Lecture slides for
Automated Planning: Theory and Practice

Chapter 4
State-Space Planning

Dana S. Nau
University of Maryland

5:05PM September 16, 2013

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Motivation and Outline

e Nearly all planning procedures are search procedures
e Different planning procedures have different search spaces
+ This chapter: state-space planning
» Each node represents a state of the world
e A plan is a path through the space

e Outline
+ Example: container-stacking problems
¢ Forward search
¢ Backward search
o Lifting

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Container-Stacking Problems

® Another simplified version of DWR
¢ One location, one crane
¢ k stackable containers
o At least k pallets
» locations to stack containers
e Objects:

o Containers = {a,b,c,...} or {cl,c2,...

o Pallets = {p1,p2,p3, ...}
e Positions = Containers U Pallets
& Booleans = {T, F}
e State variables:
¢ pos(c) for each ¢ € Containers
» Dom(pos(c)) = Positions
o clear(z) for each z € Positions
» Dom(clear(c)) = Booleans

Dana Nau: Lecture slides for Automated Planning

ge)
S
Q.
Ro]
o
©
(@)

N
N

N

} pl p2 p3

e Example state:
¢ clear(a) = clear(b) = clear(c) = F
¢ clear(d) =clear(e) =T
¢ clear(pl) =clear(pl)=F
¢ clear(p2) = clear(p4) = clear(p5)
= clear(p6) =T

¢ pos(a) = p1, pos(b) = p2,
pos(c) = b, pos(d) =c, pos(e) =a

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Container-Stacking Problems

® One class of action: move

move(c: Containers, y: Positions, z: Positions—{y})
Pre: pos(c)=y, clear(c)=T, clear(z)=T
Eff: pos(c)«z, clear(y)«T, clear(z)«F
e Initial state s,: arbitrary configuration of the containers
® Goal gis a set of state-variable assignments for pos variables
+ specifies stacks of containers, but not what pallets they’re on
® g must represent a set of real states of =
¢ e.g., can’t have both

pos(a)=b and pos(a)=c !
e Example: P4| d P> P
ple 5, R | Ve a
a ly oy 7 & L0
pl p2 p3 -

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

i-z-’D Forward Search
Forward-search(%, s, g) For loop checking:

1. w4 (); 54 s e After line 1, put

2 10(?p . Visited = {s,}
3. if s satisfies g then return o After line 6. put
4. A" + {a € A | s satisfies Pre(a)} et e, pu
5 if A’ — & then return failure if s € Visited then return failure
6. nondeterministically choose a € A’ Visited < Visited U {s}
7. s + (s, a)
8. T4 T-Q
d—ﬁ p p6
e C YA ;
10 applicable a |y [by /—
actions . pl p2 p3
- move(d,c,e)
P4 d ||p p6e _—
e I ¢ LT
/g
pl p2 p3 —
move(e,a,p6) : i P | /
Gl
pl p2 p3

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Properties

® Forward-search is sound

+ Any plan returned by any of its nondeterministic traces
1s guaranteed to be a solution

@ Forward-search also is complete

o if a solution exists, at least one of Forward-search’s nondeterministic
traces will return a solution

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Deterministic Implementations

e® Some deterministic implementations

of forward search: q Sy
+ breadth-first search
S _--*> S
¢ depth-first search 0 S) - ss - g
5

+ best-first search (e.g., A*)
+ greedy search
e Breadth-first and best-first search are sound and complete
+ But often they aren’t practical
¢ Memory requirement is exponential in the length of the solution
e Planning algorithms often use depth-first search or greedy search
¢ Worst-case memory requirement is linear in the length of the solution
¢ Sound but not complete — can go down an infinite path and never return
» But classical planning has only finitely many states

» Thus, can make depth-first search complete by checking whether the
current path contains a cycle

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Branching Factor of Forward Search

Y a— A

0

AT aY

cl

7z

c2

pl

p2

7--
7.0

initial state

c20

p20

c2
cl

goal: pos(c2)=cl

e® Forward search can have a very large branching factor

+ Example: 20 containers, 39 places to move each container

» 780 applicable actions

» all but one are useless for reaching the goal

® Need a good heuristic function and/or pruning procedure

¢ Domain-specific algorithm (later in this lecture)

+ Search Heuristics (next lecture)

» Based loosely on Chapters 9 and 6

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Backward Search

e Forward search started at the initial state and computed state transitions
* s'=vy(s,a)
@ Backward search starts at the goal and computes inverse state transitions

* g'=v(ga)
o g'=properties a state s’ should satisfy in order for y(s’,a) to satisfy g

e To define y~'(g,a), we need a to be relevant for achieving g
¢ a could be the last action of a minimal plan that achieves g

¢ definition on next slide

e If a is relevant for achieving g, then
¢ state-variable notation: y '(g,a) = Pre(a) U (g — Eff(a))
+ classical notation: y~1(g,a) = precond(a) U (g — effects(a))

e If aisn’trelevant for g, then y~'(g,a) is undefined

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Relevance

® Idea: a is relevant for g if a could potentially be the last action of a
minimal plan that achieves g

e Ifg=1{g, ..., g}, then this means
1. Eff(a) makes at least one g; true
2. Eff(a) doesn’t make any g; false
3. Pre(a) doesn’t require any g; to be false unless Eff(a) makes g; true

State-variable representation Classical representation
* g, Pre(a), and Eff(a) are sets of * g, precond(a), and effects(a)
state-variable assignments (x,c¢) are sets of ground literals
1. Effa) Ng# I 1. effects(a) N g+ I
2. Vx,c,c' if (x,c) € Eff(a) and 2. effects™(a) N g* = ;
(x,c)E gthenc=c' effects'(a) Ng =9
3. Vx,c,c,if (x,c) € Pre(a) and 3. (precond(a) — effects™(a)) N g* = J;
(x,c") € g — Eff(a) then c = ¢’ (precond*(a) — effects(a)) N g~ =

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

10

Inverse State Transitions

e If aisn’t relevant for g, then y~!(g,a) is undefined
e If a is relevant for g, then

¢ state-variable notation: y '(g,a) = Pre(a) U (g — Eff(a))

+ classical notation: y~1(g,a) = precond(a) U (g — effects(a))
e Example: ‘; !
¢ g={pos(a)=b, pos(b)=c} ¢ . . .
_ 1,b P d P P
¢ a=move(a,pl,b) g - [< 1] i ,
0] 9 a_)y by, /
e Whatis y'(ga)" o1 02 3

e What if a = move(a,p2,b) ? . » .
move(c: Containers, y: Positions, z: Positions—{y})
Pre: pos(c)=y, clear(c)=T, clear(z)=T
Eff: pos(c)«z, clear(y)«T, clear(z)«F

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Backward Search

Backward-search(X, so, g) For loop checking:
L m«(); 9« g e After line 1, put
2. loop Solved = {g}
3. if 5o satisfies ¢’ then return = o After line 6. put
4, A’ + {a € A a is relevant for ¢’} . » PR _
5 £ A’ — & then return failure if g’ € Solved then return failure
6. nondeterministically choose a € A’ Solved «— Solved U {g'}
7. g v 1(d,a) e More powerful:
8. T a- T if 3g € Solved s.t. g C g’ then return failure

Backward-search(0O, sg, g) 84 s & %

7 + the empty plan \

loop S0l / g,
if s satisfies g then return 7 " 8 =
applicable < {a | a is a ground instance of an operator in O

that is relevant for g}

if applicable =) then return failure
nondeterministically choose an action a € applicable

m<Qa.m
g v (g,a) "

Branching Factor

(———7] Pre:
Initial state: $ pos(cl)=c3 | move(cl,c3,c2) =
e o
VARSI V/ 7| A e
oy pos(c1)=c20 | move(cl,c20,c2) oal.
e pos(cl)=c2

pl p2 p20 pos(cl)=pl| move(cl,pl,c2)

\\.//

pos(c1)=p40| move(cl,p40,c2)

e Backward search can also have a very large branching factor
¢ Example: g = {pos(cl)=c2}
+ 58 relevant actions
» move cl to c2 from 18 containers, 40 pallets
e® A blind search may waste lots of time trying useless actions

Dana Nau: Lecture slides for Automated Planning 13

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Lifting

(————Z /] Pre:
Initial state: : pos(cl)=c3 | move(cl,c3,c2) o1
e c2
[/ P2l p22y . L pa0/ Goal:
7 pos(c1)=c20 | move(cl,c20,c2) Odl.
cl 7 c2 7 o c20 |/, > pOS(C1)=C2
b1 b2 p20 pos(c1)=p1 | move(cl,p1,c2) /
pos(c1)=p40| move(cl,p40,c2)
® Can reduce the branching factor if cl
we partially instantiate the actions c2
Goal:

o this is called lifting
Pre: pos(cl)=p

Dana Nau: Lecture slides for Automated Planning

— pos(cl)=c2

move(cl,p,c2)

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Lifted Backward Search

e Like Backward-search but more complicated
¢ Have to keep track of what substitutions were performed on what parameters

+ But it has a much smaller branching factor

e C(lassical-planning version:

Lifted-backward-search(O, s, g)
m «— the empty plan
loop
if s satisfies g then return =
A «— {(0,0)|o is a standardization of an operator in O,
6 is an mgu for an atom of g and an atom of effects™ (0),
and v 1(6(g),0(0)) is defined}
if A = () then return failure
nondeterministically choose a pair (0,0) € A
7 « the concatenation of #(0) and #(m)

g —~1(0(g),0(0))

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

15

Search Space

e Even with lifting, the search space may sti/l be quite large
¢ Example:
» actions a, b, and ¢ are independent, all are relevant for g
» g is unreachable from s,
» try all possible orderings before finding there’s no solution
¢ This can also happen with forward search
® More about this in Chapter 5 (Plan-Space Planning)

fail — La b >
c
fall e ees b a
o b a
5, fail > 5 g
fail —— L4 ¢
fait — - DIl o
fail —— c b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

16

Domain-Specific Planning Algorithms

)
—p4| d |fp5 P6 a ——
So e AL g d
a g lb)7 c) Le
pl p2 p3

e Sometimes we can write highly efficient planning algorithms for a
specific class of problems

+ Use special properties of that class

e For container-stacking problems with n containers, we can easily get a
solution of length O(n)

¢ Move all containers to pallets, then build up stacks from the bottom
e With additional domain-specific knowledge, can do even better ...

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

17

Container-Stacking Algorithm

loop
if d a clear container ¢ that needs moving
& we can move c to a position d
where ¢ won’t need moving

® c needs moving if

s contains pos(c)=d, and
g contains pos(c)=e, e#d

then move ¢ to d + s contains pos(c)=d, and
else if 3 a clear container ¢ that needs moving g contains pos(b)=d, b#c
then move c to any clear pallet + s contains pos(c)=d, and
else if the goal is satisfied d needs moving
then return success (7
else return failure 0
repeat 7
——P4| d |5 p6 a —
S (I A ¢ b [
2)y Loy c [Le
pl p2 p3

e The algorithm generates the following sequence of actions:
¢ (move(e,a,p3), move(d,c,e), move(c,b,p4), move(b,p2,c), move(a,pl,b)’

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Properties of the Algorithm

e® Sound, complete, guaranteed to terminate on all container-stacking problems

e Easily solves problems like the Sussman anomaly

e Runs in time O(n?)
+ Can be modified (Slaney & Thiebaux) to run in time O(n)

e Often finds optimal (shortest) solutions
e® But sometimes only near-optimal (Exercise 4.22 in the book)
+ For container-stacking problems, PLAN-LENGTH 1s NP-complete

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

19

