
Theory

Beware of bugs in the above code;
I have only proved it correct, not tried it. 



Computer Science Theory

• Unlike many other areas, Computer Science has its own theory.

• Theory of Computation
What can be computed?

• Algorithm Complexity Theory
How can things be computed more efficiently?

• Other Theory Examples
Artificial Intelligence (search, probability, machine learning)
Systems (queueing theory)
Languages (type theory)
Security (cryptanalysis)
Databases (logic and relations)



Algorithmic Complexity Theory

• Describe an algorithm.

• Show that this algorithm requires at least certain resources to operate 
(memory, time).

• Show that this algorithm requires more or less resources than another 
algorithm.

• Why is this useful?



Ma Bell

• Question: how 
should AT&T route a 
minimum length 
cable connecting the 
following cities?

Des Moines
Chicago
Kansas City
Sioux City
Denver
Omaha
Madison
Ann Arbor
Indianapolis
Springfield



Ma Bell

• You could search all possible routings to find the shortest:

 10! = 3628800

• How about 100 cities?

 100! = a big number

• AT&T had this problem all the time.  Cable length cost them billions of 
dollars.  The US has a lot more than 100 cities.

• It was helpful to spend think-time on this.



The Internet

• This problem is getting uglier.

• Network routing
Polygon reduction (graphics)
Database algorithms
Robot swarms
Cryptography

• Basically everything in 
computer science 
desperately needs a provably 
better algorithm.



Fibonacci Sequence

• A basic example.

• Fibonacci(0) = 1

• Fibonacci(1) = 1

• Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)

• How could we write this function?



Fibonacci Sequence

• Like this?

Procedure Fibonacci(n):
 if (n<=1):
  return 1      // here’s a computation
 else:
  a := Fibonacci(n-1)    // a call
  b := Fibonacci(n-2)    // a call
  return a + b     // here’s a computation

• Every time we call this function, one Fibonacci computation is done, plus 
either zero or two other Fibonacci calls (which do more computations!).



Counting 

• So to compute Fibonacci(4), we do one computation, and two calls to other 
Fibonacci functions, which do additional computations each.  How many total 
Fibonacci computations are performed?

Procedure Fibonacci(n):
 if (n<=1):
  return 1      // here’s a computation
 else:
  a := Fibonacci(n-1)    // a call
  b := Fibonacci(n-2)    // a call
  return a + b     // here’s a computation



Counting 

• So to compute Fibonacci(4), we do one computation, and two calls to other 
Fibonacci functions, which do additional computations each.  How many total 
Fibonacci computations are performed?

A. Fibonacci(4) calls B. Fibonacci(3) and C. Fibonacci(2), then computes B+C
B. Fibonacci(3) calls D. Fibonacci(2) and E. Fibonacci(1), then computes D+E
C. Fibonacci(2) calls F. Fibonacci(1) and G. Fibonacci(0), then computes F+G
D. Fibonacci(2) calls H. Fibonacci(1) and I. Fibonacci(0), then computes H+I
E. Fibonacci(1) computes to 1
F.  Fibonacci(1) computes to 1
G. Fibonacci(0) computes to 1
H. Fibonacci(1) computes to 1
I. Fibonacci(0) computes to 1

• 9



Counting

• In general, how many computations does it take to do Fibonacci(n)?

• Fibonacci(<= 1):  		 	 	 	 	 	 	 	 = 1
• Fibonacci(2):  1 + Fibonacci(1) + Fibonacci(0)	 	 = 3
• Fibonacci(3):  1 + Fibonacci(2) + Fibonacci(1)	 	 = 5
• Fibonacci(4):  1 + Fibonacci(3) + Fibonacci(2)	 	 = 9
• Fibonacci(5):  1 + Fibonacci(4) + Fibonacci(3)	 	 = 15
• Fibonacci(6):  1 + Fibonacci(5) + Fibonacci(4)	 	 = 25
• Fibonacci(7):  1 + Fibonacci(6) + Fibonacci(5)	 	 = 41
• Fibonacci(9):  		 	 	 	 	 	 	 	 	 = 67
• Fibonacci(10): 	 	 	 	 	 	 	 	 	 = 109
• Fibonacci(11):  	 	 	 	 	 	 	 	 	 = 177
• Fibonacci(12):  	 	 	 	 	 	 	 	 	 = 287
• Fibonacci(13):  	 	 	 	 	 	 	 	 	 = 465
• Fibonacci(14):  	 	 	 	 	 	 	 	 	 = 753



Not Looking Good.

• Number of computations, for Fibonacci(0) ... Fibonacci(20)

0

3,750

7,500

11,250

15,000



Bad.  Very Bad.

• Number of computations, for Fibonacci(0) ... Fibonacci(100)

0

2E20

4E20

6E20

8E20



This Algorithm Stinks

• Algorithmic complexity theory helps us figure out just how much it stinks.

• How fast is it growing?		 	

• Can it be improved?

• Is all hope lost?

• So... is all hope lost?



Fibonacci Sequence (Again)

• How about this?

Procedure Fibonacci(n):
 if n == 0 or n==1:
  return 1        // here’s a computation
 else:
  minusone := 1
  minustwo := 1
  current := 0
  for i := 2 to n do:      // we do this n-1 times
   current := minusone + minustwo     // here’s a computation
   minustwo := minusone
   minusone := current
  return current



Counting

• If you call Fibonacci(0) 
you get 1 computation

• If you call Fibonacci(1) 
you get 1 computation

• If you call Fibonacci(n > 1) 
you get about n-1 
computations

• Happy.
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Which Would You Prefer?

• It’d sure be nice to be able to figure this out without running first!
AT&T would have liked to know.

0
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7,500

11,250

15,000



Theory of Computation

• Describe an automaton.

• Show that it is (or is not) capable of computing various things.

• Show that it can computer at least as many things than another automaton 
How could you do this?

• Show that it is exactly equivalent to another automaton.
How could you do this?

• Why is this useful?



The Halting Problem

• Prove that there exists something easily described, and would be useful to 
have, but which cannot be computed.

• The Halt( program, input ) function tells us this 

• “Does a given program, if fed input as its input data, eventually halt and 
return a value, or does it go into an infinite loop?”

• That’d be useful!  For example, if we’re about to run a program on a very 
costly supercomputer, we’d sure like to first know if it will eventually give us 
an answer or if we’re just wasting cycles!

• Can’t be done.



Describing the Halting Problem

• All programs can be expressed as unique integers.

1. Convert your program into machine language for, say, the Intel Pentium.

2. This program now is a string of 1’s and 0’s.

3. That string is a number.  There you go.

A program.  
10110110111101011010110101001011010110101111111001010100010000
10010010010001010101010000000011110101001010010100010101011011
11010101001010000101101110111110010010101010100010101011101000
10101010101010101101000001010101000101010010100101110101111010
01010001010101010101001001010100100101000101010001010011101010



Describing the Halting Problem

• All pairs of integers ⟨x,y⟩ can 
be expressed as a unique 
integer z.  One scheme:

1. Look up the value for ⟨x,y⟩ in 
the table at right.

2. That’s the value for z.

• Can you write the function f
(x,y) which returns z without 
enumerating all the values?

• Is it difficult to write g(z) 
which returns x and y?

xxxxxxxxxxx

yyyyyyyyyy

0 1 -1 2 -2 3 -3 4 ...

0 0 1 3 6 10 15 21 28

1 2 4 7 11 16 22 29

-1 5 8 12 17 23 30

2 9 13 18 24 31

-2 14 19 25 32

3 20 26 33

-3 27 34

etc.etc.etc.etc.4 35 etc.etc.etc.etc.

...

etc.etc.etc.etc.



Describing the Halting Problem

• All lists of integers ⟨a,b,c,d,e,f,...⟩ can be expressed by a unique integer.

1. Convert the first two integers a, b into an integer α

2. Take α and the next integer c and convert them into an integer β

3. Take β and the next integer d and convert them into an integer γ

4. And so on...  repeat this until the whole list has been converted into an 
integer (let’s call it ω)

5. Let λ be the length of the list.  Convert λ and ω into a unique integer ξ.  
That’s your unique integer.

• Given ξ, is it straightforward to de-convert back to the list?



Describing the Halting Problem

• Since all lists of integers can be expressed as a single unique integer, any 
particular string of data we might want to feed to a program can be 
expressed as a single unique integer.

• Halt( program, data ) takes two integers:

• program 	 the unique integer representing the program to test

• data 	 	 the unique integer representing the string of data fed to it

• Halt will return an integer:  1 if the program represented by the integer 
program halted and returned a value when fed data as input, and 0 
otherwise.



Proving the Halting Problem

• Our proof will go like this:

1. Suppose you could write the procedure Halt

2. Then it would be easy to write a procedure called Bad

3. If you could write Bad, it’d result in a logical contradiction which we’ll show.  

(and thus the universe would cease to exist or something)

4. Thus Halt can’t be written.

           “proof by contradiction”



The Bad Function

• Bad( program ) works like this:

• If program halts and returns a value when fed its own integer as input, 
then Bad will go into an infinite loop.

• If program goes into an infinite loop when fed its own integer as input, 
then Bad will halt and return a 1.

• Example code:

procedure Bad(program):
 if Halt(program, program) == 1 then:
  while(1==1): 
   print “Ha ha ha! I’m in an infinite loop!”
 else:
  return 1

• Piece of cake.



Proof

• What does Halt(Bad, Bad) do?

• Suppose it returns a 1.  Then Bad
(Bad) must halt.

• So let’s run Bad(Bad).  It calls Halt
(Bad, Bad), which returns a 1, 
which then causes Bad(Bad) to go 
into an infinite loop!

• So if Halt(Bad, Bad) returns a 1, 
then Halt(Bad, Bad) must 
return a 0.
Not good. 

• procedure Bad(program):
 if Halt(program, program) == 1 then:
  while(1==1): 
   print “Infinite Loop!”
 else:
  return 1



Proof

• Let’s suppose it returns a 0.  Then 
Bad(Bad) must go into an infinite 
loop.

• So let’s run Bad(Bad).  It calls Halt
(Bad, Bad), which returns a 0, 
which then causes Bad(Bad) to halt 
and return a 1!

• So if Halt(Bad, Bad) returns a 0, 
then Halt(Bad, Bad) must 
return a 1.

• procedure Bad(program):
 if Halt(program, program) == 1 then:
  while(1==1): 
   print “Infinite Loop!”
 else:
  return 1



Proof

• So... if Halt(Bad, Bad) returns a 0, then Halt(Bad, Bad) must return a 1.
And...if Halt(Bad, Bad) returns a 1, then Halt(Bad, Bad) must return a 0.

• Halt can’t return either a 0 or a 1.
But those are the only things Halt can do!

• A contradiction.  So Halt can’t exist.

• Q.E.D.


