
PRAM Algorithms 

“Computer science is no more about 
computers than astronomy is about 

telescopes.” 
Edsger Dijkstra 

(11/05/1930-6/9/2002) 

Slides adapted from R. Libeskind-Hadas, I. Potapov 

One more time about  
PRAM model 

•  N synchronized processors 
•  Shared memory  

–  EREW, ERCW,  
–  CREW, CRCW 

•  Constant time  
–  access to the memory 
–  standard multiplication/addition 
–  Communication  

(implemented via access to shared memory) 

 
 
A measure of relative performance between a multiprocessor 
system and a single processor system is the speed-up S( p), 
defined as follows: 

S( p) = 
       Execution time using a single processor system 
Execution time using a multiprocessor with p processors 

S( p) = 
T1 
Tp Efficiency = 

Sp 
p 

Work= p × Tp 

Metrics( Parallelism(at(all(levels ((

•  Parallel(circuits ((
•  Parallel(computers(
•  Distributed(systems(



Min of n numbers 

•  Input: Given an array A with n numbers 
•  Output: the minimal number in an array A 
 

Sequential algorithm 

…

At least n comparisons 
should be performed!!! 

Work = (num. of processors) ⋅ (time) 

Work = 1⋅ n ? 
Sequential          vs.            Parallel 

Optimal  
Work = O(n) 

Mission: Impossible … 
computing in a constant time 

•  Archimedes: Give me a lever long 
enough and a place to stand and I 
will move the earth 

•  NOWDAYS…. 
 Give me a parallel machine with 
enough processors and I will find 
the smallest number in any giant 
set in a constant time! 

Parallel solution 1 
Min of n numbers 

•  Comparisons between numbers can be done independently 
•  The second part is to find the result using concurrent write mode 
•  For n numbers ---->  we have ~ n2 pairs 

[a1,a2,a3,a4] 

(a1,a2) 

(a2, a3) 

(a3, a4) 

(a2, a4) 
(a1, a3) 

(a1, a4) 

(000000000000000000000000000000000000000000000000(1( 0(

(ai ,aj) 

If ai  > aj then  ai cannot be  the minimal number 

i j 1 n 

M[1..n] 

The following program computes MIN of n numbers stored in 
the array C[1..n] in O(1) time with n2 processors. 

Algorithm A1 
   for each 1≤ i ≤ n do in parallel  
        M[i]:=0 
   for each 1≤ i,j ≤ n do in parallel  
        if i≠j C[i] ≤ C[j] then M[j]:=1 
   for each 1≤ i ≤ n do in parallel 
        if M[i]=0 then output:=i 
 



From n2 processors to n1+1/2 

Step 1: Partition into disjoint blocks of size 
Step 2: Apply A1 to each block 
Step 3: Apply A1 to the results from the step 2 

A1( A1( A1( A1( A1( A1( A1(A1( A1( A1(

A1(

nn
n

n

From n1+1/2 processors to n1+1/4 

Step 1: Partition into disjoint blocks of size 
Step 2: Apply A2 to each block 
Step 3: Apply A2 to the results from the step 2 

A2( A2( A2( A2( A2( A2( A2(A2( A2( A2(

A2(

n

 
n2 -> n1+1/2 -> n1+1/4 -> n1+1/8 -> n1+1/16 ->… -> n1+1/k  ~ n1 

 

•  Assume that we have an algorithm Ak working in O(1) 
time with             processors 

Algorithm Ak+1 
  1.Let α=1/2 
  2. Partition the input array C of size n into disjoint    
       blocks of size nα each 
  3. Apply in parallel algorithm Ak to each of these blocks 
  4. Apply algorithm Ak to the array C� consisting of n/ nα  
       minima in the blocks. 

kn ε+1

Complexity 

•  We can compute minimum of n numbers using 
CRCW PRAM model in O(log log n) with n 
processors by applying a strategy of 
partitioning the input 

Work = n ⋅ log log n 



Mission: Impossible (Part 2) 

 Computing a position of the first one in the sequence of 0�s and 

1�s in a constant time.  
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Worksheet:(

•  Write(a(parallel(algorithm(for(finding(the(first(
1(in(a(sequence(of(n(0’s(&(1’s(in(constant'Dme.(

•  How(many(processors(do(you(need?(

Problem 2.  
Computing a position of the first one in the sequence of 0�s 
and 1�s. 

FIRST-ONE-POSITION(C)=4 
for the input array  

C=[0,0,0,1,0,0,0,1,1,1,0,0,0,1] 

Algorithm A   
(2 parallel steps and n2 processors) 
for each 1≤ i<j ≤ n do in parallel  
   if C[i] =1 and C[j]=1 then C[j]:=0 
for each 1≤ i ≤ n do in parallel  
   if C[i] =1 then FIRST-ONE-POSITION:=i  
 

1( 1(

1( 0(

After the first 
parallel step C will 
contain a single 
element 1 

Reducing number of processors 

Algorithm B –  
it reports if there is any one in the table.  
 
There-is-one:=0 
for each 1≤ i ≤ n do in parallel  
   if C[i] =1 then There-is-one:=1 
 

000000000000000000(1( 1(

1(



Now we can merge two algorithms A and B 

1.  ParDDon(table(C(into(segments(of(size(
2.  In(each(segment(apply(the(algorithm(B(
3.  Find(posiDon(of(the(first(one(in(these(sequence(by(applying(

algorithm(A(
4.  Apply(algorithm(A(to(this(single(segment(and(compute(the(final(

value((

n

B( B( B( B( B( B( B(B( B( B(

A(

A(

Complexity 

•  We apply an algorithm A twice and each time 
to the array of length 

   which need only (            )2 = n  processors 
•  The time is O(1) and number of processors is 

n. 
  

n

n

Optimal sorting in log(n) steps 
Cole�s algorithm  

!  Suppose(we(know(how(to(merge(two(increasing(sequences(in(
log(log(n))(steps(

!  Then(we(can(climb(up(the(merging(tree(and(spend(only(
log(log(n))(per(level,(thus(geSng(a(parallel(sorDng(technique(in(
log(n)(log(log(n))(

!  Merges(at(the(same(level(are(performing(in(parallel(



How to merge in log(log(n)) time 
with n processors 

•  Let A and B are to sorted sequences of size n 
•  Divide A,B into       blocks of length 
•  Compare first elements of each block in A with first elements of 

each block in B 
•  Then compare first elements of each block in A with each 

element in a �suitable� block of B 
•  At this point we know where all first elements of each block in A 

fits into B. 

n n

A B 

•  Thus the problem has been reduced to a 
set of disjoint problems each of which 
involves merging of block of     elements of 
A with some consecutive piece of B.  

•  Recursively we solve these problems 
•  The parallel time t(n) satisfies to  
  t(n)≤2+ t(    ) implying t(n)=O(log(log(n)))   

n

n

CRCW algorithms can solve some problems 
quickly than can EREW algorithm 

•  The problem of finding MAX element can 
be solved in O(1) time using CRCW 
algorithm with n2 processors 

•  EREW algorithm for this problem takes 
Ω(log n) time and that no CREW algorithm 
does any better. Why?  



Any  EREW algorithm  
can be executed on a CRCW PRAM 

•  Thus, the CRCW model is strictly more 
powerful than the EREW model. 

•  But how much more powerful is it? 

•  Now we provide a theoretical bound on the 
power of a CRCW PRAM over an EREW 
PRAM 

Theorem. A p-processor CRCW algorithm can be no more 
than O(log p) time faster than the best      

p-processor EREW algorithm for the same problem. 
Proof.  

 The proof is a simulation argument. We simulate each 
step of the CRCW algorithm with an O(log p)-time EREW 
computation. 

 
 Because the processing power of both machines is the 
same, we need only focus on memory accessing. 

 
 Let�s present the proof for simulating concurrent writes 
here. Implementation of concurrent reading is left as an 
exercise. 

•  The p processors in the EREW PRAM simulate a 
concurrent write of the CRCW algorithm using an 
auxiliary array A of length p. 
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1.When CRCW processor Pi, for 
i=0,1,…,p-1, desires to write a 
datum xi to location li, each 
corresponding EREW processor Pi 
instead writes the ordered pair 
(li,xi) to location A[i].  

2. These writes are exclusive, since 
each processor writes to a distinct 
memory location. 

3. Then, the array A is sorted by the first coordinate of the 
ordered pairs in O(log p) time, which causes all data written 
to the same location to be brought together in the output    

     Simulating 
step on an 
EREW PRAM 
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Simulated 
CRCW 
global 

memory 
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global 
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A A 

4. Each EREW processor Pi now inspects A[i]=(lj,xj) and A[i-1]= 
(lk,xk), where j and k are values in the range 0≤j,k≤p-1. If lj ≠ lk 
or i=0 then Pi writes the datum xj to location lj in the global 
memory. Otherwise, the processor does nothing.  



End of the proof 

•  Since the array A is sorted by first 
coordinate, only one of the processors 
writing to any given location actually 
succeeds, and thus the write is exclusive.  

•  This process thus implements each step of 
concurrent writing in the common CRCW 
model in O(log p) time  

The issue arises, therefore, of which model is 
preferable – CRCW or EREW 

•  Advocates of the CRCW models point out that they are easier to 
program than EREW model and that their algorithms run faster 

•  Critics contend that hardware to implement concurrent memory 
operations is slower than hardware to exclusive memory 
operations, and thus the faster running time of CRCW algorithm 
is fictitious.  
–  In reality, they say, one cannot find the maximum of n values 

in O(1) time      
•  Others say that PRAM is the wrong model entirely. Processors 

must be interconnected by a communication network, and the 
communication network should be part of the model 

It is quite clear that the issue of the �right� parallel model is 
not going to be easily settled in favor of any one model. The 
important think to realize, however, is that these models are 
just that: models! 

32 

Basic techniques for  
PRAM 

•  Balanced binary tree technique 
 
•  Parallel divide and conquer  

•  Pointer Jumping (e.g., doubling) 
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Balanced binary tree technique 

Structure of the algorithm 

for level i = m-1,m-2,…,0 do 

  for each vertex v at level i do in parallel 

      value[v]:=value[LeftChild(v)] + value[RightChild(v)] 

output:=value[root] 

36 

A possible way to store vertices in 
an array 

Input(values(stored(in(the(array(A[n(…(2nV1](
(
LeYChild(i)(=(2i;(RightChild(i)=2i+1(

Sum(

37 

T[1] 

T[i]:=A[iVn+1](

39 

Parallel divide and conquer 

What(about(
DP?((
MemoizaDon?(
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Pointer Jumping 

•  This technique is normally applied to an array 
or to a list of elements 

•  The computation proceeds by recursive 
application of the calculation in hand to all 
elements over a certain distance (in the data 
structure) from each individual element 

•  This distance doubles in successive steps. 
•  Thus after k stages the computation has 

performed (for each element) over all 
elements within a distance of 2k. 

42 

List ranking problem 

•  We introduce an O(log n ) time algorithm that computes 
the distance to the end of the list for each object in an n-
object list. 

•  One solution to the list ranking problem is simply to 
propagate distances back from the end of the list. 

•  This takes Θ(n) time, since k-th object from the end must 
wait for the k-1 objects following it to determine their 
distances from the end before it can determine its own. 

•  This solution is essentially a serial algorithm.  

43 

The propose of the following computation is to rank the 
elements of the list 

Algorithm: RANK LIST 
ELEMENTS 

•  Let L denote a list of n 
elements and let us 
associate processor with 
each element 

•  d(i) is the order number 
of i on the list 

•  We can take this to be 
the distance of element i 
from the end of the list 

•  The pointer for element i 
is next(i). 

for each processor i do  

     if next[i]=NIL then d[i]←0 

     else d[i]←1 

while exist i | next[i]≠NIL do 

     for each processor i do 

         if next[i] ≠ NIL then  

                  d[i]← d[i] + d[next[i]]  

                   next[i] ← next[next[i]] 

              

 

Tp= O(log n) 

Work = Θ (n log n)  
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5
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for each processor i do  

     if next[i]=NIL then d[i]←0 

     else d[i]←1 

while exist i | next[i]≠NIL do 

     for each processor i do 

         if next[i] ≠ NIL then  

                  d[i]← d[i] + d[next[i]]  

                   next[i] ← next[next[i]] 
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Prefix Computation 

A prefix computation is defined in terms of a binary 
associative operator ".  It takes as input a sequence <x1, 
x2, …, xn> and produces as output a sequence <y1, y2, …, 
yn>, where y1 = x1 and 

yk = yk-1 ", xk 

= x1 "x2 " … " xk 

46 

Prefix Notation 
A prefix computation is defined in terms of a binary 

associative operator ".  It takes as input a sequence <x1, 
x2, …, xn> and produces as output a sequence <y1, y2, …, 
yn>, where y1 = x1 and 

yk = yk-1 ", xk 

= x1 "x2 " … " xk 

[i,j]= xi "xi+1 " … " xj 
 

[k,k]= xk 
 

[i,k]= [i,j] "[j+1,k] 
 

Goal: compute yk=[1,k] for k=1,2,…,n 47 

WORKSHEET:List prefix 
for each processor i do  
     y[i] ← x[i] 
 
while exist i | next[i]≠NIL do 
     for each processor i do 
         if next[i] ≠ NIL then  
                  y[next[i]] ← y[i] + y[next[i]]  
                   next[i] ← next[next[i]] 
 
 
 
y[i]= x[1]+ x[2]+…+ x[i] 

Fill(these(in!(



List(Prefix(

Fun(with(Trees((in(Parallel!)(

Consider a binary tree 
with n nodes… 

Depth(from(root…(
0(

1(

2( 2(

1(

2( 2(

3( 3(



Inorder(traversal(number…(
6(

2(

1( 4(

8(

7( 9(

3( 5(

Binary tree 
•  Let T be a binary tree stored in a PRAM 

•  Each node i has fields parent[i], left[i] and right[i], 
which point to node i�s parent, left child and right child 
respectively 

•  Let�s assume that each node is identified by a non-
negative integer 

•  Also we associate not one but 3 processes with each 
node; we call these node�s A,B and C processors 

•  Mapping between each node i and its 3 processors 
A,B and C:   3i, 3i+1, 3i+2   

A 
B 

C 

Computing depth of each node in an n node tree 
takes O(n) time on a serial RAM 

•  A simple parallel algorithm to compute depths 
propagates a �wave� downward from the root of 
the tree. 
–  The wave reaches all nodes at the same depth 

simultaneously, and thus by incrementing a counter 
carried along with the wave, we can compute the depth of 
each node. 

•  This parallel algorithm works well on a complete 
binary tree, since it runs in time proportional to the 
tree�s height. 

•  But the height of the tree        
 could be as large as n-1 

Using the Euler-tour technique we can compute node 
depths in O(log n) time on an EREW PRAM 

•  An Euler-tour of a graph is a cycle that traverses 
each edge exactly once, although it may visit a 
vertex more than ones 
–  A connected, directed graph has an Euler tour if and 

only if for all vertices v, the in-degree of v equals the 
out degree of v 

–  Since each undirected edge (u,v) in an undirected 
graph maps to two directed edges (u,v) and (v,u) in 
the directed version, the directed of any connected, 
undirected graph (and therefore of any undirected tree) has an 
Euler tour   

 



Depth of nodes computation  
•  First we form an Euler tour of the directed version 

of T. 
•  The tour corresponds to walk of the tree with the 

following structure: 
–  A node�s A processor points to the A processor of its 

left child, if it exist, and otherwise to its own B 
processor 

–  A node�s B processor points to the A processor of its 
right child, if it exist, and otherwise to its own C 
processor 

–  A node�s C processor points to the B processor of its 
parent, if it is a left child and to the C processor of its 
parent if it is a right child. The root�s C processor 
points to NIL. 

A 
B 

C 
A 

B 
C 

A 
B 

C A 
B 

C 

A 
B 

C 

A 
B 
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A 
B 

C 

A 
B 

C 

A 
B 

C 

A 
B 

C 

First step 
•  Thus, the head of the linked list formed by the 

Euler tour is the root�s A processor, and the 
tail is the root�s C processor. 

•  Given the pointers composing the original 
tree, an Euler tour can be constructed in O(1) 
time. 

•  Once we have linked list representing the 
Euler tour of T, we place  
–  a 1 in each A processor,  
–  a 0 in each B processor and 
–  a –1 in each C processor 

A 
B 

C 
1 

0 
-1 

1 
0 

-1 1 
0 

-1 

1 
0 

-1 

1 
0 

-1 

1 
0 

-1 

1 
0 

-1 

1 
0 

-1 

1 
0 

-1 



Second step 

•  We then perform a parallel prefix 
computation using ordinary addition as the 
associative operation 

•  We claim that after performing the parallel 
prefix computation, the depth of each node 
resides in the node�s C processor.  Why? 

A 
B 

C 
1 

1 
0 

2 
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1 2 
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3 
3 
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3 
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4 
4 

3 

1 
0 

-1 

WHY ??? 
•  The numbers are placed into the A,B and C 

processors in such a way that the net effect of visiting 
a subtree is to add 0 to the running sum 

•  The A processor of each node i contributes 1 to 
running sum 

•  The B  processor of each node i contributes 0 
because the depth of the node i�s left child equals the 
depth of the node i�s right child 

•  The C processor contributes –1, so the entire visit to 
the subtree rooted at node i has no effect on the 
running sum.  

Conclusion 
•  The list representing Euler-tour can be computed 

in O(1) time.  
•  It has 3n objects, and thus the parallel prefix 

computation takes only O(log n) time 
•  Thus the total amount of time to compute all 

node depths is  O(log n). 
•  Because no concurrent memory accesses are 

needed, the algorithm is an EREW algorithm.  



Transi've*Closure*

•  TC problem has numerous applications in 
many areas of computer science. 

•  Lack of course-grained algorithms for 
distributed environments with slow 
communication. 

•  Decreasing the number of dependences in a 
solution could improve a performance of the 
algorithm. 

What*is*transi've*closure?*

GENERIC(TRANSITIVE(CLOSURE(PROBLEM((TC)(

Input:(a(matrix(A(with(elements(from(a(semiring(S=(<(⊕,⊗(>(

Output:((the(matrix(A*,(A*(i,j)(is(the(sum(of(all(simple(paths((

((((from(i(to(j(

<(⊕(,((⊗((>((((TC(

<(or(,(and(>(((boolean(closure(V(TC(of(a(directed(graph((

<(MIN,(+(>((((all(pairs(shortest(path(

<MIN,(MAX>((minimum(spanning(tree({all(i,j):(A(i,j)=A*(i,j)}(

FloydVWarshall(algorithm(

X(

Y(

X(

Y(

X(

Y(

k(

k(

FloydVWarshall(algorithm(

k+1( k+2(

k+2(
k+1(

for(k:=1(to(n(

((for(all(1≤i,j≤n(parallel(do(

(((((Opera0on(i,'k,'j)(

(

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV(
Opera0on(i,'k,'j):'a(i,j):=a(i,j)'⊕(a(i,k)'⊗'
a(k,j)'
7777777777777777777777777777777777'



CoarseVGrained(computaDons((

n(

n(

A32(

A11(

A24(

Blocked(Floyd(Warshall(

CourseVgrained(FloydVWarshall(algorithm(

'Algorithm'Blocks7Warshall'
'for'k':=1'to'N'do'

''' '''A(K,K):=A*(K,K)'

'''''''''''for'all'1'≤'I,J'≤'N,'I'≠'K'≠'J''parallel'do''

''''''''''''''''''Block7Opera0on(K,K,J)'and'Block7Opera0on(I,K,K)'
''' ' 'for'all'1'≤'I,J'≤'N''parallel'do''
''''' ''''''Block7Opera0on(I,K,J)'
'
7777777777777777777777777777777777777777777777777777777777777777777777'
Block7Opera0on(I,'K,'J):'A(I,J):=A(I,J)'⊕(A(I,K)'⊗(A(K,K)'⊗'A(K,J)'
7777777777777777777777777777777777777777777777777777777777777777777777'

ImplementaDon(of((
(Warshall(TC(Algorithm(

k(

k(

k( k(

k(

The(implementaDon(in(terms(of(mulDplicaDon(of(submatrices(



SynchronizaDon(and(Tada!(

This problem is 
simply Tada for! 

This( That(

Go(

Tada!*


