Homework #10B

• p.84 (20, 21, 23, 48, 49)

In Exercises 19–24, (a) find each point of discontinuity. (b) Which of the discontinuities are removable? not removable? Give reasons for your answers.

20.
$$f(x) = \begin{cases} 3 - x, & x < 2 \\ 2, & x = 2 \\ x/2, & x > 2 \end{cases}$$

21.
$$f(x) = \begin{cases} \frac{1}{x-1}, & x < 1 \\ x^3 - 2x + 5, & x \ge 1 \end{cases}$$

23.

48. Continuous Function Find a value for a so that the function

$$f(x) = \begin{cases} 2x + 3, & x \le 2\\ ax + 1, & x > 2 \end{cases}$$

is continuous.

49. Continuous Function Find a value for a so that the function

$$f(x) = \begin{cases} 4 - x^2, & x < -1\\ ax^2 - 1, & x \ge -1 \end{cases}$$

is continuous.

- 1. Given f(x) = 2x 3, find f(x + h).
 - (A) 2x + 2h 3
 - (B) 2x + h 3
 - (C) x + h
 - (D) x + h 3
 - (E) 2(x+h)
- 2. The graph of $f(x) = \frac{x^2 1}{x 1}$ has
 - (A) a hole at x = 1
 - (B) a hole at x = -1
 - (C) a vertical asymptote at x = 1
 - (D) a vertical asymptote at x = -1
 - (E) f(1) = 2
- 3. $f(x) = \frac{(x-1)^2}{x^2-1}$ has
 - (A) a hole at x = -1
 - (B) holes at x = -1 and x = 1
 - (C) vertical asymptotes at x = 1 and x = -1
 - (D) a horizontal asymptote at y = -1
 - (E) a hole at x = 1 and a vertical asymptote at x = -1