Assignment #29C

Group Work: Follow directions given in class... (#1 – no calculators; #2 – Calc OK)

- 1. Consider the differential equation $\frac{dy}{dx} = \frac{-xy^2}{2}$. Let y = f(x) be the particular solution to this differential equation with the initial condition f(-1) = 2.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the test booklet.)

- (b) Write an equation for the line tangent to the graph of f at x = -1.
- (c) Find the solution y = f(x) to the given differential equation with the initial condition f(-1) = 2.

- 2. Let f and g be the functions given by $f(x) = 1 + \sin(2x)$ and $g(x) = e^{x/2}$. Let R be the shaded region in the first quadrant enclosed by the graphs of f and g as shown in the figure above.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is revolved about the x-axis.
 - (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles with diameters extending from y = f(x) to y = g(x). Find the volume of this solid.

Homework: Please show steps clearly for full credit. No late work accepted! No Calculators

- 3. What are all values of x for which the function f defined by $f(x) = (x^2 3)e^{-x}$ is increasing?
 - (A) There are no such values of x.
 - (B) x < -1 and x > 3
 - (C) -3 < x < 1
 - (D) -1 < x < 3
 - (E) All values of x
- 4. If $f(x) = \frac{e^{2x}}{2x}$, then $f'(x) = \frac{e^{2x}}{2x}$
 - (A) 1
 - (B) $\frac{e^{2x}(1-2x)}{2x^2}$
 - (C) e^{2x}
 - (D) $\frac{e^{2x}(2x+1)}{x^2}$
 - (E) $\frac{e^{2x}(2x-1)}{2x^2}$

- 5. The average value of $\cos x$ on the interval [-3,5] is
 - (A) $\frac{\sin 5 \sin 3}{8}$
 - (B) $\frac{\sin 5 \sin 3}{2}$
 - (C) $\frac{\sin 3 \sin 5}{2}$
 - (D) $\frac{\sin 3 + \sin 5}{2}$
 - (E) $\frac{\sin 3 + \sin 5}{8}$

- 6. $\int_0^1 \sqrt{x} (x+1) dx =$
 - (A) 0
- (B) 1 (C) $\frac{16}{15}$ (D) $\frac{7}{5}$
- (E) 2

- 7. If f is a linear function and 0 < a < b, then $\int_a^b f''(x) dx =$
 - (A) 0

- (B) 1 (C) $\frac{ab}{2}$ (D) b-a (E) $\frac{b^2-a^2}{2}$
- 8. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x =

- (A) -1 only (B) 2 only (C) -1 and 0 only (D) -1 and 2 only (E) -1, 0, and 2 only