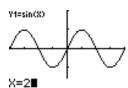
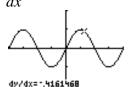

Assignment #3A: Recap and a New Operator...

Period _____ Date _ 1. Find the lengths of each of the vertical lines below. In the graph, $f(x) = 2\cos\left(\frac{x}{2}\right)$ and $g(x) = e^x$. The vertical lines are at x = -2, x = -0.5, and x = 1.

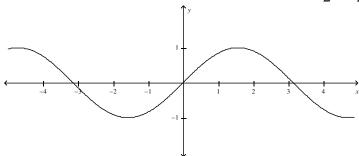
2. Let *R* be the region bounded by $f(x) = 2\cos\left(\frac{x}{2}\right)$, $g(x) = e^x$, the *x*-axis, and the *y*-axis. Find the area of R.


3. Find the average value of the function $f(x) = 2\cos\left(\frac{x}{2}\right)$ on the interval $\left[-\pi, \pi\right]$.


4. Find the average value of the function $f(x) = 2\cos\left(\frac{x}{2}\right)$ on the interval [-2,2].

In our first unit, Calculus as a Black Box, we saw that the definite integral was a function that could give us the area of a function in a certain range. A second major operator in Calculus is the derivative. We'll use our black boxes to give us the derivative of certain functions at given values. Your job is to look for a pattern that describes what the derivative means.

The numeric derivative can be found in the 2^{nd} Calc menu. To find the derivative of $y = \sin x$ at x = 2, one can graph the function, select 2^{nd} Calc | $\frac{dy}{dx}$, type in x = 2, then hit enter.



The derivative of $y = \sin x$ at x = 2 is approximately -.4161. Or using proper notation,

$$\frac{d}{dx}(\sin x)\big|_{x=2} \approx -.4161.$$

Use your calculator to find the derivatives of the functions below. At each given x-coordinate, draw a dot and label it with the value of the derivative at that point.

5. For $y = \sin x$, label the derivative values at $x = -3, -\frac{\pi}{2}, 0, \frac{\pi}{2}, 3, \frac{3\pi}{2}$

What do you notice? When is the derivative positive? Negative? Zero? What if the derivative is

a big number? What if it's a small number?

- 6. For $y = x^2$, label the derivative values at x = -3, -2, -1, 0, 1, 2, 3.
- 7. For y = -x, label the derivative values at x = -3, -2, -1, 0, 1, 2, 3.
- 8. For y = 3x, label the derivative values at x = -3, -2, -1, 0, 1, 2, 3.
- 9. For y = -2, label the derivative values at x = -3, -2, -1, 0, 1, 2, 3.
- 10. For $y = e^x$, label the derivative values at x = -2, -1.5, -1, 0, 1, 1.5, 2. By the way, check the y-coordinates at each value for this graph while you're at it...