
Assignment #30A

Group Work: Follow directions given in class... (#1 – no calculators; #2 – Calc OK)

- 1. Let g be a continuous function with g(2) = 5. The graph of the piecewise-linear function g', the derivative of g, is shown above for $-3 \le x \le 7$.
 - (a) Find the x-coordinate of all points of inflection of the graph of y = g(x) for -3 < x < 7. Justify your answer.
 - (b) Find the absolute maximum value of g on the interval $-3 \le x \le 7$. Justify your answer.
 - (c) Find the average rate of change of g(x) on the interval $-3 \le x \le 7$.
 - (d) Find the average rate of change of g'(x) on the interval $-3 \le x \le 7$. Does the Mean Value Theorem applied on the interval $-3 \le x \le 7$ guarantee a value of c, for -3 < c < 7, such that g''(c) is equal to this average rate of change? Why or why not?

- 2. For time $t \ge 0$ hours, let $r(t) = 120 \left(1 e^{-10t^2}\right)$ represent the speed, in kilometers per hour, at which a car travels along a straight road. The number of liters of gasoline used by the car to travel x kilometers is modeled by $g(x) = 0.05x \left(1 e^{-x/2}\right)$.
 - (a) How many kilometers does the car travel during the first 2 hours?
 - (b) Find the rate of change with respect to time of the number of liters of gasoline used by the car when t = 2 hours. Indicate units of measure.
 - (c) How many liters of gasoline have been used by the car when it reaches a speed of 80 kilometers per hour?

Homework: Please show steps clearly for full credit. No late work accepted! Calculators OK

- 3. Let R be the region in the first quadrant bounded by the graphs of $y = \sqrt{x}$ and $y = \frac{x}{3}$.
 - (a) Find the area of R.
 - (b) Find the volume of the solid generated when R is rotated about the vertical line x = -1.
 - (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the y-axis are squares. Find the volume of this solid.

- 4. If $f(x) = e^{\tan^2 x}$, then f'(x) =

 - (C) $\tan^2 x e^{\tan^2 x 1}$
 - (D) $2 \tan x \sec^2 x e^{\tan^2 x}$
 - (E) $2 \tan x e^{\tan^2 x}$

Hint: If f and g are inverse functions, then f(g(x)) = x and g(f(x)) = x. (Why?) Try taking the derivative of both of those and use one to help you answer the question below...

5. Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and

if
$$g(-2) = 5$$
 and $f'(5) = -\frac{1}{2}$, then $g'(-2) =$

- (A) 2

- (B) $\frac{1}{2}$ (C) $\frac{1}{5}$ (D) $-\frac{1}{5}$ (E) -2