PRAM Algorithms
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“Computer science is no more about #
computers than astronomy is about :
telescopes.”

Edsger Dijkstra

(11/05/1930-6/9/2002)

Slides adapted from R. Libeskind-Hadas, |. Potapov

Metrics

A measure of relative performance between a multiprocessor
system and a single processor system is the speed-up S( p),
defined as follows:

Execution time using a single processor system

* Shared memory

¢ Constant time

S( p) = Execution time using a multiprocessor with p processors
T S
1 . 2
S(p= T Efficiency = P
p

Work=p x T,

One more time about
PRAM model

* N synchronized processors

-

— EREW, ERCW,
— CREW, CRCW

— access to the memory
— standard multiplication/addition

Shared Memory Cells

— Communication
(implemented via access to shared memory)

Parallelism at all levels

* Parallel circuits
e Parallel computers
* Distributed systems

Mac. To the power of 12.

Mac Pro. With up to 12 cores of processing power, it's the fastest Mac ever.




Min of n numbers

* Input: Given an array A with n numbers

* Qutput: the minimal number in an array A Optimal

Work = O(n)

Sequential algorithm

000 O
Q— SN

At least n comparisons
should be performed!!!

Sequential S. Parallel

Work = (num. of processors) - (time)

Parallel solution 1
Min of n numbers

» Comparisons between numbers can be done independently
» The second part is to find the result using concurrent write mode

* For n numbers ----> we have ~ n? pairs
2] (an) (0020)
(ai ,a; - - .
1 l
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Ifa; > a;then a; cannot be the minimal number

Mission: Impossible ...
computing in a constant time

* Archimedes: Give me a lever long
enough and a place to stand and 1
will move the earth

* NOWDAYS....

Give me a parallel machine with
enough processors and I will find
the smallest number in any giant
set in a constant time!

The following program computes MIN of n numbers stored in
the array C[1..n] in O(1) time with n? processors.

Algorithm A1
for each I<i <ndo in parallel

M[i]:=0
for each 1<i,j <n do in parallel
if i=f C[i] = C[j] then M[j]:=1
foreach 1<i <ndo in parallel
if M[i]=0 then output:=i



From n? processors to n!™1/2

From n'*12 processors to n!*1/4

Step 1: Partition into disjoint blocks of size \/;
Step 2: Apply Al to each block 7n+/7
Step 3: Apply Al to the results from the step 2 \/;

n2 > n1+1/2 > n1+1/4 > n1+1/8 > n1+1/16 > > nl+1/k . nl

* Assume that we have an algorithm A, working in O(1)
time with 1+ processors

Algorithm A,
l.Let a=1/2
2. Partition the input array C of size n into disjoint
blocks of size n* each
3. Apply in parallel algorithm A, to each of these blocks
4. Apply algorithm A, to the array C’ consisting of n/ n®
minima in the blocks.

Step 1: Partition into disjoint blocks of size \/Z
Step 2: Apply A2 to each block
Step 3: Apply A2 to the results from the step 2

Complexity

We can compute minimum of n numbers using
CRCW PRAM model in O(log log n) with n
processors by applying a strategy of
partitioning the input

Work =n - log log n



Mission: Impossible (Part 2)

Computing a position of the first one in the sequence of 0’ s and

1’ s in a constant time.
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Problem 2.
Computing a position of the first one in the sequence of 0’ s
and 1’s.

Algorithm A
(2 parallel steps and n? processors) - 1 - 1 -
for each 1<i<j <n do in parallel

if C[i] =1 and C[j]=1 then C[j]:=0

for each 1<i <n do in parallel

if C[i] =I then FIRST-ONE-POSITION:=i - M N |

FIRST-ONE-POSITION(C)=4
for the input array After the first
€=[0.0,0,1,0,0,0,1,1,1,0,0,0,1] parallel step C will
contain a single
element 1

Worksheet:

* Write a parallel algorithm for finding the first
1in a sequence of n 0’s & 1’s in constant time.

* How many processors do you need?

Reducing number of processors

Algorithm B —
it reports if there is any one in the table.

- toooooooe T |
There-is-one:=0 -

foreach I<i <ndo in parallel \/
if C[i] =1 then There-is-one:=1

1

|



Now we can merge two algorithms A and B

Complexity

* We apply an algorithm A twice and each time
to the array of length vn

which need only ( \/Z )>=n processors

* The time is O(1) and number of processors is
n.

Optimal sorting in log(n) steps
Cole’ s algorithm

B Suppose we know how to merge two increasing sequences in
log(log(n)) steps

B Then we can climb up the merging tree and spend only
log(log(n)) per level, thus getting a parallel sorting technique in

log(n) log(log(n))
merge
merge merge\
merge merge merge merge

m  Merges at the same level are performing in parallel



How to merge in log(log(n)) time
with n processors

* LetAand B are to sorted sequences of size n
» Divide A,B into ./; blocks of length /»
» Compare first elements of each block in A with first elements of

each block in B

» Then compare first elements of each block in A with each

element in a “suitable” block of B

» At this point we know where all first elements of each block in A

fits into B.

=
% | |

» Thus the problem has been reduced to a
set of disjoint problems each of which
involves merging of block of Vnelements of
A with some consecutive piece of B.

» Recursively we solve these problems

» The parallel time t(n) satisfies to
t(n)=2+ t(/n ) implying t(n)=0(log(log(n)))

CRCW algorithms can solve some problems
quickly than can EREW algorithm

» The problem of finding MAX element can
be solved in O(1) time using CRCW
algorithm with n2? processors

« EREW algorithm for this problem takes
Q(log n) time and that no CREW algorithm
does any better. Why?



Any EREW algorithm Theorem. A p-processor CRCW algorithm can be no more

can be executed on a CRCW PRAM than O(/og p) time faster than the best
p-processor EREW algorithm for the same problem.

« Thus, the CRCW model is strictly more Pr‘%cr’]f- g  We simulate each
€ proor Is a simulation argument. e simulate eacC
powerful than the EREW model. step of the CRCW algorithm with an O(log p)-time EREW
« But how much more powerful is it? computation.

Because the processing power of both machines is the
- Now we provide a theoretical bound on the same, we need only focus on memory accessing.

power of a CRCW PRAM over an EREW Let’ s present the proof for simulating concurrent writes

PRAM here. Implementation of concurrent reading is left as an
exercise.

+ The p processors in the EREW PRAM simulate a P, P’ 2943) | 0 0 812 — P 15, @12 | 0
concurrent write of the CRCW algorithm using an (812 | 1 1| B12) P 812) | 1
auxiliary array A of length p. (2943) | 2 2 | (2943) (2943) | 2

| When CRCW I P, % (29.43) | 3 3 | (29.43) P, (29.43) | 3
.When processor P,, for 9296 2043 2043
g 1=0,1,...,p-1, desires to write a Co8 4 4 1 @5) \L‘ &) 4
. 8,12) | 5 5 | (92,26) (92,26) | 5

datum x; to location /,, each

g corresponding EREW processor P;
instead writes the ordered pair 3 g
(Zl,xl) to location A[i]- \\‘&\\h‘h\\\\\h\\h\\\‘\\:&-\

92 2. These writes are exclusive, since S\Qr\t E:Zpufr:i;% 29
each processor writes to a distinct T EREW PRAM

memory location.
4. Each EREW processor P; now inspects A[/]=(/,x;) and A[i-/]=
3. Then, the array A is sorted by the first coordinate of the (Lux,), where j and k are values in the range Osj,ksp-1. If [, = I,
ordered pairs in O(log p) time, which causes all data written or i=0 then P; writes the datum x; to location /; in the global

to the same location to be brought together in the output memory. Otherwise, the processor does nothing.



The issue arises, therefore, of which model is

End of the proof preferable - CRCW or EREW
» Advocates of the CRCW models point out that they are easier to
. Since the array A iS Sorted by first program than EREW model and that their algorithms run faster
. « Critics contend that hardware to implement concurrent memory
coordinate, Only one of the processors operations is slower than hardware to exclusive memory
Y H H operations, and thus the faster running time of CRCW algorithm
writing to any given Iocatlo_n aptually _ perLons
SUCCGGdS, and thus the write is exclusive. — In reality, they say, one cannot find the maximum of n values
. . in O(1) time
* This process thus implements each step of - Others say that PRAM is the wrong model entirely. Processors

concurrent Writing in the common CRCW must be interconnected by a communication network, and the

. . communication network should be part of the model
model in O(log p) time P

It is quite clear that the issue of the “right” parallel model is
not going to be easily settled in favor of any one model. The
important think to realize, however, is that these models are
just that: models!

Basic techniques for
PRAM

» Balanced binary tree technique
» Parallel divide and conquer

 Pointer Jumping (e.g., doubling)

32



Balanced binary tree technique

root level 0
g B TPy
S ‘\\\
balanced binary tree ~—
pd T~ level 1
% /N
/ S/
/ . / AN
/ N\ // N\
/ /\ /N N
/N / /N \
7\ /N /N /N level m-1
/N / /N / \ everm-
A A\ A A A A A A -
N\ SN SN VANVAN VANV /\ Jevel m
/SN /SN NSNS SN o

input values in the leaves

Structure of the algorithm

for level i = m-1,m-2,...,0 do
for each vertex v at level i do in parallel
value[v]:=value[LeftChild(v)] + value[RightChild(v)]

output:=value[root]
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Sum

Initialize:
for each 1 < i < 2n — 1 do in parallel
if i < n then T[i] :=0 else Tlil:=Ali-n+1]

(* i-th input value stored in the i-th leaf*)

for level:=m-1 downto 0 do

for all 2/evel < § < 2fevel+l (o in parallel
T := T[2i] + T[2i+1]

output := T[1]

input values in the leaves

A possible way to store vertices in
an array

Input values stored in the array A[n ... 2n-1]

LeftChild(i) = 2i; RightChild(i)=2i+1
PN

/N\ / /
\/( \\Q » 10 >11 127 13\
TR RN K N AN

input values in the leaves
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_Parallel divide and conquer

/ o What about
DP?

resultl result2

AN

combine
results

result of P

37

for example resultl = sum of elements A[1 .. n/2]

result2 = sum of elements A[n/2+1 .. n]

result = result]l + result2

39 recursive parallel computation of the sum of n elements




List ranking problem

We introduce an O(log n ) time algorithm that computes
the distance to the end of the list for each object in an n-
object list.

One solution to the list ranking problem is simply to
propagate distances back from the end of the list.

This takes ©(n) time, since k-th object from the end must
wait for the k-1 objects following it to determine their
distances from the end before it can determine its own.

This solution is essentially a serial algorithm.

Pointer Jumping

This technique is normally applied to an array
or to a list of elements

The computation proceeds by recursive
application of the calculation in hand to all
elements over a certain distance (in the data
structure) from each individual element

This distance doubles in successive steps.

Thus after k stages the computation has
performed (for each element) over all
elements within a distance of 2.

41

The propose of the following computation is to rank the
elements of the list

Algorithm: RANK LIST for each processor i do
ELEMENTS
Let L denote a list of n . ]— .
elements and let us if next[i]=NIL then d[i]<-0
ass?]ci’.i\te protcessor with
each elemen .
d#i) is the order number else d[i]<-1
of ron the list
We can take this to be while exist i | next[i]=NIL do

the distance of element i
from the end of the list .
The pointer for element i for each processor i do

is next(i).
if next[i] = NIL then
d[i]< d][i] + d[next[i]]
Tp= O(log n) next[i] < next[next][i]]

Work =0 (n log n)

43



for each processor i do 1 1 1 1 1 1 0
if next[i]=NIL then d[i]<0

NVANY

while exist i | next[i]=NIL do
for each processor i do
if next[i] = NIL then
d[i]« d[i] + d[next[i]]

next[i] < next[next][i]]

44

Prefix Notation

A prefix computation is defined in terms of a binary
associative operator <. It takes as input a sequence <x,,
Xy, ..., X,>and produces as output a sequence <y,, y,, ...,

>, Where y, = x, and

Yie= Yier %5 X
=X, WXy L X,
1= X 2 Xy % ... % X
[k, K]= X,
[ K]= [i]] *[+1.K]

" Goal: compute y,=[1,k] for k=1,2,...,n

Prefix Computation

A prefix computation is defined in terms of a binary
associative operator <. It takes as input a sequence <x,,
Xy, ..., X,>and produces as output a sequence <y,, y,, ...,

>, where y, = x, and

—_— @,
Yie= Y1 %5 X
=X WX L X,

Prefix sums computation:
inputa a2 ... an

output: a1,a1 +ap, a1 +ax+as,...

45

WORKSHEET:List prefix

for each processor i do

while exist i | next[i]=NIL do
for each processor i do
if next[i] = NIL then

Fill these in!

ylil= x[1]+ x[2]+...+ x[i]

47



(a)

ib)

)

b

List Prefix
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Fun with Trees (in Parallel!)

Consider a binary tree
with n nodes...

h\)

Depth from root...



Inorder traversal number...

Computing depth of each node in an n node tree
takes O(n) time on a serial RAM

* Asimple parallel algorithm to compute depths
propagates a “wave” downward from the root of
the tree.

— The wave reaches all nodes at the same depth
simultaneously, and thus by incrementing a counter
carried along with the wave, we can compute the depth of
each node.

+ This parallel algorithm works well on a complete
binary tree, since it runs in time proportional to the
tree’ s height.

» But the height of the tree
could be as large as n-1

Binary tree

* Let T be a binary tree stored in a PRAM

 Each node i has fields parent{i], left[i] and right[i],
which point to node i’ s parent, left child and right child
respectively

 Let’ s assume that each node is identified by a non-
negative integer

 Also we associate not one but 3 processes with each
node; we call these node s A,B and C processors

. M%ppin between each node i and its 3 processors
ABandC: 3i, 3i+1, 3i+2

Using the Euler-tour technique we can compute node
depths in O(log n) time on an EREW PRAM

» An Euler-tour of a graph is a cycle that traverses
each edge exactly once, although it may visit a
vertex more than ones

— A connected, directed graph has an Euler tour if and
only if for all vertices v, the in-degree of v equals the
out degree of v

— Since each undirected edge (u,v) in an undirected
graph maps to two directed edges (u,v) and (v,u) in
the directed version, the directed of any connected,
undirected graph (and therefore of any undirected tree) has an
Euler tour



Depth of nodes computation

. F]icr1s_t we form an Euler tour of the directed version
of T.

» The tour corresponds to walk of the tree with the
following structure:

— A node’ s A processor points to the A processor of its
left child, if it exist, and otherwise to its own B
processor

— Anode’ s B processor points to the A processor of its
right child, if it exist, and otherwise to its own C
processor

First step

* Thus, the head of the linked list formed by the
Euler tour is the root’ s A processor, and the
tail is the root’ s C processor.

* Given the pointers composing the original
tree, an Euler tour can be constructed in O(1)
time.

» Once we have linked list representing the
Euler tour of T, we place
—a 1in each A processor,

— a0 in each B processor and
—a—1in each C processor




Second step

» We then perform a parallel prefix
computation using ordinary addition as the
associative operation

» We claim that after performing the parallel
prefix computation, the depth of each node
resides in the node’ s C processor. Why?

WHY ?77? Conclusion

* The numbers are placed into the A,B and C

processors in such a way that the net effect of visiting * The list representing Euler-tour can be computed

a subtree is to add 0 to the running sum in O(1) time: .

« The A processor of each node i contributes 1 to * It has 3n objects, and thus the parallel prefix
running sum computation takes only O(log n) time

* The B processor of each node i contributes 0 « Thus the total amount of time to compute all
because the depth of the node i’s left child equals the noge deoths is O(IL(J) n) ! pu
depth of the node i’s right child P gn).

+ The C processor contributes —1, so the entire visit to * Because no concurrent memory accesses are
the subtree rooted at node i has no effect on the needed, the algorithm is an EREW algorithm.

running sum.



Transitive Closure

* TC problem has numerous applications in
many areas of computer science.

* Lack of course-grained algorithms for
distributed environments with slow
communication.

* Decreasing the number of dependences in a
solution could improve a performance of the

algorithm.
L] L] L] .
What is transitive closure? Floyd-Warshall algorithm
GENERIC TRANSITIVE CLOSURE PROBLEM (TC) Kkl ke2 for ki=1 to n
Input: a matrix A with elements from a semiring S= < ®,® > for all 1<i,j=n parallel do
. S . X
Output: the matrix A*, A*(i,j) is the sum of all simple paths K v Operation(i, k, j)
fromitoj Kl %
<®,®> TC K+2
<or,and > boolean closure - TC of a directed graph Y - Operation(i, k, j): a(i,j):=a(i,j) ® a(i,k) ®
<MIN, +> all pairs shortest path v alkj)
<MIN, MAX> minimum spanning tree {all(i,j): A(i,j)=A"(i,j)}

Floyd-Warshall algorithm



Coarse-Grained computations

7

Course-grained Floyd-Warshall algorithm

Algorithm Blocks-Warshall
fork :=1to N do
A(K.K):=A"(K,K)

forall1<1J<N,|=Ks=J parallel do

Block-Operation(K,K,J) and Block-Operation(l,K,K)
forall 1 <1,J <N parallel do
Block-Operation(l,K,J)

Block-Operation(l, K, J): A(l,J):=A(1,J) ® A(l,K) ® A(K,K) ® A(K,J)

Blocked Floyd Warshall

Blocked Floyd Warshall Dependencies .
(for k=20-29) shown in
the figure

j 09 10-19 20-29 30-39 40-49 50-59
S - Self Dependent Block

L,R,T,B - Blocks dependent on
TR TR TR themselves and self dependent
blocks

oETL TR

TR -Blocks dependent on
themselves and some T,R blocks

BL - blocks dependent on themselves
2029 and some L,B blocks

BR - Blocks dependent on themselves
30-39 B and some B,R blocks

TL - Blocks dependent on themselves
and some T,L blocks

‘When we relax from k=20-29 for this matrix the block dependencies are shown

Implementation of
Warshall TC Algorithm

The implementation in terms of multiplication of submatrices



Synchronization and Tada!

L ) Lo B . L ) Lo | L ) Lo B . L )

N \| This problem is
simply Tada for!
o=




