Lecture slides for
Automated Planning: Theory and Practice

Chapter 11
Hierarchical Task Network Planning

Dana S. Nau
University of Maryland

12:50 PM September 27, 2013

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Motivation

@ For some planning problems, we may already have ideas for how to look
for solutions

e Example: travel to a destination that’s far away:

+ Brute-force search:
» many combinations of vehicles and routes

¢ Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

e How to provide such information to a planning system?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Two Approaches

e Control rules (chapter 10): depth-first-search(D, so, g)
+ Write rules to prune actions that < {); 8 ¢ o
don’t fit the recipe loqp ,
. _ if s satisfies g then return
o Hlera.rchlcal Task Network (HTN) A’ < {a | s satisfies Pre(a)}
planning: (let ActC A’)
¢ Describe how to consider only the while Act # @ do
actions that do fit the recipe select a € Act
remove a from Act
s < v(s,a)
T4 T-a

return failure

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning

e Ingredients
¢ states and actions

¢ tasks: activities to perform st East
+ methods: ways to perform the activities ‘] [}
¢ planning algorithm

e HTN planners may be domain-specific SOl

» Chapter 20 (robotics) [’
» Chapter 23 (bridge)
® Or domain-configurable

¢ Domain-independent planning algorithm

¢ Domain model includes definitions of
tasks and methods

¢ Planner needs to be able to read and
understand them

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

States and Tasks

e

e State: description of the current situation home
¢ I’m at home, I have $20, there’s a park 8 miles away @

e® Task: description of an activity to perform
¢ Travel to the park
park
e® Two kinds of tasks
+ Primitive task: a task that corresponds to a basic action

¢ Compound task: a task that is composed of other simpler tasks

e This time I won’t require everything to be function-free
o That was needed in Chapters 4 and 5, but not here
e Formulas can include functions and state variables

e Not every variable needs to be an argument

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Parameterized actions

® walk (a: Agents, x: Locations, y.: Locations)
¢ Pre:loc(a)=x
o Eff: loc(a) «—y

® call-taxi (a: Agents, x: Locations)
¢ Pre: —
o Eff: loc(taxi) «— x

® ride-taxi (a: Agents, x: Locations, y.: Locations)
o Pre: loc(a) = x, loc(taxi) = x
o Eff: loc(a) < y, loc(taxi) < y, owe(a) «— 1.50 + % dist(x,y)

® pay-driver(a: Agents)
& Pre: owe(a) =r, cash(a) >r
¢ Pre: owe(a) <« 0, cash(a) < cash(a) —r

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Methods

® Method: parameterized description of a possible way to perform a compound
task by performing a collection of subtasks

® There may be more than one method for the same task

¢ travel-by-foot(a, x, y)
» Task: travel(q, x, y)
» Pre: loc(a,x), distance(x, y) < 4
» Sub: walk(a, x, y)

o travel-by-taxi(a, x, y)
» Task: travel(q, x, y)
» Pre: loc(a,x), cash(a) > 1.50 + % dist(x,y)
» Sub: call-taxi (a,x), ride-taxi(a,x,y), pay-driver(a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Simple Travel-Planning Problem

® Left-to-right backtracking search — SHOP, Pyhop, TFD (in the book) ﬁ

travel(me,home,park) home

travel-by-foot(me,home,park) travel-by-taxi(me,home,park)
Pre:

: Pre:
‘/Ioc(me,home) ‘/Ioc(me home)

; X dist(home,park) < 4 cash(me) > 1.5+0.5*dist(home,park)

Backtrack /\ park

. call-taxi(me,home) @ ride-taxi(me,home park) pay-driver(me) @
: |) ,-
o Precond: ... Precond: ... Precond: ... _,_"
nitial % | Bfects: ... :, Effects: ... Effects: ... Final
state ! .' .’I ; / state .
(Ioc(me) = home \ (Ioc(me) = home | loc(me) = park loc(me) = park
cash(me) = cash(me) = cash(me) = 20 cash(me) = 14.5
dist(home,park) =8 | |dist(home,park) =8 dist(home,park) =8| |dist(home,park) =
loc(taxi) = elsewhere| [loc(taxi) = home loc(taxi) = park loc(taxi) = park
owe(me) = 5.50 owe(me) =
Dana Nau: Lecture slides for Automated Planning .

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

SHOP and SHOP2

® SHOP and SHOP2:
& http://www.cs.umd.edu/projects/shop

¢ HTN planning systems

¢ SHOP2 an award in the AIPS-2002 Planning Competition
e Instead of state variables, used “classical plus functions™
e Freeware, open source

¢ Downloaded more than 20,000 times

¢ Used in many hundreds of projects worldwide

» Government labs, industry, academia

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Bridge

East

Ideal: game-tree search (all lines of play) to compute expected utilities
Don’t know what cards other players have North
¢ Many moves they might be able to make "?/] e ‘:9
» worst case about 6x104* leaf nodes o6l | [es]]
» average case about 10%* leaf nodes *s -
About 12 minutes available West s
Not enough time — need smaller tree ¢ wa'e
Bridge Baron
¢ 1997 world champion of computer bridge e
Special-purpose HTN planner that generates game trees
+ Branches < standard bridge card plays (finesse, ruff, cash out, ...)
¢ Much smaller game tree: can search it and compute expected utilities
Why it worked:

+ Special-purpose planner to generate trees rather than linear plans

¢ Lots of work to make the HTN methods as complete as possible

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

10

KILLZONE 2

e Special-purpose HTN planner for planning at the squad level
¢ Method and operator syntax similar to SHOP’s and SHOP2’s
¢ Quickly generates a linear plan that would work if nothing interferes
+ Replan several times per second as the world changes
® Why it worked:
+ Very different objective from a bridge tournament
¢ Don’t want to look for the best possible play
+ Need actions that appear believable and consistent to human users
¢ Need them very quickly

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

11

Pyhop

e® A simple HTN planner written in Python
¢ Works in both Python 2.7 and 3.2

® Planning algorithm is like the one in SHOP
@ Main differences:
¢ HTN operators and methods are ordinary Python functions
+ The current state is a Python object that contains variable bindings
» Operators and methods refer to states explicitly

» To say c1s on a, write s.loc['c'] = 'a" where s 1s the current state

e Easy to implement and understand S
¢ Less than 150 lines of code c
® Open-source software, Apache license & ‘ b ‘

¢ http://bitbucket.orqg/dananau/pvhop

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Actions

walk(a: Agents, x: Locations, y: Locations)
Pre: loc(a) = x
Eft: loc(a) =y

call-taxi(a. Agents, x.: Locations)
Pre: —
Eff: loc(taxi) = x

ride-taxi(a: Agents, x: Locations,
y: Locations)
Pre: loc(a) = x, loc(taxi) = x
Eft: loc(a) =y, loc(taxi) =y,
owe(a) = 1.50 + 'z distance(x,)

pay-driver(a: Agents)
Pre: owe(a) =r, cash(a) > r
Pre: owe(a) =r,
cash(a) = cash(a) — r

def walk(state,a,x,y):
if state.loc[a] == x:
state.loc[a] =y
return state
else: return False

def call_taxi(state,a,x):
state.loc['taxi'] = x
return state

def ride_taxi(state,a,x,y):
if state.loc['taxi']==x and state.loc[a]==Xx:
state.loc['taxi'] =y
state.loc[a] =y
state.owe[a] = 1.5 + 0.5*state.dist[x][y]
return state
else: return False

def pay_driver(state,a):
if state.cash[a] >= state.owe[a]:
state.cash[a] = state.cash[a] — state.owe]a]
state.owefa] =0
return state
else: return False

declare_operators(walk, call_taxi, ride_taxi, pay_driver)

Methods

travel-by-foot(a, x,) def travel_by_foot(state,a,x,y):
Task: travel(a,x,) if state.dist[x][y] <= 4:
Pre: loc(a,x), distance(x,y) < 4 return [(‘walk’,a,x,y)]
Sub: walk(a,x,)) return False
travel-by-taxi(a,x,y) def travel by taxi(state,a,x,y):
Task: travel(a,x,y) if state.cash[a] >= 1.5 + 0.5*state.dist[x][y]:
Pre: cash(a) > 1.5 + 0.5*dist(x,y) return [('call_taxi',a,x),
Sub: call-taxi (a,x), ('ride_taxi',a,x,y),
ride-taxi (a,x,y), (‘pay_driver',a,x,y)]
pay-driver(a) return False

declare_methods('travel’, travel _by foot, travel by taxi)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-s

Travel Planning Problem

Initial state:
loc(me) = home, cash(me) = 20, dist(home,park) = 8

statel = State('statel’) ﬁ
statel.loc = {'me':'home’}
statel.cash = {'me':20} home

statel.owe = {'me’:0} @
statel.dist = {'home':{'park':8}, '‘park':{’"home"':8}}

Task:
travel(me,home,park)

Invoke the planner park
pyhop(statel,[('travel','me’,'home’,'park’)])

Solution plan:
call-taxi(me,home), ride-taxi(me,park), pay-driver(me)

[(‘call_taxi', 'me', 'home'), (‘ride_taxi', 'me’, 'home’, 'park’), ('pay_driver', 'me')]

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Total-Order HTN Planning

@ State-variable version of what the
book calls STN planning

® Planning domain: a pair (£,M)
& X: state-transition system
» parameterized PE-specification

& M: set of methods
» Parameterized specifications:

method-name(args)
Task: task-name(args)
Pre: preconditions
Sub: [ist of subtasks

e Planning problem: (X, M, s, T)
o T={t,t), .., 1

e Solution: any executable plan that

can be generated by applying
¢ methods to monprimitive tasks
actions to primitive tasks

nonprimitive task

method instance

7-/ \\:

primitive task

precond

primitive task

e Task specification:

So

precond| |effects

& task-name(args)

Dana Nau: Lecture slides for Automated Planning

s, precond| |effects

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

16

Planning Algorithm

® TFD(X, M, s, T) state-variable version of the algorithm in the book
o if 7= () then return <)

¢ letthe tasksin Tbet, ¢, ..., 1, ie., T={t, by, ...,)
¢ if ¢, 1s primitive then
» Act = {a | head(a) matches ¢, and a 1s applicable in s}
» if Act = & then return failure
» nondeterministically choose any a € Act
» T=TFD(Z, y(s,a), {ty,....t;) action @
» 1f 7 = failure then return failure

state s, task list 7=(|¢, |.¢,,...)

state|y(s,a) |, task list 7=z, ...)

» elsereturna o
* clse t, is nonprimitive

» Act = {m € M| task(m) matches ¢, and m 1s applicable in s}

» 1f Act = D then return failure state s, task list 7={ ¢, |,t,,...)

» nondeterministically choose any a € Act method m

» return TFD(Z, M, s, sub(m) * {t,,...,t;))
state s, task list 7=(|uy,.. . 1) | 15, .. .)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning in General

@ SHOP uses the book version of TFD
+ Pyhop uses the state-variable version
® Other formalisms and algorithms
¢ Some of them use partially ordered tasks
» Total-order forward search — PFD in the book, SHOP2
» Plan-space planning — SIPE, O-Plan, UMCP
e These allow more constraints than just preconditions
- postconditions, “during’” conditions, etc.
+ Some of them use goals and subgoals instead of tasks and subtasks
» Angelic Hierarchical A*
» GDP, GoDeL

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

18

Comparison to Forward and Backward Search

e In HTN planning, more possibilities than just forward or backward

» A little like the choices to make in parsing algorithms
e SHOP, Pyhop, GDP, GoDeL.:

¢ down, then forward y task g
+ backtracking / \
e SIPE, O-Plan, UMCP task task
plan-space \
(down and backward) ¥ [task o task
e Angelic Hierarchical A* / F_‘ / }_‘ / \
use abstract actions to task |...|task | [task]|...[task | |task|...[task| |task ... task

produce abstract states
o forward A*, at the top level
¢ forward A*, one level down
.’ ...

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

HTN Planning vs. Domain-Independent Planning

e® Advantage: HTN planners can encode “recipes” as collections of methods
and operators

+ Express things that can’t be expressed in classical planning
+ Specify standard ways of solving problems

» Otherwise, the planning system would have to derive these again
and again from “first principles,” every time it solves a problem

» Can speed up planning by many orders of magnitude (e.g.,
polynomial time versus exponential time)

e® Disadvantage: writing and debugging an HTN domain model can be much
more work than just writing actions

e In problems that a classical planner can solve, why go to the trouble?

o If 1t’s important to achieve high performance

+ If you need more expressive power than classical planners can provide
® Otherwise it might not be worth the effort

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

AIPS 1998

Planning
Examp le Competition
e All of the competitions included domain-independent planners AIPS 2000
e AIPS 2000 and IPC 2002 also included configurable planners Plannipg
e® The configurable planners Competition
+ Solved the most problems TN
¢ Solved them the fastest s B
¢ Usually found better solutions “UU
¢ Worked in non-classical planning domains that were T

beyond the scope of the domain-independent planners
e® Subsequent competitions didn’t include configurable planners P74
e Hard to enter them in the competition

¢ Must write all the domain knowledge yourself _-Lr‘-“-:w
¢ Too much trouble except to make a point A NNL
¢ The authors of TLPlan, TALplanner, and SHOP2 felt they SRS

had already made their point

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

