PH325: Advanced Statistical Mechanics

Vijay B. Shenoy

Centre for Condensed Matter Theory, IISc Bangalore ph325asm@gmail.com https://piazza.com/iisc.ernet.in/fall2013/ph325/home

Overview

- What is this course about?
- Course outline
- Logistics

What is this course about?

The World Around (Outside?) Us

Inside-out universe. This surrealistic drawing represents a man walking on the surface of the Earth and looking up at the stars. The picture is transformed topologically according to the method indicated in Figure 19. Thus the Earth, sun, and stars are crowded in a comparatively narrow channel running through the body of the man, and surrounded by his internal organs.

(Gamow from One, Two, Three...Infinity)

- We know that our world is made of "constituents"!
- Our experiences about "agglomerate objects" are encapsulated in the laws of thermodynamics
- Phenomenological description of the world...all physics is this!

Statistical Mechanics

- Desire: Describe a system in terms of its constituents (can help us come up with fantastic new things!)
- System: Large collection of constituents, described by
 - Classical: $\Omega = (r, p)$ phase space, Hamiltonain $H(\Omega)$
 - Quantum: $|\psi
 angle$ Hilbert space, Hamiltonian operator H
- Difficulty: Too many "microscopic" degrees of freedom! Cannot "solve" the problem!
- Gibbs: Give up "deterministic" solution to the problem...motivated by the fact that only some *key* aspects of microscopic physics determines outcome of experiments...*not* all the microscopic details
- Describe the system by "probability distribution"
 - Classical: Phase space probability distribution function $\rho(\Omega)$
 - Quantum: Density matrix $\rho = \sum_{\alpha} p_{\alpha} |\alpha\rangle \langle \alpha |$
- For a given set of "equilibrium macroscopic conditions" statistical mechanics provides a solution for ρ (both in classical and quantum)– these are the well known equilibrium ensembles

Statistical Mechanics

- For a system with fixed number of particles, and at a temperature T,
 - ► Classical: $\rho(\Omega) \sim \frac{e^{-\beta H(\Omega)}}{Z}$, $Z = \# \int d\Omega e^{-\beta\Omega}$ ► Quantum: $\rho = \frac{e^{-\beta H}}{Z}$, $Z = tr(e^{-\beta H})$

where $\beta = 1/T$ and Z is the partition function...this is the canonical ensemble

- The partition function is related to the free energy $F = -T \ln Z$ (Helmholtz free energy for canonical ensemble)
- Any observable O can now be obtained as
 - Classical: $\langle O \rangle = \int d\Omega \,\rho(\Omega) O(\Omega)$
 - Quantum: $\langle O \rangle = tr(\rho O)$
- In principle we have solved all problems...which is a guite mindless thing to say!
- I ets see whats out there...

The World Around Us...Again!

FIGURE 20

nside-out universe. This surrealistic drawing represents a man walkog on the surface of the Earth and looking up at the stars. The picture s transformed topologically according to the method indicated in figure 19. Thus the Earth, sun, and stars are crowded in a comparatively narrow channel running through the body of the man, and surrounded by his internal organs.

- Many phenomena over a large range of energy scales
- "Fundamental objects" at one scale become constituents of systems at larger scales..
- Things happen when we put lots of stuff together...

Phases of Micelles etc.

(Internet)

Key Point

- There are many "phases" and "phase transitions" in systems with many constituents!
- One can go from one phase to another by changing "macroscopic" parameters

...of molecules like CO_2 and $H_2O...$

(Internet)

...and of elements!

(Internet)

..and their "mixtures"

First Attempt to Obtain The Phase Diagram

(Internet)

- Take a shot at obtaining this phase diagram...based on knowledge of PH202
- ...
- and, fail miserably!

Key Point

• Interactions are CRUCIAL!

Key Degrees of Freedom

Figure 2, Phase diagram (H, T) of CeSb deduced from the specific heat peaks and determined in increasing temperature. Notation of the phases is the same as in Rossat-Mignod *et al* (1979a, b).

Figure 4. Specific heat of CeSb in zero applied magnetic field.

Key Point

• Only some degrees of freedom may be involved in a phase transition. Not all degrees of freedom may participate in a phase transition!

Further Examples

Zero Temperature!

(Internet)

Key Point

Phase transitions can also occur at zero temperature – Quantum phase transitions

Phase Transitions

- Can be first order or continuous!
- Continuous transitions have "singularities"

Fig. 1.16. Specific best of "H on a function of $T - T_{i}$ in K. Notice that the abape of the perific hast curve in earther like also credit best or the bords of the term 'b' transition'. The first that the appendix heat way between the start and the s

F10. 1.8. Measurements on eight fluids of the conxistence curve (a reflection of the $P_{\beta}T$ surface in the ρT plane analogous to Fig. 1.3). The solid curve corresponds to a fit to a subic equation, i.e. to the choice $\beta = \frac{1}{2}$, where $\rho = \rho_{\alpha} \sim (-e^{\beta})$. From Guggenheim (1946).

(Stanley, 1971)

• Continuous transitions have "universal features"

Key Point

- Phase transitions can be first order or continuous
- Continuous transitions have singularities, and universal features

FIG. 1. Experimental *MHT* data on five different magnitudes materials plotted in scaled form. The five materials is a first off EuO, NI, VIG, and Pd,Fe. None of these materials is an alized (erromagnet) CTBrb, no considerable lattice anisotr EuO has significant scond-neighbor interactions. Ni is internati-lectors for fromagnet, Pd,Fe is a ferromagnetic alloy. Nonetheless, the data for materials collarge onto a single scaling function, which is calculated for the d=3 Heisenberg model [after Milošević Sanley (1976)].

15/2

...Not "Just" Condensed Matter

(Internet)

Key Point

• Phases and phase transitions pervade all of physics!

Summary

Key Points

- There are many "phases" and "phase transitions" in systems with many constituents!
- Can go from one phase to another by changing "macroscopic" parameters
- Interactions are CRUCIAL!
- Only some degrees of freedom may be involved in a phase transition.
- Phase transitions can also occur at zero temperature Quantum phase transitions
- Phase transitions can be first order or continuous
- Continuous transitions have singularities, and universal features
- Phases and phase transitions pervade all of physics!

Questions

- What is a "phase"?
- How do we describe ("understand") a phase transition?

What's Coming...Course Outline

What You Should Expect...

Why Should You Do This Course

- The ideas to be introduced in this course provide the paradigmatic foundations for modern physics
- This paves way for realizing the deep unity between seemingly different branches of physics

Logistics

in sest class rionic (riaz	za - Mozilla Pirefox							
e Edit View History Bookma PH 3251 Class Profile I Plazza	erks Tools Help							
A https://plazza.com///	iscernet.in/fall2013/ph325	home			😭 v 😋 😝 v prevade		Q	1
Most Visited + 🔤 Status + 🚞	TechHelp + 🛄 arXiv 🍙 Ci	hess + 🗃 IIScStuff + 🗍 MyPage 👔	MathHelp + PH	1340 v 📔 Phys v	Getting Started	PH325 +		
xozza						Log In	Errollin	Cours
Indiar	n Institute of Science - Fal	12013						
PH	325: Advance	ed Statistical Mech	nanics Munte	er of posts: 6				
			Ja Numb	er of students erro	dect 2			
Sv8	labus 🔺							
Cour	rse Information Statt Pa	esources						
De	escription		Announcen	nents				
Thi	is course is the second graduat							
with	with the aim of understanding phase transitions, ortical phenomena and the			looting				
the	ory or experiment. Familiarly w	ne Ball method	94 11 11 00 014 on Moort	or Armed S McDensils Report March				
10w1	er of PH202) will be assumed.		Physical Scien	nces Building	iy, Pagan 2, maninara ravir, ravi			
Gr	General Information			STHE FIRST MEETI	ING IF YOU WISH TO CREDIT THIS			
Me	Meeting time and place Monday and Thursday, 11:00AM to 12:00PM, Multimedia room, New Physical Sciences Building		COURSE View on Plazza					
Mo			a					