Lecture slides for Automated Planning: Theory and Practice

Chapter 4 State-Space Planning

Dana S. Nau
University of Maryland

5:05 PM September 16, 2013

Motivation and Outline

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
 - This chapter: state-space planning
 - Each node represents a state of the world
 - A plan is a path through the space

Outline

- Example: container-stacking problems
- Forward search
- Backward search
- Lifting

Container-Stacking Problems

- Another simplified version of DWR
 - One location, one crane
 - k stackable containers
 - \bullet At least k pallets
 - locations to stack containers
- Objects:
 - ◆ Containers = {a,b,c,...} or {c1,c2,...}
 - ◆ Pallets = {p1,p2,p3, ...}
 - ◆ *Positions* = *Containers* U *Pallets*
 - \bullet *Booleans* = $\{\mathsf{T}, \mathsf{F}\}$
- State variables:
 - pos(c) for each $c \in Containers$
 - ightharpoonup Dom(pos(c)) = Positions
 - clear(z) for each $z \in Positions$
 - ightharpoonup Dom(clear(c)) = Booleans

- Example state:
 - clear(a) = clear(b) = clear(c) = F
 - clear(d) = clear(e) = T
 - clear(p1) = clear(p1) = F
 - clear(p2) = clear(p4) = clear(p5)= clear(p6) = T
 - pos(a) = p1, pos(b) = p2, pos(c) = b, pos(d) = c, pos(e) = a

Container-Stacking Problems

One class of action: move

 $move(c: Containers, y: Positions, z: Positions - \{y\})$

Pre: pos(c)=y, clear(c)=T, clear(z)=T

Eff: $pos(c) \leftarrow z$, $clear(y) \leftarrow T$, $clear(z) \leftarrow F$

- Initial state s_0 : arbitrary configuration of the containers
- Goal g is a set of state-variable assignments for pos variables
 - specifies stacks of containers, but not what pallets they're on
- g must represent a set of real states of Σ

$\int_{L}^{\text{i.e.,} D}$ Forward Search

Forward-search (Σ, s_0, g)

- 1. $\pi \leftarrow \langle \rangle$; $s \leftarrow s_0$
- 2. loop
- 3. if s satisfies g then return π
- 4. $A' \leftarrow \{a \in A \mid s \text{ satisfies } \Pr(a)\}$
- 5. if $A' = \emptyset$ then return failure
- 6. nondeterministically choose $a \in A'$
- 7. $s \leftarrow \gamma(s, a)$
- 8. $\pi \leftarrow \pi \cdot a$

For loop checking:

- After line 1, put $Visited = \{s_0\}$
- After line 6, put if $s \in Visited$ then return failure $Visited \leftarrow Visited \cup \{s\}$

Properties

- Forward-search is sound
 - Any plan returned by any of its nondeterministic traces is guaranteed to be a solution
- Forward-search also is **complete**
 - if a solution exists, at least one of Forward-search's nondeterministic traces will return a solution

Deterministic Implementations

 Some deterministic implementations of forward search:

breadth-first search

depth-first search

best-first search (e.g., A*)

greedy search

- Breadth-first and best-first search are sound and complete
 - But often they aren't practical
 - Memory requirement is exponential in the length of the solution
- Planning algorithms often use depth-first search or greedy search
 - Worst-case memory requirement is linear in the length of the solution
 - ◆ Sound but not complete can go down an infinite path and never return
 - But classical planning has only finitely many states
 - Thus, can make depth-first search complete by checking whether the current path contains a cycle

Branching Factor of Forward Search

- Forward search can have a very large branching factor
 - Example: 20 containers, 39 places to move each container
 - ▶ 780 applicable actions
 - all but one are useless for reaching the goal
- Need a good heuristic function and/or pruning procedure
 - Domain-specific algorithm (later in this lecture)
 - Search Heuristics (next lecture)
 - Based loosely on Chapters 9 and 6

Backward Search

- Forward search started at the initial state and computed state transitions
 - $s' = \gamma(s,a)$
- Backward search starts at the goal and computes **inverse** state transitions
 - $g' = \gamma^{-1}(g,a)$
 - g' = properties a state s' should satisfy in order for $\gamma(s',a)$ to satisfy g
- To define $\gamma^{-1}(g,a)$, we need a to be **relevant** for achieving g
 - a could be the last action of a minimal plan that achieves g
 - definition on next slide
- If a is relevant for achieving g, then
 - state-variable notation: $\gamma^{-1}(g,a) = \operatorname{Pre}(a) \cup (g \operatorname{Eff}(a))$
 - classical notation: $\gamma^{-1}(g,a) = \operatorname{precond}(a) \cup (g \operatorname{effects}(a))$
- If a isn't relevant for g, then $\gamma^{-1}(g,a)$ is undefined

Relevance

- Idea: a is **relevant** for g if a could potentially be the last action of a minimal plan that achieves g
- If $g = \{g_1, ..., g_k\}$, then this means
 - **1.** Eff(a) makes at least one g_i true
 - **2.** Eff(a) doesn't make any g_i false
 - 3. Pre(a) doesn't require any g_i to be false *unless* Eff(a) makes g_i true

State-variable representation

- g, Pre(a), and Eff(a) are sets of state-variable assignments (x,c)
- **1.** Eff(a) \cap $g \neq \emptyset$
- 2. $\forall x, c, c'$, if $(x,c) \in \text{Eff}(a)$ and $(x,c') \in g$ then c = c'
- 3. $\forall x, c, c'$, if $(x,c) \in \text{Pre}(a)$ and $(x,c') \in g \text{Eff}(a)$ then c = c'

Classical representation

- g, precond(a), and effects(a) are sets of ground literals
- 1. effects(a) \cap $g \neq \emptyset$
- 2. effects⁻(a) \cap g⁺ = \emptyset ; effects⁺(a) \cap g⁻ = \emptyset
- 3. $(\operatorname{precond}^{-}(a) \operatorname{effects}^{+}(a)) \cap g^{+} = \emptyset;$ $(\operatorname{precond}^{+}(a) - \operatorname{effects}^{-}(a)) \cap g^{-} = \emptyset$

Inverse State Transitions

- If a isn't relevant for g, then $\gamma^{-1}(g,a)$ is undefined
- If a is relevant for g, then
 - state-variable notation: $\gamma^{-1}(g,a) = \operatorname{Pre}(a) \cup (g \operatorname{Eff}(a))$
 - classical notation: $\gamma^{-1}(g,a) = \operatorname{precond}(a) \cup (g \operatorname{effects}(a))$

- Example:
 - ◆ g = {pos(a)=b, pos(b)=c}
 - \bullet a = move(a,p1,b)
- What is $\gamma^{-1}(g,a)$?
- What if a = move(a,p2,b)?

 $move(c: Containers, y: Positions, z: Positions - \{y\})$

Pre: pos(c)=y, clear(c)=T, clear(z)=T

Eff: $pos(c) \leftarrow z$, $clear(y) \leftarrow T$, $clear(z) \leftarrow F$

Backward Search

Backward-search(Σ, s_0, g)

- 1. $\pi \leftarrow \langle \rangle; g' \leftarrow g;$
- 2. loop
- 3. if s_0 satisfies g' then return π
- 4. $A' \leftarrow \{a \in A \mid a \text{ is relevant for } g'\}$
- 5. if $A' = \emptyset$ then return failure
- 6. nondeterministically choose $a \in A'$
- 7. $g' \leftarrow \gamma^{-1}(g', a)$
- 8. $\pi \leftarrow a \cdot \pi$

For loop checking:

- After line 1, put $Solved = \{g\}$
- After line 6, put if $g' \in Solved$ then return failure $Solved \leftarrow Solved \cup \{g'\}$
- More powerful: if $\exists g \in Solved \text{ s.t. } g \subseteq g' \text{ then return failure}$

```
\begin{array}{c} \mathsf{Backward\text{-}search}(O,s_0,g) \\ \pi \leftarrow \mathsf{the}\; \mathsf{empty}\; \mathsf{plan} \\ \mathsf{loop} \\ \mathsf{if}\; s_0 \; \mathsf{satisfies}\; g \; \mathsf{then}\; \mathsf{return}\; \pi \\ \mathsf{applicable} \leftarrow \{a \mid a \; \mathsf{is}\; \mathsf{a}\; \mathsf{ground}\; \mathsf{instance}\; \mathsf{of}\; \mathsf{an}\; \mathsf{operator}\; \mathsf{in}\; O \\ \mathsf{that}\; \mathsf{is}\; \mathsf{relevant}\; \mathsf{for}\; g\} \end{array}
```

if $applicable=\emptyset$ then return failure nondeterministically choose an action $a\in applicable$ $\pi\leftarrow a.\pi$

$$\begin{array}{l}
\pi \leftarrow a.\pi \\
g \leftarrow \gamma^{-1}(g,a)
\end{array}$$

Branching Factor

- Backward search can *also* have a very large branching factor
 - Example: $g = \{pos(c1)=c2\}$
 - 58 relevant actions
 - move c1 to c2 from 18 containers, 40 pallets
- A blind search may waste lots of time trying useless actions

Lifting

- Can reduce the branching factor if we *partially* instantiate the actions
 - this is called lifting

Goal:

Pre: pos(c1)=p move(c1,p,c2) \rightarrow pos(c1)=c2

c1

Lifted Backward Search

- Like Backward-search but more complicated
 - Have to keep track of what substitutions were performed on what parameters
 - But it has a much smaller branching factor
- Classical-planning version:

```
Lifted-backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        A \leftarrow \{(o,\theta)|o \text{ is a standardization of an operator in } O,
                     \theta is an mgu for an atom of g and an atom of effects<sup>+</sup>(o),
                     and \gamma^{-1}(\theta(g), \theta(o)) is defined}
        if A = \emptyset then return failure
        nondeterministically choose a pair (o, \theta) \in A
        \pi \leftarrow the concatenation of \theta(o) and \theta(\pi)
        g \leftarrow \gamma^{-1}(\theta(g), \theta(o))
```

Search Space

- Even with lifting, the search space may *still* be quite large
 - Example:
 - actions a, b, and c are independent, all are relevant for g
 - g is unreachable from s_0
 - try all possible orderings before finding there's no solution
 - This can also happen with forward search
- More about this in Chapter 5 (Plan-Space Planning)

Domain-Specific Planning Algorithms

- Sometimes we can write highly efficient planning algorithms for a specific class of problems
 - Use special properties of that class
- For container-stacking problems with n containers, we can easily get a solution of length O(n)
 - Move all containers to pallets, then build up stacks from the bottom
- With additional domain-specific knowledge, can do even better ...

Container-Stacking Algorithm

loop

repeat

if \exists a clear container c that needs moving & we can move c to a position d where c won't need moving **then** move c to d

else if \exists a clear container c that needs moving **then** move c to any clear pallet else if the goal is satisfied

c needs moving if

- s contains pos(c)=d, and g contains $pos(c)=e, e\neq d$
- s contains pos(c)=d, and g contains $pos(b)=d, b\neq c$
- s contains pos(c)=d, and d needs moving

- The algorithm generates the following sequence of actions:
 - \(\text{move(e,a,p3), move(d,c,e), move(c,b,p4), move(b,p2,c), move(a,p1,b)} \)

Properties of the Algorithm

- Sound, complete, guaranteed to terminate on all container-stacking problems
- Easily solves problems like the Sussman anomaly
- Runs in time $O(n^3)$
 - Can be modified (Slaney & Thiébaux) to run in time O(n)
- Often finds optimal (shortest) solutions
- But sometimes only near-optimal (Exercise 4.22 in the book)
 - ◆ For container-stacking problems, PLAN-LENGTH is NP-complete