
CS 5363, Fall 2013
Lecture Notes 2 (revised 9/16/13)

Context Free Grammars

1 Reading / Source Material

• Cooper and Torczon: Sections 3.1–3.2

• Scott: Section 2.1

2 Key concepts

context free grammars, Backus-Naur Form (BNF), derivation, parse-trees, ambiguity, expressions, operator
precedence and associativity

3 Objectives: Be able to . . .

1. given a BNF grammar be able to derive sentences using that grammar

2. given a BNF grammar and a (simple) sentence from the language described by that grammar, dia-
gram the parse tree for that sentence

3. given the derivation of a sentence using a BNF grammar, be able to determine whether the sentence
is a left-most derivation, a right-most derivation, or neither

4. given a BNF grammar and a parse tree, write the corresponding right-most (or left-most) derivation

5. given an ambiguous BNF grammar and a (simple) sentence that has multiple rightmost derivations
from the language described by that grammar, diagram multiple parses tree for that sentence

6. given a BNF grammar for an expression language, determine whether one rule represents an opera-
tion of higher precedence than another

7. given a BNF grammar for an expression language, determine whether a rule represents a left-
associative or right-associative operation

4 Outline

1. preliminaries:

(a) sentence = string of symbols

(b) formal language set of sentences

(c) grammar a way of describing a language with

i. set of symbols Σ
ii. terminal symbols T ⊆ Σ

iii. non-terminal symbols N = Σ − T
iv. start symbol S ∈ N
v. production rules P

1

2. context free grammar, each production rule:

• non-terminal ”derives” string of symbols

3. BNF - notation for context free grammars

4. derivations

5. parse-trees

6. program structure and grammars

(a) in formal languages:

i. a language is a set of sentences (i.e., a set of (finite) strings of symbols)
ii. a grammar is a way of defining a language

(b) in compilers and programming languages work:

i. care about the program’s structure
• i.e., how constructs are nested

ii. a grammar provides a recursively-defined structure for a programming language
iii. i.e., we can use parse trees to represent programs and their structure

7. ambiguous grammars

(a) example of an ambiguous expression grammar

<e> : : = <e> <op> <e> | <num> | (<e>)
<num> : : = 1 | 2 | 3 | 4 | 5

<op> : : = + | − | ∗ | /

3 − 1 − 2 // a s s o c i a t i v i t y : does i t mean (3 − 1) − 2 or 3 − (1 − 2) ?
3 ∗ 2 + 4 // precedence : does i t mean (3 ∗ 2) + 4 or 3 ∗ (2 + 4) ?

(b) requiring explicit ordering with parentheses (changes language)

<e> : : = <f> <op> <f> | <f>
<f> : : = <num> | (<e>)
<num> : : = 1 | 2 | 3 | 4 | 5

<op> : : = + | − | ∗ | /

(c) enforcing associativity of minus by limiting recursion

• ambiguous ambiguous with both left- and right-recursion

<s> : : = <e>
<e> : : = <e> − <e> | <num>
<num> : : = 1 | 2 | 3 | 4 | 5

• left-recursion ⇒ left-associative structure

<s> : : = <e>
<e> : : = <e> − <num> | <num>
<num> : : = 1 | 2 | 3 | 4 | 5

• right-recursion ⇒ right-associative structure
The following grammar is not what would normally be expected, it creates a parse tree for
5 - 3 - 2 structured like 5 - (3 - 2) instead of one structured like (5 - 3) - 2:

2

<s> : : = <e>
<e> : : = <num> − <e> | <num>
<num> : : = 1 | 2 | 3 | 4 | 5

But one usually does want right-associativity for exponentiation:

<s> : : = <e>
<e> : : = <num> ˆ <e> | <num>
<num> : : = 1 | 2 | 3 | 4 | 5

(d) enforcing +/* precedence with stratified productions

<s> : : = <e>
<e> : : = <e> + <e> | <f>
<f> : : = <f> ∗ <f> | <num> | (<e>)
<num> : : = 1 | 2 | 3 | 4 | 5

(e) unambiguous grammar with left-associativity and precedence of + and - = low, * and / =
medium, () = high.

<s> : : = <e>
<e> : : = <e> + <t> | <e> − <t> | <t>
<t> : : = <t> ∗ <f> | <t> / <f> | <f>
<f> : : = (<e>) | 1 | 2 | 3 | 4 | 5

Note: the order the productions are written in the grammar doesn’t matter. What matters
is that you can rank the non-terminal symbols, such that in every production from that non-
terminal, the left- and right-most symbol on the right-hand-side of that production is either the
non-terminal itself, a terminal symbol, or a non-terminal of a higher rank. The structure of
the resulting parse trees will, thus, reflect higher precedence for the operators associated with
productions of non-terminal symbols of a higher rank.

(f) another case of ambiguity: dangling else

<stmnt> : : = i f <expr> then <stmnt> | i f <expr> then <stmnt> e l s e <stmnt>
<stmnt> : : = skip
<expr> : : = t rue | f a l s e

i f t rue then i f t rue then skip e l s e skip

5 Questions

• Consider the following grammar:

<S> : : = <A>
<A> : : = <A> ! | <A> @ |
 : : = <C> # | <C> % | <C>
<C> : : = 1 | 2 | 3 | 4 | 5

Assuming !, @, #, and \% are meant to be operators and are evaluated as is natural for the parse
tree. . .

1. Is the grammar ambiguous?

2. Which of the operators are left-associative?

3. Which of the operators are right-associative?

3

4. Which of the operators have the highest level of precedence?

5. Which of the operators have the lowest level of precedence?

• Consider the following grammar:

<S> : : = <A>
<A> : : = <A> ! <A> | <A> @ <A> | 1 | 2 | 3 | 4 | 5

1. Is the grammar ambiguous?

2. Give two rightmost derivations of 1 ! 2 @ 3 using this grammar.

3. Draw two different parse trees for 1 ! 2 ! 3 using this grammar.

• Consider the following BNF grammars:
Grammar A

<S> : : = <A>
<A> : : = t i c k tock <A>
<A> : : = ε

Grammar B

<S> : : = <A>
<A> : : = <A> t i c k tock

| ε

Grammar C

<S> : : = <A>
<A> : : = t i c k tock <A>

| t i c k tock

For each answer the question, Is the grammar ambiguous? If so, give two different rightmost deriva-
tions for the same sentence. If not, try to explain, why it is not possible for there to be two rightmost
derivations.

• Cooper, Chapter 3, Ex. 3 (p. 157) [Warning: this is a trick question.]

4

