worker stacks the books one a time

* This division of work may not be most efficient way

to accomplish the task since
— The workers must walk all over the library to stack books.

Problems are parallelizable to

Solution 2 different degrees

* An alternative way to divide the work is to assign a
fixed and disjoint set of bays to each worker. * For some problems, assigning partitions to other

* As before, each worker is assigned an equal number processors might be more time-consuming than

of books arbitrarily. performing the processing locally.
— If the worker finds a book that belongs to a bay assigned to .
him or her, e Other problems may be completely serial.
* he or she places that book in its assignment spot
— Otherwise,

* He or she passes it on to the worker responsible
for the bay it belongs to.

* The second approach requires less
effort from individual workers

— For example, consider the task of dlgglng a post hole.
* Although one person can dig a LE G
hole in a certain amount of time,

* Employing more people does not
reduce this time

Parallel Processing _ o .
(Several processing elements working DESlgn of efficient algorlth ms

to solve a single problem)

A parallel computer is of little use unless
Primary consideration: elapsed time efficient parallel algorithms are available.
— NOT: throughput, sharing resources, etc.

— The issue in designing parallel algorithms are very

* Downside: complexity different from those in designing their sequential
— system, algorithm design counterparts.
¢ Elapsed Time = computation time + — A significant amount of work is being done to
communication time + develop efficient parallel algorithms for a variety

synchronization time of parallel architectures.

Processor Trends

* Moore’ s Law
— performance doubles every 18 months

* Parallelization within processors
— pipelining
— multiple pipelines

Bonus time!

* Where is the average Algs student from?
* Your goal: find the class’ average original US zip code.

* Rules of the game:
— Number of students is known

— Every person in the room can perform a single arithmetic
operation per time step (+,-,%,/)
— Use of white board is free (free reads and writes)

* Bonus points:

— You will receive bonus participation points equivalent to the
speedup over the naive approach.

Why Parallel Computing

* Practical:
— Moore’ s Law cannot hold forever
— Problems must be solved fast
— Cost-effectiveness
— Scalability

* Theoretical:
— challenging problems

Fundamental Issues

parallelism?

Is the problem amenable to parallelization?
How to decompose the problem to exploit

What machine architecture should be used?
What parallel resources are available?
What kind of speedup is desired?

Flynn" s Taxonomy

MISD [Instruction Pool

MIMD [Instruction Pool l‘

RS mEp
\ M Iz 5-[ul-| L[]
[5 : L
. 2Z|F —[Pul
E 3 - L
s ==
= sisD [InstructionPool | f SIMD [InstructionPool]
@n
J
— NR—
E \/ *ﬁ" :
> —|PU
2 [py]
[Se
1 Many

- Data Streams

Flynn" s Taxonomy

v 2 MISD MIMD
g S
5 =
2
=
£ _ SISD SIMD
S
=
E
1 Many

- Data Streams

Parallel Architectures

* Multiple processing elements

* Memory:
— shared
— distributed
— hybrid

* Control:
— centralized
— distributed

Parallel vs Distributed Computing Metrics

* Parallel: A measure of relative performance between a multiprocessor
— several processing elements concurrently system and a single processor system is the speed-up S(p),
. . defined as follows:
solving a single same problem
Execution time using a single processor system
e Distri buted : S(p) = Execution time using a multiprocessor with p processors
— processing elements do not share memory or T g
1 .
system clock S(p)= T Efficiency = TDL
p
Work=p x T,

Efficient and optimal parallel

_ Metrics
algorlthms * Parallel algorithm is cost-optimal:
Work = sequential time
* A parallel algorithm is efficient iff W,=T,
— itis fast (e.g. polynomial time) and E,= 100%
— the product of the parallel time and number of processors is
close to the time of at the best know sequential algorithm * Critical when down-scaling:
T sequential , T parallel . |\ processors parallel implementation may
become slower than sequential
T,=n3
* A parallel algorithms is optimal iff this product is of the T,=n*>when p =n?

same order as the best known sequential time W, = n*>

Amdahl’ s Law What kind of speed-up may be achieved?
* Part fis computed by a single processor
* Part (1-f) is computed by p processors, p>1

Basic observation: Increasing p we cannot speed-up part f.

* f=fraction of the problem that’ s inherently
sequential

(1 -f) = fraction that’ s parallel

* Parallel time Tp:

T,=f+1-N/p

* Speedup with p processors: 1
R
p
’
Amdahl’ s Law Amdahl’s Law
* Upper bound on speedup (p =)] _
1 1 1600 I%jl;l};omon 1]
A7 7
p \I g 10.00 /
* Example:
f: 2% 200 ///
$=1/0.02=50 e
B 2 3 8 o EERE

The main open question

* The basic parallel complexity class is NC.

* NCis aclass of problems computable in poly-logarithmic
time (log ¢ n, for a constant c) using a polynomial number of
processors.

* Pisa class of problems computable sequentially in a
polynomial time

The main open question in parallel computations is

NC=P?

Parallel or Distributed? PRAM model

 ATM Machines

o | nternet Shared Memory Cells

* Map Reduce D D
* Distributed Database
* Two servers sharing the workload of routing mail

* GPU-based algorithms
* Supercomputer
* Cellular Network

PRAM
PRAM - Parallel Random Access Machine 7:

Shared-memory multiprocessor
unlimited number of processors, each
— has unlimited local memory
— knowsits ID P
— able to access the shared
memory in constant time

— unlimited shared memory \

A very reasonable question: Why do we need a PRAM model?
* to make it easy to reason about algorithms

* to achieve complexity bounds

* to analyze the maximum parallelism

Summary of assumptions for PRAM

PRAM

* Inputs/Outputs are placed in the shared memory (designated
address)

* Memory cell stores an arbitrarily large integer
* Each instruction takes unit time
* Instructions are synchronized across the processors

PRAM Instruction Set
¢ accumulator architecture
— memory cell R, accumulates results

* multiply/divide instructions take only constant operands
— prevents generating exponentially large numbers in polynomial time

PRAM

o
/ 3
\

N

Common Memory

P,

m

n RAM processors connected to a common memory of m cells

ASSUMPTION: at each time unit each P, can read a memory cell, make an internal
computation and write another memory cell.

CONSEQUENCE: any pair of processor P; P, can communicate in constant time!

P, writes the message in cell x at time t
P, reads the message in cell x at time t+1

PRAM Complexity Measures

* for each individual processor
— time: number of instructions executed
— space: number of memory cells accessed

* PRAM machine
— time: time taken by the longest running processor
— hardware: maximum number of active processors

Two Technical Issues for PRAM Processor Activation

* P, places the number of processors (p) in
tf(l)epdesignated shared—m%mory cell IE

— each active P, where i < p, starts executing
— 0O(1) time to activate
— all processors halt when P, halts

* How processors are activated

o i * Active processors explicitly activate
How shared memory is accessed additional processors via FORK instructions

— tree-like activation
— O(log p) time to activate

AN

1/0/01010/010
“c‘/\/‘

i processor will activate a processor 2i and a processor 2j+1

PRAM Shared-Memory Access

« Too many interconnections gives problems with synchronization Concurrent (C) means, many processors can do the operation
simultaneously in the same memory

* However it is the best conceptual model for designing efficient .
Exclusive (E) not concurent

parallel algorithms
— due to simplicity and possibility of simulating efficiently PRAM algorithms

on more realistic parallel architectures » EREW (Exclusive Read Exclusive Write)
* CREW (Concurrent Read Exclusive Write)
Basic parallel statement — Many processors can read simultaneously the same location, but only
For each x PRAM will assign a one can attempt to write to a given location
]] mmmm) processor which will execute . . .
for all x in X do in parallel instructiontel ERCW (Exclusive Read Concurrent Write)
instruction (x) * CRCW (Concurrent Read Concurrent Write)

— Many processors can write/read at/from the same memory location

Concurrent Write (CW)

* What value gets written finally?

* Priority CW — processors have priority based on which write

value is decided

* Common CW — multiple processors can simultaneously
write only if values are the same

* Arbitrary/Random CW — any one of the values are
randomly chosen

Priority >= Arbitrary >= Common >= CREW >= EREW

Most Least
powerful powerful
Least Most
realistic realistic

Example CREW-PRAM

* Assume initially table A contains [0,0,0,0,0,1] and we
have the parallel program

for each 1 <7 <5 do in parallel
Alil;= Al + Afi + 1]

Worksheet: What is the output of
this program fort=1,2,...,6?

Example CRCW-PRAM

* Initially
— table A contains values 0 and 1
— output contains value 0

for each 1 <17 <5 do in parallel
if A[7] =1 then output=1;

* The program computes the “Boolean OR” of
A[1], A[2], A[3], A[4], A[5]

Pascal triangle

©) @) &) - ()

forn = 0,1,2,3,4,5,6.

PRAM CREW

for each 1 < i <5 do in parallel
Ali];= A[d] + A[i + 1]

s Membership problem
Parallel Addition PP
* p processors PRAM with n numbers (p < n)

I 74— * Does x exist within the n numbers?
SO A s S

P+) stepi * PO contains x and finally PO has to know
S Algorithm
+p2> Step 2 stepl: Inform everyone what x is

* log(n) steps=time needed
* n/2 processors needed
* Speed-up = n/log(n)

step2: Every processor checks [n/p] numbers and sets a flag
step3: Check if any of the flags are set to 1

.+ Efficiency = 1/log(n) w—mm
* Applicable for other Step 2:
operations too Step 3:

+, * <, >, == etc.

7 7 7 ’

THE PRAM IS A THEORETICAL

Membership problem (UNFEASIBLE) MODEL

* p processors PRAM with n numbers (p <n)

* Does x exist within the n numbers? e The interconnection network between
processors and memory would require a very

* PO contains x and finally PO has to know
large amount of area .

Algorithm

stepl: Inform everyone what x is . . .
e The message-routing on the interconnection

network would require time proportional to
network size (i.e. the assumption of a

step2: Every processor checks [n/p] numbers and sets a flag
step3: Check if any of the flags are set to 1

- log(p) . 1 . 1 constant access time to the memory is not
= n/p = n/p = n/p realistic).
= log(p) = log(p) =1

EREW CREW CRCW
(common)

Why is PRAM useful?

Algorithm’s designers can forget the communication problems and focus
their attention on the parallel computation only.

There exist algorithms simulating any PRAM algorithm on bounded degree
networks (e.g., each step can be simulated with a slow-down of log2n/log
logn on tree-mesh structure).

Any problem that can be solved for a p processor PRAM in t steps can be
solved ina p’ processor PRAM int’ =O(tp/p’) steps

Instead of design ad hoc algorithms for bounded degree networks, design
more general algorithms for the PRAM model and simulate them on a
feasible network.

Min of n numbers

* Input: Given an array A with n numbers

* QOutput: the minimal number in an array A Optimal

Work = O(n)

Sequential algorithm

000 O
Q— SN

At least n comparisons
should be performed!!!

Sequential VvS. Parallel

Work = (num. of processors) - (time)

Worksheet:

* Write a parallel algorithm for finding the min
of n numbers in constant time.

* How many processors do you need?

Mission: Impossible ...

computing in a constant time Parallel solution 1

Min of n numbers

» Comparisons between numbers can be done independently

« Archimedes: Give me a lever long » The second part is to find the result using concurrent write mode

enough and a place to stand and | * For n numbers ----> we have ~ n? pairs

will move the earth

el (D
I j n
M[1..n] | 0000000000000 1 Pooooooooooooooc 0 P000000000

« NOWDAYS.... (a;,a;

Give me a parallel machine with
enough processors and I will find]
the smallest number in any giant
set in a constant time!

Ifa; > a;then a; cannot be the minimal number

The following program computes MIN of n numbers stored in
the array C[1..n] in O(1) time with n? processors.

From n? processors to n!1/2

Algorithm A1l

for each I<i <n do in parallel
M[i]:=0

for each l<i,j <n do in parallel
if i=f C[i] = C[j] then M[j]:=1

for each I<i <n do in parallel
if M[i]=0 then output:=i

Step 1: Partition into disjoint blocks of size \/;
Step 2: Apply Al to each block 7n+/7
Step 3: Apply Al to the results from the step 2 \/;

From n'*12 processors to n!*1/4

Step 1: Partition into disjoint blocks of size \/;
Step 2: Apply A2 to each block
Step 3: Apply A2 to the results from the step 2

Complexity

* We can compute minimum of n numbers using
CRCW PRAM model in O(log log n) with n
processors by applying a strategy of
partitioning the input

Work =n - log log n

n2 > n1+1/2 > n1+1/4 > n1+1/8 > n1+1/16 > > nl+1/k _ nl

* Assume that we have an algorithm A, working in O(1)
time with !tk Processors

Algorithm A,
l.Let a=1/2
2. Partition the input array C of size n into disjoint
blocks of size n* each
3. Apply in parallel algorithm A, to each of these blocks
4. Apply algorithm A, to the array C’ consisting of n/ n®
minima in the blocks.

Mission: Impossible (Part 2)

Computing a position of the first one in the sequence of 0’ s and

1’ s in a constant time.
PAOOOBHOOOOONAOORAHOAAHHHAOOHAHOAAHHAAOOAAAOHAHOAAOOAAA0

00
10OOOOBOOEHHEAERHHEROHHEAOHHEARHHRRHHHRHEROHHEAOHHEABHABA
00
10OROBHHOEHHEARHHEAEHHEAOHHEREHHEHHHHBRHEBHEBHEABHBAEBORH
00

100BAOAORONEAEAEAEAOAOHONEARAEANNEMONEAEAAEAOROBEAEAOAOMA

00¢0PHOY}) OPOYGOYEO0P00

0000000600000000000H0000

D0 OOOOUOOOOOOOOOO000000000000000000000000000000
HOANAO 0

200000600000000010000049

0070! L00

10OREOBEOOHEEAOHEEAOHH 0060000060000060000000000:

00! ¢9000

0HOOBOBOOBOB000006003SNIIAEHIBHOVEOTHOEOOGMLIitdddibidddo
bl HOOHOOOHNOO0OH/H POPRONN00000000000000000000000

)
00 Ul‘lﬁla OqoRaguOPROPROPe000

H00000000006000000000D0OBIRBHRNAAOHAHAAHAAOHABOH.

00

00000000000000000000100000000000010000000000000000000000
HOOOOO00OOOO00OO00000000000000000000000060000060006600

0000010001000100000010

10000000000 AOOADDododol chbdododopobobdodododobobdododododabcbiod

0
0001 TT1HTT11111111111110000000

Problem 2.

Computing a position of the first one in the sequence of 0’ s Reducing number Of pI'O Cessors
and 1’ s.

Algorithm A]

@ p(;rallel steps and n? processors) AlgOI‘lthm B -

i =1 and T hem €1 it reports if there is any one in the table.

if Cfi] =1 and C[j]=1 then C[j]:=0
for each 1<i < n do in parallel
if C[i] =1 then FIRST-ONE-POSITION: =i .
There-is-one: =0
for each 1<i <n do in parallel

FIRST—ONE-POSITION(C)=4 lfC[l] =1 then There-is-one:=1

for the input array After the first
C=[0,0,0,1,0,0,0,1,1,1,0,0,0,1] parallel step C will
contain a single
element 1
Now we can merge two algorithms A and B Comp]exity

* We apply an algorithm A twice and each time
to the array of length +/n
which need only (\/Z)>=n processors

* The time is O(1) and number of processors is
n.

| |

How to merge in log(log(n)) time
with n processors

Let A and B are to sorted sequences of size n
Divide A,B into ./, blocks of length

» Compare first elements of each block in A with first elements of

each block in B

» Then compare first elements of each block in A with each

element in a “suitable” block of B

» At this point we know where all first elements of each block in A
fits into B.

Optimal sorting in log(n) steps
Cole’ s algorithm

B Suppose we know how to merge two increasing sequences in
log(log(n)) steps

B Then we can climb up the merging tree and spend only
log(log(n)) per level, thus getting a parallel sorting technique in

log(n) log(log(n))
_merge.
IIl\']'l‘“‘\‘ lrlh‘ll‘r_‘.\‘
merge merge 111\-1’;7_w ‘nm’:v

m Merges at the same level are performing in parallel

=
% | |

» Thus the problem has been reduced to a
set of disjoint problems each of which
involves merging of block of Vnelements of
A with some consecutive piece of B.

» Recursively we solve these problems

» The parallel time t(n) satisfies to
t(n)=2+ t(/n) implying t(n)=0(log(log(n)))

| |

