AP Calculus Assignment #14A: Product and Quotient Rule Practice

Name_____

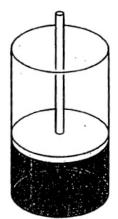
1. Suppose f and g are differentiable functions with the values shown in the table below. For each of the following functions h, find h'(2).

x	f(x)	g(x)	f'(x)	g'(x)
2	3	4	5	-2

(a)
$$h(x) = f(x) + g(x)$$

(b)
$$h(x) = f(x)g(x)$$

(c)
$$h(x) = \frac{f(x)}{g(x)}$$


2. Given H(3) = 1 F(3) = 5 H'(3) = 3 F'(3) = 4Find (a) G'(3) if $G(z) = F(z) \cdot H(z)$

(b)
$$G'(3)$$
 if $G(w) = \frac{F(w)}{H(w)}$

3. If the gas in a cylinder is maintained at a constant temperature, T, the pressure P is related to the volume V by the formula:

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$
 in which *a*, *b*, *n*, and *R* are constants.

Find
$$\frac{dP}{dV}$$
.

AP Calculus Assignment #14A: Product and Quotient Rule Practice

Two functions, f and g, are continuous and differentiable for all real numbers. Some values of the functions and their derivatives are shown in this table:

x	0	1	2	3	4
$f(\mathbf{x})$	$\frac{1}{2}$	1 3	1	-1	3
g(x)	-2	1	$-\frac{1}{2}$	2	$-\frac{1}{3}$
f'(x)	3 2	5 3	$\frac{1}{4}$	0	-4 5
g'(x)	-1	$\frac{2}{3}$	-4	-3	$-\frac{1}{3}$

Based on that delightful table, find the following derivatives:

$$\frac{d}{dx}(f(x)+g(x))$$
, evaluated at $x = 4$

$$\frac{d}{dx}(f(x)g(x)), \text{ evaluated at } x = 1$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)$$
, evaluated at $x = 0$

From: http://www.calculus-help.com/probs2002/5problem5.html

Area The length of a rectangle is given by 2t + 1 and its height is \sqrt{t} , where t is time in seconds and the dimensions are in centimeters. Find the rate of change of the area with respect to time.