
Python

Just enough to be dangerous

Python is...

• A popular object oriented programming language.

• A scripting language, meaning a language which is easy to code in but isn't
particularly fast. (Python is typically about 1/10 the speed of Java).

• Specifically designed to be easy to code in, but rigidly enforcing a certain
programming style.

• A language which requires a certain indent style.

• A language with dynamic binding for everything (no type declarations)

• Older than Java. And with a bunch of warts.

Python versions

• There are two kinds of Python:

• Python 2.x is what everyone uses

• Python 3.x is intended to be the future. It's not yet clear if it will be.

• We will use Python 2.x

This is a comment

print "Hello, World!"

Hello World

This is a comment.

This is a statement.

Statements in Python end in
a new line.

print is not a function: it does
not have parentheses.
[Note: as of 3.x, print is now a
function]

It is a special kind of operator
like + or -. It is accompanied
by one or more expressions.

"Hello, World!" is a string.

print "Hello World"
print 9
print 4 + 3

Hello World

print takes an string, number,
or other object

x = 9
y = 10
z = x + y * x
print z + x

a = x % 2

z = y // 4
w = x ** 2

b = 2
c = 3.14159

Variables and Numbers

Variables do not need to be
defined. Nor do you have to
declare their type. You can
just start using them.

Standard math operators:
+ - * / %

Nonstandard math operators:
//

 integer division
**

 power (ab)

Integers and Floats

r = -4
q = abs(r)
q = round(c)

print a < b

a = a << 4
b = b >> 1
a & ~b

Variables and Numbers

Certain math functions are
built-in.

Standard comparisons
< > == != >= <=

Binary arithmetic
x << y

 left shift by y bits
x >> y

 right shift by y bits

 (I think it fills with 0)
x & y

 bitwise AND
x | y

 bitwise OR
x ^ y

 bitwise XOR
~x

 bitwise NOT

a = True
b = False

print a and b
c = a or not b
d = not(3 < w or w * 4 = z)

"Hello, World"
'Hello, World'
'He said, "You dont say!" to me'
"I'm a little teapot"
"I'm good, but he said \"No way\"! It's True!"
"Hello\nthere"

Boolean Values and Strings

Boolean Literals

Boolean Operators

	 and or not

String Literals
... can use either single or
double quotes, and have the
opposite inside the string.
Escapes include \", \', and \n

def printTheSum(x, y):

 print x + y

def printTheSumAndProvideTheProduct(x, y):

 print x + y

 return x * y

Making a Function

def functionName(arg, arg, ...):

 body

 [one more blank line here]

VERY important: note that body
is indented. You can indent with
whatever you like (a tab, 4
spaces, 15 spaces, whatever),
but you MUST BE CONSISTENT
or Python will bail on you.

Even blank lines inside your
function must be indented.

To return something, use the
return statement.

a = 7 + printTheSumAndProvideTheProduct(2,4)

print convertToFahrenheit(451 + abs(celsius()))

Calling a Function

Function calls are expressions.

def compare(first, second):

 if first > second:

 return 1
	 elif first < second:
	 	 return -1

 else:

 print "They're equal, hurrah!"

 return 0

def countBeers(n):

 while n > 0:

 print n

 print "Beers on a wall"

 n = n - 1

If and While

if expression:

 statement

 ...
elif expression:

 statement

 ...
...
else:

 statement

 ...
<blank line here>

while expression:

 statement

 ...
<blank line here>

elt = ["Hello", "World", "What", "Is", "That?"]

print elt[3]

elt[4] = "Yo"

elt[2] = 100

print elt

Arrays (“Lists”)

A List
 starts with
 [

 ends with
]

 delimits items with
,

You can access element i in
the array with [i] (the first
element is element 0)

You set elements in the same
way.

Elements need not be all the
same type. Here one element
has been set to number.

You can print the whole thing.

elt + [100, 200, "whoa!"]
lis = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]

lis[4:5]	 	 	 ['e']
lis[2:6]	 	 	 ['c', 'd', 'e', 'f']
lis[: 6]	 	 	 ['a', 'b', 'c', 'd', 'e', 'f']
lis[3 :]	 	 	 ['d', 'e', 'f', 'g', 'h', 'i']
lis[:]	 	 	 ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

Some List Operations

+	 concatenates lists

:
 creates sublists:

 [a : b]
From item a up to

 but not including b

 [4 : 5]
 Element 4

 [2 : 6]
 Elts 2 through 5

 [: 6]
 Elts up to 6, but not

 including 6

 [3 :]
 Elts from 3 and on

 [:]

 Just copy the

 whole list

lis.reverse()
print lis	 	 ['i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a']

stuff = [1, 4, 9, 2, 6, 8, 3, 5, 7, 0]
stuff.sort()
print stuff	 	 	 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

stuff.append("yo")
print stuff
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "yo"]

a = stuff.pop();
print a	 	 	 	 	 	 	 	 	 "yo"
print stuff	 	 	 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Some List Operations

.reverse() reverses the list

.sort()	 sorts the list

.append(object) adds it to the
end of the list

.pop() removes the last object
and returns it, shortening the
list.

These functions modify the
original list.

names = ["ZD", "Michael", "George", "Biff"]
ages = [100, 23, 49, 41, 46]
firstName = names[0]
names[2] = "Bob"

names = ("ZD", "Michael", "George", "Biff")
ages = (100, 23, 49, 41, 46)
firstName = names[0]

names = set(["ZD", "Michael", "Bob"])
ages = set([100, 23, 49, 41, 46])

agesPerPerson = { "ZD" : 100, "Michael" : 23}
ageOfZD = agesPerPerson["ZD"]
agesPerPerson["ZD"] = 53
agesPerPerson["Bob"] = 42

Composite Data Structures

Arrays (or Lists)
Modifiable arrays of items

Tuples
Non-modifiable arrays of items

Sets
Unordered collections of items
Not often used.

Dictionaries
Unordered collections of pairs
of items (a key and a value)

myDictionary.has_key("ZD")

myDictionary.get("ZD", -1)

keys = myDictionary.keys()

del myDictionary["ZD"]

Some Dictionary Operations

.has_key(key)
Returns true if the key exists in
the dictionary.

.get(key, defaultValue)
Returns the value associated
with the key. If there is no such
key, returns the defaultValue.

.keys()
Returns all the keys in the
dictionary as a list.

del dictionary[key]
Deletes a given key-pair in the
dictionary.

a = [{ "Yo" : 4, "Whassup" : 15 }, { "Okay" : 9 }]

b = { "Yo" : [1, 2, 3, 4], "Okay" : (1, 2, 3) }

c = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

a = { 2 : "Hello", (1, 2, 3) : "No way" }

Composite Data Structures

Need an array of
dictionaries? A list of lists
(essentially a two-
dimensional array)?

No problem.

Keys for dictionaries can be
any read-only object
(numbers, strings, tuples,
etc.)

for i in "Hello World":

 print i

a = 0
for i in [1, 2, 3]:

 a = a + i

w = {"first": "Zoran", "last": "Duric", "age": 100}
for i in w:

 print i

 print w[i]

w = [{"x": 4, "y": 5}, {"x": 9, "y": 10}]
for i in w:

 print "Next Coordinate"

 for j in i:

 print j

 print i[j]

for

for variable in composite:

 statement

 ...
<blank line>

b = range(1, 1000)

for i in range(1, 100):

 print i

for i in range(100, 1):
	 print i

a = 1
for i in range(1, 100000):

 a = a + i

print a

for and range

range(start, end)
Produces a list of numbers
from start inclusive to end
exclusive

for variable in range(start, end):

 statement

 ...

this doesn't work:

You'd think that this would
create a giant list and thus be
very memory wasteful, but it's
not. Python recognizes and
handles it:

Assume that a class called Robot is defined

myRobot = Robot()
or perhaps...
myRobot = Robot(2.0, 1.23)

myRobot.goForward(1.5)
sensors = myRobot.currentSensors()

Objects

Python has classes and
instances.

Objects are created from
classes using a function of
the same name as the class.

Calling a method on an
object is very much like in
Java.

class SimpleStack(object):

 def __init__(self):

 self.stack = [] # set it to empty list

 def push(self, object):

 self.stack.append(object)

 def pop(self):

 return self.stack.pop();

instance variables are always
accessed with "self". You can't just
say "stack" above because that would
be a local variable. The instance variable
is "self.stack"

Defining a Class

class ClassName(superclass):

 def __init__(self):

 constructor code

 def methodName(self, args):

 method code

 ...

The standard top-level
superclass is object

Instance variables are not
defined in the class itself. You
create them on-the-fly or
access them with.

	 self.variableName

import math
import create

a = 5.2 + math.sin(b * 3.2)
robot = create.Robot(5000)

Modules

Python modules perform the
same function as Java
packages. In Python, a
module consists of a single
file.

You load a module and all of
its class definitions and
functions with

import modulename

You access functions and
class names in the module as

modulename.function
modulename.ClassName

Where to go next?

• diveintopython.org 	 is a great book, and it's free

• learnpythonthehardway.org 	by a famous and cantankerous author

• www.python.org	 	 the official python site

