
CS 5363, Fall 2013
Attribute Grammars

1 Reading / Source Material

• Cooper: Chapter 4

• Scott: Chapter 4

2 Objectives: Be able to . . .

1. Given a simple attributed grammar and a sentence in the language described by the gram-
mar, calculate the attributes.

2. Given an attributed grammar, identify attributes of non-terminals for which the attribute is
always inherited

3. Given an attributed grammar, identify attributes of non-terminals for which the attribute is
always synthesized

4. Given an expression grammar in which the productions for left-associative operations have
undergone recursion elimination to produce an LL(1) grammar, be able to write an L-
attribute grammar that evaluates the expression applying left-associativity.

5. write an L-attributed grammar that generates an AST for a typical procedural programming
language described by a BNF and informal semantics

6. given an L-attributed grammar, write a recursive descent parser with ad-hoc rules imple-
menting the attributed grammar

7. write a tree grammar to type-check the AST of programs written in a typical procedural
programming language described by a BNF, informal semantics, and informal type rules

3 Outline

1. Semantic Elaboration (”Context-Sensitive” Analysis)

(a) beyond syntax, beyond context-free grammars

(b) examples:

i. declaration before use
ii. number of parameters in procedural call

iii. types of variables / expressions
iv. return statements

(c) purpose:

i. discover information needed to generate efficient code

1

ii. detect errors

2. Attribute Grammar

(a) context free grammar + attributes + semantic functions

(b) expression example

(c) synthesized attributes

i. rules defining the attribute, define it for the non-terminal on the left-hand side
(lhs) of the production in which the rule occurs

ii. that is, the attribute of a non-terminal is defined in terms of the non-terminal’s
own attributes and those of its children

(d) inherited attributes

i. rules defining the attribute, define it for a non-terminal on the right-hand side
(rhs) of the production in which the rule occurs

ii. that is, the attribute of a non-terminal is defined in terms of the non-terminal’s
own attributes, those of its parents, and those of its siblings

(e) S-attributed grammars

i. an attribute grammar where all attributes are synthesized

(f) L-attributed grammars

i. an attribute grammar where all attributes are inherited or synthesized and satisfy
the following additional constraints:
A. the synthesized attributes of a lhs non-terminal depend only on inherited at-

tributes of that lhs non-terminal and on (synthesized or inherited) attributes
of the rhs non-terminals.

B. the inherited attributes of a rhs non-terminal depend only on inherited at-
tributes of the lhs non-terminal and on (synthesized or inherited) attributes
of rhs non-terminals that occur to the left of the non-terminal for which the
attribute is being defined.

ii. relation to recursive descent parser
A. inherited attributes can be passed as parameters
B. synthesized attributes can be returned as values

3. tree grammars

4 Vocabulary

Attribute Grammar, attribute, synthesized attribute, inherited attribute, L-attributed grammar,
S-attributed grammar

2

5 Questions
1. Consider the following grammar describe the binary numbers that are multiples of four.

<Number> -> 0 | <HighestBit> <List> <DoubleZero>

<HighestBit> -> 1

<DoubleZ> -> 00

<List> -> 1 <List> | 0 <List> |

For example, 1000 is a binary number satisfying the above grammar. Now, suppose

we change it into an attribute grammar with the following attributes, such that

1000’s value is 8 and its HighestBit’s position is 3, that is, the position of the

rightmost 0 is 0.

Symbol Attribute

<Number> value

<List> value, position

<HighestBit> position

(a) Fill in the Attribution Rules for each production.

Production Attribution Rules

--

1 <Number> -> 0 Number.value :=

--

2 <Number> -> <HighestBit> <List> <DoubleZ> HighestBit.position :=

Number.value :=

--

3 <List0> -> 1 <List1> List0.position :=

List0.value :=

--

4 <List0> -> 0 <List1> List0.position :=

List0.value :=

--

5 <List> -> List.value :=

List.position :=

--

(b) Using the above attribute grammar, build the syntax tree for the

binary number 101100, annotating all attributes with the corresponding

value.

(c) Indicate which attributes are inherited and which are synthesized.

(d) Is your attributed grammar L-attributed?

2. Given the attribute grammar:

<A> ::=

^ A.x = B.x

^ B.y = 0

<B1> ::= c <B2>

3

^ B1.x = B2.x + 1

^ B2.y = B1.y + 1

 ::=

^ B.x = 0

(a) Which attributes are synthesized and which are inherited?

(b) Draw a attribute-annotated parse tree for the sentence: ccc

Add arrows showing how attribute information flows between pairs of attributes.

3. Consider the attribute grammar:

<A> ::= x

^ A.result = B.result

<B1> ::= y <B2>

^ B1.result = B2.result + 2

<B1> ::= z <B2>

^ B1.result = B2.result + 1

 ::=

(a) Which attributes are synthesized and which are inherited?

(b) Draw an attribute-annotated parse tree for teh sentence: xzyy

Add arrows showing how attribute information flows between pairs of attributes.

4. Consider the following attributed tree grammar for evaluating an expression

with an integer value of X whose value is 5 and Y whose value is 3.

start: <start> ::= <expr>

^ <expr>.env = <’X’, 5, <’Y’, 3, nil>>

id: <expr> ::=

^ <expr>.val = lookup(id.$literalText$)

int_const: [expr] ::=

^ <expr>.val = text2Integer(int_const.$literalText$)

’+’: <expr1> ::= <expr2> <expr3>

^ <expr2>.symtab = <expr1>.symtab

^ <expr3>.symtab = <expr1>.symtab

^ <expr1>.val = <expr2>.val + <expr3>.val

’*’: <expr1> ::= <expr2> <expr3>

^ <expr2>.symtab = <expr1>.symtab

^ <expr3>.symtab = <expr1>.symtab

^ <expr1>.val = <expr2>.val * <expr3>.val

Assume that int_const and id nodes have a pre-defined attribute

$literalText$ that corresponds to the text of the id or integer

constant, respectively.

Also assume an auxiliary function lookup, defined as follows:

lookup(X, env) = if env = nil

then error

else let <Y, n env2> = env in

if Y = X then n else lookup(X, env2)

end

4

