
PRAM Algorithms

“Computer science is no more about
computers than astronomy is about

telescopes.”
Edsger Dijkstra

(11/05/1930-6/9/2002)

Slides adapted from R. Libeskind-Hadas, I. Potapov

One more time about
PRAM model

•  N synchronized processors
•  Shared memory

–  EREW, ERCW,
–  CREW, CRCW

•  Constant time
–  access to the memory
–  standard multiplication/addition
–  Communication

(implemented via access to shared memory)

A measure of relative performance between a multiprocessor
system and a single processor system is the speed-up S(p),
defined as follows:

S(p) =
 Execution time using a single processor system
Execution time using a multiprocessor with p processors

S(p) =
T1
Tp Efficiency =

Sp
p

Work= p × Tp

Metrics(Parallelism(at(all(levels ((

•  Parallel(circuits ((
•  Parallel(computers(
•  Distributed(systems(

Min of n numbers

•  Input: Given an array A with n numbers
•  Output: the minimal number in an array A

Sequential algorithm

…

At least n comparisons
should be performed!!!

Work = (num. of processors) ⋅ (time)

Work = 1⋅ n ?
Sequential vs. Parallel

Optimal
Work = O(n)

Mission: Impossible …
computing in a constant time

•  Archimedes: Give me a lever long
enough and a place to stand and I
will move the earth

•  NOWDAYS….
 Give me a parallel machine with
enough processors and I will find
the smallest number in any giant
set in a constant time!

Parallel solution 1
Min of n numbers

•  Comparisons between numbers can be done independently
•  The second part is to find the result using concurrent write mode
•  For n numbers ----> we have ~ n2 pairs

[a1,a2,a3,a4]

(a1,a2)

(a2, a3)

(a3, a4)

(a2, a4)
(a1, a3)

(a1, a4)

(00(1(0(

(ai ,aj)

If ai > aj then ai cannot be the minimal number

i j 1 n

M[1..n]

The following program computes MIN of n numbers stored in
the array C[1..n] in O(1) time with n2 processors.

Algorithm A1
 for each 1≤ i ≤ n do in parallel
 M[i]:=0
 for each 1≤ i,j ≤ n do in parallel
 if i≠j C[i] ≤ C[j] then M[j]:=1
 for each 1≤ i ≤ n do in parallel
 if M[i]=0 then output:=i

From n2 processors to n1+1/2

Step 1: Partition into disjoint blocks of size
Step 2: Apply A1 to each block
Step 3: Apply A1 to the results from the step 2

A1(A1(A1(A1(A1(A1(A1(A1(A1(A1(

A1(

nn
n

n

From n1+1/2 processors to n1+1/4

Step 1: Partition into disjoint blocks of size
Step 2: Apply A2 to each block
Step 3: Apply A2 to the results from the step 2

A2(A2(A2(A2(A2(A2(A2(A2(A2(A2(

A2(

n

n2 -> n1+1/2 -> n1+1/4 -> n1+1/8 -> n1+1/16 ->… -> n1+1/k ~ n1

•  Assume that we have an algorithm Ak working in O(1)
time with processors

Algorithm Ak+1
 1.Let α=1/2
 2. Partition the input array C of size n into disjoint
 blocks of size nα each
 3. Apply in parallel algorithm Ak to each of these blocks
 4. Apply algorithm Ak to the array C� consisting of n/ nα
 minima in the blocks.

kn ε+1

Complexity

•  We can compute minimum of n numbers using
CRCW PRAM model in O(log log n) with n
processors by applying a strategy of
partitioning the input

Work = n ⋅ log log n

Mission: Impossible (Part 2)

 Computing a position of the first one in the sequence of 0�s and

1�s in a constant time.

00101000 00000000(
00000001(
01101000(
00010100(

00
00
00
00
001000
00000000000000010000000000000000000000000010000000000000
00000000000000000000000000000010000000000000000000000000
000000000000000000000000000000100000010000001111111111111
111000000000000000000000001000000000000000000000000000000
00
00000000000000000000100000000000010000000000000000000000
00
0000000000000000111111111111111111111111111111000000000000

00
00
00
00
00
00
00
00
00
00
000100
00
00000000000000000010000000001000100000000000000000000000000000
00
00
00
00
00
00
00
0000000000000000000000000000010000001111111111111111000000000000000000000001000000000000000000000000000000000000000
00
00010000000000000000001000000000000000000000
0000010001000100000010
00000111111111111111100000000000000000000000100
00011111111111111111111110000000

Worksheet:(

•  Write(a(parallel(algorithm(for(finding(the(first(
1(in(a(sequence(of(n(0’s(&(1’s(in(constant'Dme.(

•  How(many(processors(do(you(need?(

Problem 2.
Computing a position of the first one in the sequence of 0�s
and 1�s.

FIRST-ONE-POSITION(C)=4
for the input array

C=[0,0,0,1,0,0,0,1,1,1,0,0,0,1]

Algorithm A
(2 parallel steps and n2 processors)
for each 1≤ i<j ≤ n do in parallel
 if C[i] =1 and C[j]=1 then C[j]:=0
for each 1≤ i ≤ n do in parallel
 if C[i] =1 then FIRST-ONE-POSITION:=i

1(1(

1(0(

After the first
parallel step C will
contain a single
element 1

Reducing number of processors

Algorithm B –
it reports if there is any one in the table.

There-is-one:=0
for each 1≤ i ≤ n do in parallel
 if C[i] =1 then There-is-one:=1

000000000000000000(1(1(

1(

Now we can merge two algorithms A and B

1.  ParDDon(table(C(into(segments(of(size(
2.  In(each(segment(apply(the(algorithm(B(
3.  Find(posiDon(of(the(first(one(in(these(sequence(by(applying(

algorithm(A(
4.  Apply(algorithm(A(to(this(single(segment(and(compute(the(final(

value((

n

B(B(B(B(B(B(B(B(B(B(

A(

A(

Complexity

•  We apply an algorithm A twice and each time
to the array of length

 which need only ()2 = n processors
•  The time is O(1) and number of processors is

n.

n

n

Optimal sorting in log(n) steps
Cole�s algorithm

!  Suppose(we(know(how(to(merge(two(increasing(sequences(in(
log(log(n))(steps(

!  Then(we(can(climb(up(the(merging(tree(and(spend(only(
log(log(n))(per(level,(thus(geSng(a(parallel(sorDng(technique(in(
log(n)(log(log(n))(

!  Merges(at(the(same(level(are(performing(in(parallel(

How to merge in log(log(n)) time
with n processors

•  Let A and B are to sorted sequences of size n
•  Divide A,B into blocks of length
•  Compare first elements of each block in A with first elements of

each block in B
•  Then compare first elements of each block in A with each

element in a �suitable� block of B
•  At this point we know where all first elements of each block in A

fits into B.

n n

A B

•  Thus the problem has been reduced to a
set of disjoint problems each of which
involves merging of block of elements of
A with some consecutive piece of B.

•  Recursively we solve these problems
•  The parallel time t(n) satisfies to
 t(n)≤2+ t() implying t(n)=O(log(log(n)))

n

n

CRCW algorithms can solve some problems
quickly than can EREW algorithm

•  The problem of finding MAX element can
be solved in O(1) time using CRCW
algorithm with n2 processors

•  EREW algorithm for this problem takes
Ω(log n) time and that no CREW algorithm
does any better. Why?

Any EREW algorithm
can be executed on a CRCW PRAM

•  Thus, the CRCW model is strictly more
powerful than the EREW model.

•  But how much more powerful is it?

•  Now we provide a theoretical bound on the
power of a CRCW PRAM over an EREW
PRAM

Theorem. A p-processor CRCW algorithm can be no more
than O(log p) time faster than the best

p-processor EREW algorithm for the same problem.
Proof.

 The proof is a simulation argument. We simulate each
step of the CRCW algorithm with an O(log p)-time EREW
computation.

 Because the processing power of both machines is the
same, we need only focus on memory accessing.

 Let�s present the proof for simulating concurrent writes
here. Implementation of concurrent reading is left as an
exercise.

•  The p processors in the EREW PRAM simulate a
concurrent write of the CRCW algorithm using an
auxiliary array A of length p.

P0

P1

P2

P3

P4

P5

12

43

26

8

29

92

1.When CRCW processor Pi, for
i=0,1,…,p-1, desires to write a
datum xi to location li, each
corresponding EREW processor Pi
instead writes the ordered pair
(li,xi) to location A[i].

2. These writes are exclusive, since
each processor writes to a distinct
memory location.

3. Then, the array A is sorted by the first coordinate of the
ordered pairs in O(log p) time, which causes all data written
to the same location to be brought together in the output

 Simulating
step on an
EREW PRAM

P0

P1

P2

P3

P4

P5

(29,43) 0
(8,12)

(29,43)

(29,43)

(92,26)

(8,12)

1
2
3
4
5

Simulated
CRCW
global

memory

P0

P1

P2

P3

P4

P5

(8,12) 0
(8,12)

(29,43)

(29,43)

(29,43)

(92,26)

1
2
3
4
5

Simulated
CRCW
global

memory

P0

P1

P2

P3

P4

P5

(8,12) 0
(8,12)

(29,43)

(29,43)

(29,43)

(92,26)

1
2
3
4
5

sort

12

43

26

8

29

92

A A

4. Each EREW processor Pi now inspects A[i]=(lj,xj) and A[i-1]=
(lk,xk), where j and k are values in the range 0≤j,k≤p-1. If lj ≠ lk
or i=0 then Pi writes the datum xj to location lj in the global
memory. Otherwise, the processor does nothing.

End of the proof

•  Since the array A is sorted by first
coordinate, only one of the processors
writing to any given location actually
succeeds, and thus the write is exclusive.

•  This process thus implements each step of
concurrent writing in the common CRCW
model in O(log p) time

The issue arises, therefore, of which model is
preferable – CRCW or EREW

•  Advocates of the CRCW models point out that they are easier to
program than EREW model and that their algorithms run faster

•  Critics contend that hardware to implement concurrent memory
operations is slower than hardware to exclusive memory
operations, and thus the faster running time of CRCW algorithm
is fictitious.
–  In reality, they say, one cannot find the maximum of n values

in O(1) time
•  Others say that PRAM is the wrong model entirely. Processors

must be interconnected by a communication network, and the
communication network should be part of the model

It is quite clear that the issue of the �right� parallel model is
not going to be easily settled in favor of any one model. The
important think to realize, however, is that these models are
just that: models!

32

Basic techniques for
PRAM

•  Balanced binary tree technique

•  Parallel divide and conquer

•  Pointer Jumping (e.g., doubling)

35

Balanced binary tree technique

Structure of the algorithm

for level i = m-1,m-2,…,0 do

 for each vertex v at level i do in parallel

 value[v]:=value[LeftChild(v)] + value[RightChild(v)]

output:=value[root]

36

A possible way to store vertices in
an array

Input(values(stored(in(the(array(A[n(…(2nV1](
(
LeYChild(i)(=(2i;(RightChild(i)=2i+1(

Sum(

37

T[1]

T[i]:=A[iVn+1](

39

Parallel divide and conquer

What(about(
DP?((
MemoizaDon?(

41

Pointer Jumping

•  This technique is normally applied to an array
or to a list of elements

•  The computation proceeds by recursive
application of the calculation in hand to all
elements over a certain distance (in the data
structure) from each individual element

•  This distance doubles in successive steps.
•  Thus after k stages the computation has

performed (for each element) over all
elements within a distance of 2k.

42

List ranking problem

•  We introduce an O(log n) time algorithm that computes
the distance to the end of the list for each object in an n-
object list.

•  One solution to the list ranking problem is simply to
propagate distances back from the end of the list.

•  This takes Θ(n) time, since k-th object from the end must
wait for the k-1 objects following it to determine their
distances from the end before it can determine its own.

•  This solution is essentially a serial algorithm.

43

The propose of the following computation is to rank the
elements of the list

Algorithm: RANK LIST
ELEMENTS

•  Let L denote a list of n
elements and let us
associate processor with
each element

•  d(i) is the order number
of i on the list

•  We can take this to be
the distance of element i
from the end of the list

•  The pointer for element i
is next(i).

for each processor i do

 if next[i]=NIL then d[i]←0

 else d[i]←1

while exist i | next[i]≠NIL do

 for each processor i do

 if next[i] ≠ NIL then

 d[i]← d[i] + d[next[i]]

 next[i] ← next[next[i]]

Tp= O(log n)

Work = Θ (n log n)

44

1 1 1 1 1 1 0

2
2

2

2
2 1 0

4

4

4
3

2 1 0

6

5

4 3 2 1 0

for each processor i do

 if next[i]=NIL then d[i]←0

 else d[i]←1

while exist i | next[i]≠NIL do

 for each processor i do

 if next[i] ≠ NIL then

 d[i]← d[i] + d[next[i]]

 next[i] ← next[next[i]]

45

Prefix Computation

A prefix computation is defined in terms of a binary
associative operator ". It takes as input a sequence <x1,
x2, …, xn> and produces as output a sequence <y1, y2, …,
yn>, where y1 = x1 and

yk = yk-1 ", xk

= x1 "x2 " … " xk

46

Prefix Notation
A prefix computation is defined in terms of a binary

associative operator ". It takes as input a sequence <x1,
x2, …, xn> and produces as output a sequence <y1, y2, …,
yn>, where y1 = x1 and

yk = yk-1 ", xk

= x1 "x2 " … " xk

[i,j]= xi "xi+1 " … " xj

[k,k]= xk

[i,k]= [i,j] "[j+1,k]

Goal: compute yk=[1,k] for k=1,2,…,n 47

WORKSHEET:List prefix
for each processor i do
 y[i] ← x[i]

while exist i | next[i]≠NIL do
 for each processor i do
 if next[i] ≠ NIL then
 y[next[i]] ← y[i] + y[next[i]]
 next[i] ← next[next[i]]

y[i]= x[1]+ x[2]+…+ x[i]

Fill(these(in!(

List(Prefix(

Fun(with(Trees((in(Parallel!)(

Consider a binary tree
with n nodes…

Depth(from(root…(
0(

1(

2(2(

1(

2(2(

3(3(

Inorder(traversal(number…(
6(

2(

1(4(

8(

7(9(

3(5(

Binary tree
•  Let T be a binary tree stored in a PRAM

•  Each node i has fields parent[i], left[i] and right[i],
which point to node i�s parent, left child and right child
respectively

•  Let�s assume that each node is identified by a non-
negative integer

•  Also we associate not one but 3 processes with each
node; we call these node�s A,B and C processors

•  Mapping between each node i and its 3 processors
A,B and C: 3i, 3i+1, 3i+2

A
B

C

Computing depth of each node in an n node tree
takes O(n) time on a serial RAM

•  A simple parallel algorithm to compute depths
propagates a �wave� downward from the root of
the tree.
–  The wave reaches all nodes at the same depth

simultaneously, and thus by incrementing a counter
carried along with the wave, we can compute the depth of
each node.

•  This parallel algorithm works well on a complete
binary tree, since it runs in time proportional to the
tree�s height.

•  But the height of the tree
 could be as large as n-1

Using the Euler-tour technique we can compute node
depths in O(log n) time on an EREW PRAM

•  An Euler-tour of a graph is a cycle that traverses
each edge exactly once, although it may visit a
vertex more than ones
–  A connected, directed graph has an Euler tour if and

only if for all vertices v, the in-degree of v equals the
out degree of v

–  Since each undirected edge (u,v) in an undirected
graph maps to two directed edges (u,v) and (v,u) in
the directed version, the directed of any connected,
undirected graph (and therefore of any undirected tree) has an
Euler tour

Depth of nodes computation
•  First we form an Euler tour of the directed version

of T.
•  The tour corresponds to walk of the tree with the

following structure:
–  A node�s A processor points to the A processor of its

left child, if it exist, and otherwise to its own B
processor

–  A node�s B processor points to the A processor of its
right child, if it exist, and otherwise to its own C
processor

–  A node�s C processor points to the B processor of its
parent, if it is a left child and to the C processor of its
parent if it is a right child. The root�s C processor
points to NIL.

A
B

C
A

B
C

A
B

C A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

First step
•  Thus, the head of the linked list formed by the

Euler tour is the root�s A processor, and the
tail is the root�s C processor.

•  Given the pointers composing the original
tree, an Euler tour can be constructed in O(1)
time.

•  Once we have linked list representing the
Euler tour of T, we place
–  a 1 in each A processor,
–  a 0 in each B processor and
–  a –1 in each C processor

A
B

C
1

0
-1

1
0

-1 1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

1
0

-1

Second step

•  We then perform a parallel prefix
computation using ordinary addition as the
associative operation

•  We claim that after performing the parallel
prefix computation, the depth of each node
resides in the node�s C processor. Why?

A
B

C
1

1
0

2
2

1 2
2

1

3
3

2

4
4

3

3
3

2

4
4

3

3
3

2

4
4

3

1
0

-1

WHY ???
•  The numbers are placed into the A,B and C

processors in such a way that the net effect of visiting
a subtree is to add 0 to the running sum

•  The A processor of each node i contributes 1 to
running sum

•  The B processor of each node i contributes 0
because the depth of the node i�s left child equals the
depth of the node i�s right child

•  The C processor contributes –1, so the entire visit to
the subtree rooted at node i has no effect on the
running sum.

Conclusion
•  The list representing Euler-tour can be computed

in O(1) time.
•  It has 3n objects, and thus the parallel prefix

computation takes only O(log n) time
•  Thus the total amount of time to compute all

node depths is O(log n).
•  Because no concurrent memory accesses are

needed, the algorithm is an EREW algorithm.

Transi've*Closure*

•  TC problem has numerous applications in
many areas of computer science.

•  Lack of course-grained algorithms for
distributed environments with slow
communication.

•  Decreasing the number of dependences in a
solution could improve a performance of the
algorithm.

What*is*transi've*closure?*

GENERIC(TRANSITIVE(CLOSURE(PROBLEM((TC)(

Input:(a(matrix(A(with(elements(from(a(semiring(S=(<(⊕,⊗(>(

Output:((the(matrix(A*,(A*(i,j)(is(the(sum(of(all(simple(paths((

((((from(i(to(j(

<(⊕(,((⊗((>((((TC(

<(or(,(and(>(((boolean(closure(V(TC(of(a(directed(graph((

<(MIN,(+(>((((all(pairs(shortest(path(

<MIN,(MAX>((minimum(spanning(tree({all(i,j):(A(i,j)=A*(i,j)}(

FloydVWarshall(algorithm(

X(

Y(

X(

Y(

X(

Y(

k(

k(

FloydVWarshall(algorithm(

k+1(k+2(

k+2(
k+1(

for(k:=1(to(n(

((for(all(1≤i,j≤n(parallel(do(

(((((Opera0on(i,'k,'j)(

(

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV(
Opera0on(i,'k,'j):'a(i,j):=a(i,j)'⊕(a(i,k)'⊗'
a(k,j)'
7777777777777777777777777777777777'

CoarseVGrained(computaDons((

n(

n(

A32(

A11(

A24(

Blocked(Floyd(Warshall(

CourseVgrained(FloydVWarshall(algorithm(

'Algorithm'Blocks7Warshall'
'for'k':=1'to'N'do'

''' '''A(K,K):=A*(K,K)'

'''''''''''for'all'1'≤'I,J'≤'N,'I'≠'K'≠'J''parallel'do''

''''''''''''''''''Block7Opera0on(K,K,J)'and'Block7Opera0on(I,K,K)'
''' ' 'for'all'1'≤'I,J'≤'N''parallel'do''
''''' ''''''Block7Opera0on(I,K,J)'
'
77'
Block7Opera0on(I,'K,'J):'A(I,J):=A(I,J)'⊕(A(I,K)'⊗(A(K,K)'⊗'A(K,J)'
77'

ImplementaDon(of((
(Warshall(TC(Algorithm(

k(

k(

k(k(

k(

The(implementaDon(in(terms(of(mulDplicaDon(of(submatrices(

SynchronizaDon(and(Tada!(

This problem is
simply Tada for!

This(That(

Go(

Tada!*

