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AbstractThe Data Encryption Standard (DES) is the best known and mostwidely used cryptosystem for civilian applications. It was developedat IBM and adopted by the National Buraeu of Standards in the mid70's, and has successfully withstood all the attacks published so far inthe open literature. In this paper we develop a new type of cryptan-alytic attack which can break the reduced variant of DES with eightrounds in a few minutes on a PC and can break any reduced variant ofDES (with up to 15 rounds) in less than 256 operations. The new at-tack can be applied to a variety of DES-like substitution/permutationcryptosystems, and demonstrates the crucial role of the (unpublished)design rules.1 IntroductionIterated cryptosystems are a family of cryptographically strong functionsbased on iterating a weaker function n times. Each iteration is called a roundand the cryptosystem is called an n-round cryptosystem. The round functionis a function of the output of the previous round and of a subkey which is akey dependent value calculated via a key scheduling algorithm. The roundfunction is usually based on S boxes, bit permutations, arithmetic operationsand the exclusive-or (denoted by � and XOR) operations. The S boxes arenonlinear translation tables mapping a small number of input bits to a smallnumber of output bits. They are usually the only part of the cryptosystemthat is not linear and thus the security of the cryptosystem crucially dependson their choice. The bit permutation is used to rearrange the output bits ofthe S boxes in order to make the input bits of each S box in the followinground depend on the output of as many S boxes as possible. The XOR op-eration is often used to mix the subkey with the data. In most applicationsthe encryption algorithm is assumed to be known and the secrecy of the datadepends only on the secrecy of the randomly chosen key.An early proposal for an iterated cryptosystems was Lucifer[7], which wasdesigned at IBM to resolve the growing need for data security in its products.The round function of Lucifer has a combination of non linear S boxes and a1



bit permutation. The input bits are divided into groups of four consecutivebits. Each group is translated by a reversible S box giving a four bit result.The output bits of all the S boxes are permuted in order to mix them whenthey become the input to the following round. In Lucifer only two �xed Sboxes (S0 and S1) were chosen. Each S box can be used at any S box locationand the choice is key dependent. Decryption is accomplished by running thedata backwards using the inverse of each S box.The Data Encryption Standard (DES) [15] is an improved version ofLucifer. It was developed at IBM and adopted by the U.S. National Bureau ofStandards (NBS) as the standard cryptosystem for sensitive but unclassi�eddata (such as �nancial transactions and email messages). DES has becomea well known and widely used cryptosystem. The key size of DES is 56 bitsand the block size is 64 bits. This block is divided into two halves of 32 bitseach. The main part of the round function is the F function, which workson the right half of the data using a subkey of 48 bits and eight (six-bit tofour-bit) S boxes. The 32 output bits of the F function are XORed withthe left half of the data and the two halves are exchanged. The completespeci�cation of the DES algorithm appears in [15].An extensive cryptanalytic literature on DES was published since itsadoption in 1977. Yet, no short-cuts which can reduce the complexity ofcryptanalysis to less than half of exhaustive search were ever reported in theopen literature.The 50% reduction[9] (under a chosen plaintext attack) is based on thefollowing symmetry under complementation:T = DES(P;K)implies that �T = DES( �P ; �K)where �X is the bit by bit complementation of X. Cryptanalysis can exploitthis symmetry if two plaintext/ciphertext pairs (P1, T1) and (P2, T2) areavailable with P1 = �P2 (or similarly T1 = �T2). The attacker encrypts P1under all the 255 keys K whose least signi�cant bit is zero. If such a ciphertextT is equal to T1 then the corresponding key K is likely to be the real key.If T = �T2 then �K is likely to be the real key. Otherwise neither K nor �K2



can be the real key. Since testing whether T = �T2 is much faster than anencryption, the computational saving is very close to 50%.Di�e and Hellman[6] suggested exhaustive search of the entire key spaceon a parallel machine. They estimate that a VLSI chip may be built whichcan search one key every microsecond. By building a search machine witha million such chips, all searching in parallel, 1012 keys can be searched persecond. The entire key space contains about 7 � 1016 keys and it can besearched in 105 seconds which is about a day. They estimate the cost of thismachine to be $20-million and the cost per solution to be $5000.Hellman[8] presented a time memory tradeo� method for a chosen plain-text attack which takes mt words of memory and t2 operations provided mt2equals the number of possible keys (256 for DES). A special case (m = t)of this method takes about 238 time and 238 memory, with a 256 preprocess-ing time. Hellman suggests a special purpose machine which produces 100solutions per day with an average wait of one day. He estimates that themachine costs about $4-million and the cost per solution is about $1{100.The preprocessing is estimated to take 2.3 years on the same machine.The Method of Formal Coding in which the formal expression of eachbit in the ciphertext is found as a XOR sum of products of the bits of theplaintext and the key was suggested in [9]. The formal manipulations ofthese expressions may decrease the key search e�ort. Schaumuller-Bichl[16,17] studied this method and concluded that it requires an enormous amountof computer memory which makes the whole approach impractical.In 1987 Chaum and Evertse[2] showed that a meet in the middle attackcan reduce the key search for DES reduced to a small number of rounds bythe following factors:Number of Rounds Reduction Factor4 2195 296 227 {They also showed that a slightly modi�ed version of DES reduced to seven3



rounds can be solved with a reduction factor of 2. However, they proved thata meet in the middle attack of this kind is not applicable to DES reduced toeight or more rounds.In their method they look for a set of data bits (J) in a middle round anda set of key bits (I) for which any change of the values of the I bits cannotchange the value of the J bits in either directions. Knowing those �xed setsand given several plaintext/ciphertext pairs the following algorithm is used:1. Try all the keys in which all the key bits in I are zero. Partially encryptand decrypt a plaintext/ciphertext pair to get the data in the middleround.2. Discard the keys for which the J bits are not the same under partialencryption/decryption.3. For the remaining keys try all the possible values of the key bits in I.This algorithm requires about 256�jIj + 2jIj encryption/decryption attempts.In the same year, Donald W. Davies[3] described a known plaintext crypt-analytic attack on DES. Given su�cient data, it could yield 16 linear rela-tionships among key bits, thus reducing the size of a subsequent key searchto 240. It exploited the correlation between the outputs of adjacent S boxes,due to their inputs being derived from, among other things, a pair of iden-tical bits produced by the bit expansion operation. This correlation couldreveal a linear relationship among the four bits of key used to modify theseS box input bits. The two 32-bit halves of the DES result (ignoring IP) re-ceive these outputs independently, so each pair of adjacent S boxes could beexploited twice, yielding 16 bits of key information.The analysis does not require the plaintext P or ciphertext T but usesthe quantity P �T and requires a huge number of random inputs. The S boxpairs vary in the extent of correlation they produce so that, for example, thepair S7/S8 needs about 1017 samples but pair S2/S3 needs about 1021. Withabout 1023 samples, all but the pair S3/S4 should give results (i.e., a total of14 bits of key information). To exploit all pairs the cryptanalyst needs about1026 samples. The S boxes do not appear to have been designed to minimize4



the correlation but they are somewhat better than a random choice in thisrespect. Since the number of samples is larger than the 264 size of the samplespace, this attack is purely theoretical, and cannot be carried out. However,for DES reduced to eight rounds the sample size of 1012 or 1013 (about 240)is on the verge of practicality. Therefore, Davies' analysis had penetratedmore rounds than previously reported attacks.During the last decade several cryptosystems which are variants of DESwere suggested. Schaumuller-Bichl suggested three such cryptosystems [16,18]. Two of them (called C80 and C82) are based on the DES structure withthe replacement of the F function by nonreversible functions. The thirdone, called The Generalized DES Scheme (GDES), is an attempt to speedup DES. GDES has 16 rounds with the original DES F function but with alarger block size which is divided into more than two parts. She claims thatGDES increases the encryption speed of DES without decreasing its security.Another variant is the Fast Data Encryption Algorithm (Feal). Feal wasdesigned to be e�ciently implementable on an eight bit microprocessor. The�rst version of Feal[20], called Feal-4, has four rounds. Feal-4 was brokenby Den-Boer[4] using a chosen plaintext attack with 100{10000 encryptions.The creators of Feal reacted by introducing a new version, called Feal-8, witheight rounds and additional XORs of the plaintext and the ciphertext withsubkeys[19,14]. Both versions were described as cryptographically betterthan DES in several aspects.In this paper we describe a new kind of attack that can be applied tomany DES-like iterated cryptosystems. This is a chosen plaintext attackwhich uses only the resultant ciphertexts. The basic tool of the attack is theciphertext pair which is a pair of ciphertexts whose plaintexts have particulardi�erences. The two plaintexts can be chosen at random, as long as theysatisfy the di�erence condition, and the cryptanalyst does not have to knowtheir values. The attack is statistical in nature and can fail in rare instances.The main results described in this paper are as follows (note that thecomplexities we quote are based on the number of encryptions needed tocreate all the necessary pairs on the target machine, while the attackingalgorithm itself uses fewer and simpler operations). DES reduced to sixrounds was broken in less than 0.3 seconds on a personal computer using 2405



Rounds Complexity4 246 288 2169 22610 23511 23612 24313 24414 25115 25216 258Table 1. Summary of the cryptanalysis of DES.ciphertexts. DES reduced to eight rounds was broken in less than two minuteson a computer by analysing 15000 ciphertexts chosen from a pool of 50000candidate ciphertexts. DES reduced to up to 15 rounds is breakable fasterthan exhaustive search, but DES with 16 rounds still requires 258 steps (whichis slightly higher than the complexity of exhaustive search). A summary ofthe cryptanalytic results on DES reduced to intermediate number of roundsappears in table 1.Some researchers have proposed to strengthen DES by making all thesubkeys Ki independent (or at least to derive them in a more complicatedway from a longer actual key K). Our attack can be carried out even inthis case. DES reduced to eight rounds with independent subkeys (i.e., with8 � 48 = 384 independent key bits which are not compatible with the keyscheduling algorithm) was broken in less than two minutes using the sameciphertexts as in the case of dependent subkeys. The full DES with inde-pendent subkeys (i.e., with 16 � 48 = 768 independent key bits) is breakablewithin 261 steps. As a result, any modi�cation of the key scheduling algo-rithm cannot make DES much stronger. The attacks on DES reduced to 9{16rounds are not inuenced by the P permutation and the replacement of theP permutation by any other permutation cannot make them less successful.On the other hand, the replacement of the order of the eight DES S boxes6



(without changing their values) can make DES much weaker: DES with 16rounds with a particular replaced order is breakable in about 246 steps. Thereplacement of the XOR operation by the more complex addition operationmakes this cryptosystem much weaker. DES with random S boxes is shownto be very easy to break. Even a minimal change of one entry in one of theDES S boxes can make DES easier to break. GDES is shown to be triviallybreakable with six encryptions in less than 0.2 seconds, while GDES withindependent subkeys is breakable with 16 encryptions in less than 3 seconds.This attack is applicable also to a wide variety of DES-like cryptosystems.In forthcoming papers we describe several extensions to our new attack. Lu-cifer reduced to eight rounds can be broken using less than 60 ciphertexts (30pairs). The Feal-8 cryptosystem can be broken with less than 2000 cipher-texts (1000 pairs) and the Feal-4 cryptosystem can be broken with just eightciphertexts and one of their plaintexts. As a reaction to our attack on Feal-8,its creators introduced Feal-N[11], with any even number of rounds N. Theysuggest the use of Feal-N with 16 and 32 rounds. Feal-NX[12] is similar toFeal-N with the extension of the key size to 128 bits. Nevertheless, Feal-Nand Feal-NX can be broken for any N � 31 rounds faster than exhaustivesearch.Di�erential cryptanalytic techniques are applicable to hash functions, inaddition to cryptosystems. For example, the following messages hash to thesame value in Merkle's Snefru[10] function with two passes:� 00000000 00000000 00000000 00000000 00000000 0000000000000000 00000000 00000000 00000000 00000000 00000000� 00000000 f1301600 13dfc53e 4cc3b093 37461661 ccd8b94d24d9d35f 71471fde 00000000 00000000 00000000 00000000� 00000000 1d197f00 2abd3f6f cf33f3d1 8674966a 816e5d51acd9a905 53c1d180 00000000 00000000 00000000 00000000� 00000000 e98c8300 1e777a47 b5271f34 a04974bb 44cc8b62be4b0efc 18131756 00000000 00000000 00000000 00000000and the following two messages hash to the same value in a variant ofMiyaguchi's N-Hash[13] function with six rounds:7



� CAECE595 127ABF3C 1ADE09C8 1F9AD8C2� 4A8C6595 921A3F3C 1ADE09C8 1F9AD8C2.2 Introduction to di�erential cryptanalysisDi�erential cryptanalysis is a method which analyses the e�ect of particulardi�erences in plaintext pairs on the di�erences of the resultant ciphertextpairs. These di�erences can be used to assign probabilities to the possiblekeys and to locate the most probable key. This method usually works onmany pairs of plaintexts with the same particular di�erence using only theresultant ciphertext pairs. For DES-like cryptosystems the di�erence is cho-sen as a �xed XORed value of the two plaintexts. In this introduction weshow how these di�erences can be analyzed and exploited.We now introduce the following notation:nx: An hexadecimal number is denoted by a subscript x (i.e., 10x = 16).X�, X 0: At any intermediate point during the encryption of pairs of mes-sages, X and X� are the corresponding intermediate values of the twoexecutions of the algorithm, and X 0 is de�ned to be X 0 = X �X�.P (X): The P permutation is denoted by P (X). Note that P as a variabledenotes the plaintext.E(X): The E expansion is denoted by E(X).IP (X): The initial permutation. In this paper the existence of IP and IP�1are ignored, since they have no cryptanalytic signi�cance in our attack.P : The plaintext (after the known initial permutation IP ) is denoted by P .P � is the other plaintext in the pair and P 0 = P � P � is the plaintextsXOR.T : The ciphertexts of the corresponding plaintexts P , P � (before the inverseinitial permutation IP�1) are denoted by T and T �. T 0 = T � T � isthe ciphertexts XOR. 8



(L;R): The left and right halves of the plaintext P are denoted by L and Rrespectively.(l; r): The left and right halves of the ciphertext T are denoted by l and rrespectively.a, . . . , j: The 32 bit inputs of the F function in the various rounds. See�gure 1. Note that a = R.A, . . . , J: The 32 bit outputs of the F function in the various rounds. See�gure 1.Si: The S boxes S1, S2, . . . , S8.SiEX, SiKX, SiIX , SiOX: The input of Si in round X is denoted by SiIX forX 2 fa; : : : ; jg. The output of Si in round X is denoted by SiOX . Thevalue of the six subkey bits entering the S box Si is denoted by SiKX andthe value of the six input bits of the expanded data (E(X)) which areXORed with SiKX to form SiIX is denoted by SiEX . The S box numberi and the round marker X are optional. For example S1Ea denotes the�rst six bits of E(a). S1Ka denotes the �rst six bits of the subkey K1.S1Ia denotes the input of the S box S1 which is S1Ia = S1Ea � S1Ka.S1Oa denotes the output of S1 which is S1Oa = S1(S1Ia). See �gure 2.De�nition 1 An independent key is a list of n subkeys which is not neces-sarily derived from the key scheduling algorithm.Example 1 DES has 216�48 = 2768 possible independent keys, but only 256possible keys. Note that every key can be viewed as a special type of anindependent key.Remark To simplify the probabilistic analysis of our attack, we assume thatall the subkeys are independent. Attacks on DES with dependent subkeysseem to be just as successful in practice, but their theoretical analysis is muchharder.Let us recall how the DES F function behaves in these terms. The Ffunction takes a 32 bit input and a 48 bit key. The input is expanded (by9
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output (32 bits)Figure 2. The F function of DES.the E expansion) to 48 bits and XORed with the key. The result is fed intothe S boxes and the resultant bits are permuted.Given the XOR value of an input pair to the F function it is easy todetermine its XOR value after the expansion by the formula:E(X)� E(X�) = E(X �X�):The XOR with the key does not change the XOR value in the pair, i.e., theexpanded XOR stays valid even after the XOR with the key, by the formula:(X �K)� (X� �K) = X �X�:The output of the S boxes is mixed by the P permutation and thus the XORof the pair after the P permutation is the permuted value of the S boxes11



output XOR, by the formula:P (X)� P (X�) = P (X �X�):The output XOR of the F function is linear in the XOR operation thatconnects the di�erent rounds:(X � Y )� (X� � Y �) = (X �X�)� (Y � Y �):The XOR of pairs is thus invariant in the key and is linear in the E expansion,the P permutation and the XOR operation.The S boxes are known to be non linear. Knowledge of the XOR of theinput pairs cannot guarantee knowledge of the XOR of the output pairs.Usually several output XORs are possible. A special case arises when bothinputs are equal, in which case both outputs must be equal too. However, acrucial observation is that for any particular input XOR not all the outputXORs are possible, the possible ones do not appear uniformly, and someXORed values appear much more frequently than others.Before we proceed we want to mention the known design principles of theS boxes[1]:1. No S box is a linear or a�ne function of its input.2. Changing one input bit to an S box results in changing at least twooutput bits.3. S(X) and S(X � 001100) must di�er in at least two bits.4. S(X) 6= S(X � 11ef00) for any choice of e and f .5. The S boxes were chosen to minimize the di�erences between the num-ber of 1's and 0's in any S box output when any single bit is heldconstant.In DES any S box has 64 � 64 possible input pairs, and each one of themhas an input XOR and an output XOR. There are only 64 �16 possible tuplesof input and output XORs. Therefore, each tuple results in average from12



four pairs. However, not all the tuples exist as a result of a pair, and theexisting ones do not have a uniform distribution. Very important propertiesof the S boxes are derived from the analysis of the tables that summarizethis distribution:De�nition 2 A table that shows the distribution of the input XORs andoutput XORs of all the possible pairs of an S box is called the pairs XORdistribution table of the S box. In this table each row corresponds to a partic-ular input XOR, each column corresponds to a particular output XOR andthe entries themselves count the number of possible pairs with such an inputXOR and an output XOR.Each line in a pairs XOR distribution table contains 64 possible pairs in16 di�erent entries. Thus in each line in the table the average of the entriesis exactly four.Example 2 Table 2 is a partial1 pairs XOR distribution table of S1. S1itself is described in table 3.Example 3 The �rst line of table 2 shows that for the zero input XOR, theoutput XOR must be zero too, as we noticed above. Also, the di�erent linesin the table have di�erent output XOR distributions.The following de�nition deals with pairs XOR distribution tables:De�nition 3 Let X be a six bit value and Y be a four bit value. We saythat X may cause Y by an S box if there is a pair in which the input XORof the S box equals X and the output XOR of the S box equals Y . If thereis such a pair we write X ! Y , and if there is no such pair we say that Xmay not cause Y by the S box and write X 6! Y .Example 4 Consider the input XOR S10I = 34x. It has only eight possibleoutput XORs, while the other eight entries are impossible. The possibleoutput XORs S10O are 1x, 2x, 3x, 4x, 7x, 8x, Dx and Fx. Therefore, theinput XOR S10I = 34x may cause output XOR S10O = 1x (34x ! 1x). Also34x ! 2x and 34x ! Fx. On the other hand 34x 6! 0x and 34x 6! 9x.1The full pairs XOR distribution tables of all the S boxes appear in appendix B.13



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 42x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 23x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 04x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 25x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 66x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 127x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 48x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 49x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8...30x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 431x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 832x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 033x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 434x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 635x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 036x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 037x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 438x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 1039x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 03Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 03Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 23Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 03Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 43Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 43Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2Table 2. Partial pairs XOR distribution table of S1.14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 70 15 7 4 14 2 13 1 10 6 12 11 9 5 3 84 1 14 8 13 6 2 11 15 12 9 7 3 10 5 015 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13Table 3. S1 table.Examples 3 and 4 demonstrate that for a �xed input XOR, the possibleoutput XORs do not have a uniform distribution. The following de�nitionextends de�nition 3 with probabilities.De�nition 4 We say that X may cause Y with probability p by an S box iffor a fraction p of the pairs in which the input XOR of the S box equals X,the output XOR equals Y .Example 5 34x ! 2x results from 16 out of the 64 pairs of S1, i.e., with14



S box PercentageS1 79.4S2 78.6S3 79.6S4 68.5S5 76.5S6 80.4S7 77.2S8 77.1Table 4. Percentage of the possible entries in the various pairs XOR distri-bution tables.probability 14 . 34x ! 4x results only from two out of the 64 pairs of S1, i.e.,with probability 132 .Di�erent distributions appear in di�erent lines of the table. In totalbetween 70% and 80% of the entries are possible and between 20% and 30%are impossible. The exact percentage for each S box is shown in table 4. Invarious formulas in this paper we approximate the percentage of the possibleentries by 80%.The pairs XOR distribution tables let us �nd the possible input andoutput values of pairs given their input and output XORs. The followingexample shows a simple case:Example 6 Consider the entry 34x ! 4x in the pairs XOR distributiontable of S1. Since the entry 34x ! 4x has value 2, only two pairs satisfythese XORs. These pairs are duals. If the �rst pair is S1I, S1�I then theother pair is S1�I, S1I . By looking at table 5 we see that these inputs mustbe 13x and 27x whose corresponding outputs are 6x and 2x respectively.Next we show how to �nd the key bits using known input pairs and outputXOR of an S box in the F function.Example 7 Consider S1 and assume that the input pair is S1E = 1x, S1�E =35x and that the value of the corresponding six key bits is S1K = 23x. Then15



Output PossibleXOR Inputs(S10O) (S1I)1 03, 0F , 1E, 1F , 2A, 2B, 37, 3B2 04, 05, 0E, 11, 12, 14, 1A, 1B, 20, 25, 26, 2E, 2F , 30, 31, 3A3 01, 02, 15, 21, 35, 364 13, 277 00, 08, 0D, 17, 18, 1D, 23, 29, 2C, 34, 39, 3C8 09, 0C, 19, 2D, 38, 3DD 06, 10, 16, 1C, 22, 24, 28, 32F 07, 0A, 0B, 33, 3E, 3FTable 5. Possible input values for the input XOR S10I = 34x by the out-put XOR (in hexadecimal).S box input Possible Keys06, 32 07, 3310, 24 11, 2516, 22 17, 231C, 28 1D, 29Table 6. Possible keys for 34x ! Dx by S1 with input 1x, 35x (in hexadec-imal).the actual inputs of S1 (after XORing the input and key bits) are S1I = 22x,S1�I = 16x and the outputs are S1O = 1x, S1�O = Cx respectively. The outputXOR is S10O = Dx.Assume we know that S1E = 1x, S1�E = 35x and S10O = Dx and we wantto �nd the key value S1K. The input XOR is S10E = S10I = 34x regardlessof the actual value of S1K. By consulting table 2 we can see that the inputto the S box has eight possibilities. These eight possibilities make eightpossibilities for the key (by SK = SE � SI) as described in table 6. Eachline in the table describes two pairs with the same two inputs but with theopposite order. Each pair leads to one key, so each line leads to two keys(which are SE � SI and SE � S�I ). The right key value S1K must occur inthis table. 16



S box input Possible Keys01, 35 03, 3702, 36 00, 3415, 21 17, 23Table 7. Possible keys for 34x ! 3x by S1 with input 21x, 15x (in hexadec-imal).Using additional pairs we can get additional candidates for S1K. Lets lookat the input pair S1E = 21x, S1�E = 15x (with the same S1K = 23x). Theinputs to the S box are S1I = 2x, S1�I = 36x and the outputs are S1O = 4x,S1�O = 7x. The output XOR is S10O = 3x. The possible inputs to the S boxwhere 34x ! 3x and the corresponding possible keys are described in table 7.The right key must occur in both tables. The only common key values intables 6 and 7 are 17x and 23x. These two values are indistinguishable withthis input XOR since 17x�23x = 34x = S10E, but may become distinguishableby using a pair with a di�erent input XOR value (S10E 6= 34x).The following example is an extension of example 7 to a three-roundcryptosystem.Example 8 Assume we have a ciphertext pair whose plaintext XOR isknown and the values of the six bits 33, . . . , 38 of the plaintext XOR arezero. The input XOR of the �rst round is zero in all the bits entering S1(S10Ea = S10Ia = 0) and thus the output XOR of S1 in the �rst round mustbe zero (S10Oa = 0). The left half of the ciphertext is calculated as the XORvalue of the left half of the plaintext, the output of the �rst round and theoutput of the third round (l = L�A�C). Since the plaintext XOR and theciphertext XOR are known and the output XOR of S1 in the �rst round isknown as well, the output XOR of S1 in the third round can be calculated.The input pair S1Ec, S1�Ec in the third round is easily extractable from theciphertext pair.If the input pair of S1 in the third round is S1Ec = 1x, S1�Ec = 35x andthe output XOR is S10Oc = Dx then the value of S1Kc can be found as inexample 7 and it must appear in table 6. Using additional pairs we candiscard some of the possible values till we get a unique value of S1Kc. Since17



S10Ec is not constant, there should not be any indistinguishable values of thesubkey.The following de�nition extends de�nitions 3 and 4 for use with the Ffunction:De�nition 5 Let X and Y be 32 bit values. We say that X may cause Ywith probability p by the F function if for a fraction p of all the possible inputpairs encrypted by all the possible subkey values in which the input XOR ofthe F function equals X, the output XOR equals Y . If p > 0 we denote thispossibility by X ! Y .Lemma 1 In DES, if X ! Y with probability p by the F function thenevery �xed input pair Z, Z� with Z 0 = Z � Z� = X causes the F functionoutput XOR to be Y by the same fraction p of the possible subkey values.Proof To prove the lemma it su�ces to show the property for each of theS boxes. For each input XOR of the data S 0E there is S 0I = S 0E regardless ofSK. If there are k possible input pairs to the S box with this input XORthat may cause a given output XOR, we can choose precisely k key valuesSK = SE�SI , each taking the �xed input pair SE, S�E to one of the possibleinput pairs SI , S�I of the S box and thus causing the given output XOR.Thus, the fraction p is held constant for all the input pairs, and thereforeequals the average over all the input pairs.In other iterated cryptosystems this lemma does not necessarily hold. How-ever, we assume that the fraction is very close to p, which is usually thecase.Corollary 1 The probability p of X ! Y by the F function is the prod-uct of pi in which Xi ! Yi by the S boxes Si (i 2 f1; : : : ; 8g) whereX1X2X3X4X5X6X7X8 = E(X) and Y1Y2Y3Y4Y5Y6Y7Y8 = P�1(Y ).The above discussion about �nding the key bits entering S boxes can beextended to �nd the subkeys entering the F function. The method is asfollows: 18



1. Choose an appropriate plaintext XOR.2. Create an appropriate number of plaintext pairs with the chosen plain-text XOR, encrypt them and keep only the resultant ciphertext pairs.3. For each pair derive the expected output XOR of as many S boxes inthe last round as possible from the plaintext XOR and the ciphertextpair. (Note that the input pair of the last round is known since itappears as part of the ciphertext pair).4. For each possible key value, count the number of pairs that result withthe expected output XOR using this key value in the last round.5. The right key value is the (hopefully unique) key value suggested byall the pairs.We are left with the problem of pushing the knowledge of the XORs ofthe plaintext pairs as many rounds as possible (in step 3) without makingthem all zeroes. When the XORs of the pairs are zero, i.e., both texts areequal, the outputs are equal too, which makes all the keys equally likely. Thepushing mechanism is a statistical characteristic of the cryptosystem whichis an extension of the single round analysis. Before we de�ne it formally wegive an informal de�nition and three examples.De�nition 6 (informal) Associated with any pair of encryptions are theXOR value of its two plaintexts, the XOR of its ciphertexts, the XORs of theinputs of each round in the two executions and the XORs of the outputs ofeach round in the two executions. These XOR values form an n-round char-acteristic. A characteristic has a probability, which is the probability that arandom pair with the chosen plaintext XOR has the round and ciphertextXORs speci�ed in the characteristic. We denote the plaintexts XOR of acharacteristic by 
P and its ciphertexts XOR by 
T .The following example describes a one-round characteristic with proba-bility 1. This is the only one-round characteristic with probability greaterthan 14 . This characteristic is very useful and is applicable in any DES-likecryptosystem. 19



Example 9 A one-round characteristic with probability 1 is (for any L0):
P = (L0; 0x)A0 = 0x a0 = 0x always

T = (L0; 0x)F

The following example describes a simple one-round characteristic withprobability 1464 .Example 10 In this one-round characteristic all the S box input XORs ex-cept one are zero. One S box input XOR is not zero, and is chosen tomaximize the probability that the input XOR may cause the output XOR.Since there are several input bits that are going into two neighboring S boxesby the E expansion we have to ensure that the XORs of these bits are zero.There are only two private bits entering each S box. These bits can havenon zero XOR values. The best such probability for S1 is 1464 (i.e., there is anentry that contains 14 pairs that does not cause the input of the neighboringS2 or S8 to be non zero). Thus, it is easy to get a one-round characteristicwith probability 1464 which is:S1 : 0Cx ! Ex with probability 1464S2; : : : ; S8 : 00x ! 0x always.
20



This characteristic can also be written (for any L0) as:
P = (L0; 60 00 00 00x)A0 = 00 80 82 00x a0 = 60 00 00 00x with probability 1464= P (E0 00 00 00x)
T = (L0 � 00 80 82 00x; 60 00 00 00x)F

One-round characteristics with probability 14 are possible using non zeroinput XOR in S2 or S6.The following example describes a two-round characteristic which is eas-ily obtained by concatenating the two one-round characteristics that are de-scribed in examples 10 and 9:Example 11 A two-round characteristic with probability 1464 :
P = 00 80 82 00 60 00 00 00xA0 = 00 80 82 00x a0 = 60 00 00 00x with probability 1464B0 = 0 b0 = 0 always

T = 60 00 00 00 00 00 00 00x

F

F
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We can now formulate the exact de�nition of a characteristic:De�nition 7 An n-round characteristic is a tuple 
 = (
P ;
�;
T ) where
P and 
T arem bit numbers and 
� is a list of n elements 
� = (�1;�2; : : : ;�n),each of which is a pair of the form �i = (�iI ; �iO) where �iI and �iO are m=2bit numbers and m is the block size of the cryptosystem. A characteristicsatis�es the following requirements:�1I = the right half of 
P�2I = the left half of 
P � �1O�nI = the right half of 
T�n�1I = the left half of 
T � �nOand for every i s.t. 2 � i � n� 1:�iO = �i�1I � �i+1I :De�nition 8 A right pair with respect to an n-round characteristic 
 =(
P ;
�;
T ) and an independent key K is a pair for which P 0 = 
P and forthe �rst n rounds of the encryption of the pair using the independent keyK the input XOR of the ith round equals �iI and the output XOR of the Ffunction equals �iO. Every pair which is not a right pair with respect to thecharacteristic and the independent key is called a wrong pair with respect tothe characteristic and the independent key. Throughout this paper we referthem shortly by right pair and wrong pair.De�nition 9 The concatenation of an n-round characteristic 
1 = (
1P ;
1�;
1T )with an m-round characteristic 
2 = (
2P ;
2�;
2T ) where 
1T equals theswapped value of the two halves of 
2P , is the characteristic 
 = (
1P ;
�;
2T )where 
� is the concatenation of the lists 
1� and 
2�.The following de�nitions, lemma, conclusion and theorem deal with theprobability of characteristics:De�nition 10 Round i of a characteristic 
 has probability p
i if �iI ! �iOwith probability p
i by the F function.
22



De�nition 11 An n-round characteristic 
 has probability p
 if p
 is theproduct of the probabilities of its n rounds:p
 = nYi=1 p
i :Note that by de�nitions 9 and 11 the probability of a characteristic 
which is the concatenation of the characteristic 
1 with the characteristic
2 is the product of their probabilities: p
 = p
1 � p
2. As a result, everyn-round characteristic can be described as the concatenation of n one-roundcharacteristics with probability which is the product of the one-round char-acteristics probabilities.Theorem 1 The formally de�ned probability of a characteristic 
 = (
P ;
�;
T )is the actual probability that any �xed plaintext pair satisfying P 0 = 
P isa right pair when random independent keys are used.Proof The probability of any �xed plaintext pair satisfying P 0 = 
P tobe a right pair is the probability that at all the rounds i: �iI ! �iO. Theprobability at each round is independent of its exact input (as proved inlemma 1) and independent of the action of the previous rounds (since theindependent keys completely randomize the inputs to each S box, leavingonly the XOR value �xed). Therefore, the probability of a pair to be a rightpair is the product of the probabilities of �iI ! �iO, which was de�ned aboveas the probability of the characteristic.For practical purposes the signi�cant probability with respect to a char-acteristic is the probability that a pair whose plaintext XOR equals the char-acteristic's plaintext XOR is a right pair using a �xed key (the one we try to�nd). This probability is not constant for all the keys (as we show later inthis paper in a special case). However, we assume that the characteristic'sprobability is a very good approximation of it, which is usually the case.After this formal discussion we show a three-round characteristic:Example 12 An extension to three rounds of the characteristic describedin example 11 can be achieved by concatenating it with the characteristic of23



example 10. Thus a three-round characteristic with probability �1464�2 � 0:05is: 
P = 00 80 82 00 60 00 00 00xA0 = 00 80 82 00x a0 = 60 00 00 00x with probability 1464B0 = 0 b0 = 0 alwaysC 0 = 00 80 82 00x c0 = 60 00 00 00x with probability 1464

T = 00 80 82 00 60 00 00 00x

F

F

F

where in the fourth round d0 = b0 � C 0 = C 0 = A0. We see that when theplaintexts di�er in the �ve speci�ed bit locations, with probability about 0:05there is a di�erence of only three bits at the input of the fourth round. Afterthe bit expansion, �ve S boxes have non zero input XOR and three have zeroinput XORs and thus zero output XORs. In this case it is possible to deduce12 bits of e0 by e0 = c0 �D0.This structure of three rounds with a zero input XOR in the middleround is very useful and forms the best possible probability for three-roundcharacteristics2. A similar structure can be used in �ve-round characteristics.The middle round has zero input and output XORs and there is a symmetry2Since less than two di�ering S boxes are impossible and there are characteristics ofthis structure with two di�ering S boxes, each with the best possible probability ( 14 ).24



around it, i.e.: 
P = (L0; R0)A0 a0 = R0 with some probability paB0 = a0 = R0 b0 = L0 � A0 with some probability pbC 0 = 0 c0 = 0 alwaysD0 = R0 d0 = L0 � A0 with probability pbE 0 = A0 e0 = R0 with probability pa

T = 
P = (L0; R0)

F

F

F

F

F

Where in the sixth round f 0 = d0 � E 0 = b0 � A0 = L0. The existence of astring b0 ! a0 ! A0 ensures the existence of such a �ve-round characteristic.The characteristic's probability is quite low since three S box inputs mustdi�er in both rounds b0 ! a0 and a0 ! A0, and six in the whole �ve-roundcharacteristic. The best probability for an S box is 1664 = 14 . This limits the�ve-round characteristic's probability to be lower than or equal to �14�6 =14096 . In fact, the best known �ve-round characteristic has probability about110486 . 25



Among the most useful characteristics are those that can be iterated.De�nition 12 A characteristic 
 = (
P ;
�;
T ) is called an iterative char-acteristic if the swapped value of the two halves of 
P equals 
T .We can concatenate an iterative characteristic to itself any number oftimes and can get characteristics with an arbitrary number of rounds. Theadvantage of iterative characteristics is that we can build an n-round charac-teristic for any large n with a �xed reduction rate of the probability for eachadditional round, while in non iterative characteristics the reduction rate ofthe probability usually increases due to the avalanche e�ect.There are several kinds of iterative characteristics but the simplest onesare the most useful. These characteristics are based on a non zero input XORto the F function that may cause a zero output XOR (i.e., two di�erent inputsyield the same output). This is possible in DES if at least three neighboringS boxes di�er in the pair (this phenomena is also described in [5,1]). Thestructure of these characteristics is described in the following example.Example 13 If the input XOR of the F function is marked by  , s.t.  ! 0then we have the following iterative characteristic:
P = (L0; R0) = ( ; 0)A0 = 0 a0 = 0 alwaysB0 = 0 b0 = L0 � A0 =  with some probability

T = (R0; L0) = (0;  )

F

F

The best such characteristic has probability about 1234 . A �ve-round char-acteristic based on this iterative characteristic has probability about 155000 .26



The statistical behavior of most characteristics does not allow us to lookfor the intersection of all the keys suggested by the various pairs as we didin example 7, since the intersection is usually empty: the wrong pairs donot necessarily list the right key as a possible value. However, we knowthat the right key value should result from all the right pairs which occur(approximately) with the characteristic's probability. All the other possiblekey values are fairly randomly distributed: the expected XOR value (whichis usually not the real value in the pair) with the known ciphertext pair cancause any key value to be possible, and even the wrong key values suggestedby the right pairs are quite random. Consequently, the right key appearswith the characteristic's probability (from right pairs) plus other randomoccurrences (from wrong pairs). To �nd the key we just have to count thenumber of occurrences of each of the suggested keys. The right key is likelyto be the one that occurs most often.Each characteristic lets us look for a particular number of bits in thesubkey of the last round (all the bits that enter some particular S boxes).The most useful characteristics are those which have a maximal probabilityand a maximal number of subkey bits whose occurrences can be counted. Yet,it is not necessary to count on all the possible subkey bits. The advantagesof counting on all the possible subkey bits are the good identi�cation of theright key value and the small amount of data needed. However, countingthe number of occurrences of all the possible values of a large number of bitsusually demands huge memory which can make the attack impractical. Wecan count on a smaller number of subkey bits entering a smaller number of Sboxes, and use all the other S boxes only to identify and discard those wrongpairs in which the input XORs in such S boxes cannot cause the expectedoutput XORs. Since about 20% of the entries in the pairs XOR distributiontables of the S boxes are impossible, about 20% of the wrong pairs can bediscarded by each S box before they are actually counted.The following de�nition and lemma give us a tool to evaluate the usabilityof a counting scheme based on a characteristic:De�nition 13 The ratio between the number of right pairs and the averagecount in a counting scheme is called the signal to noise ratio of the countingscheme and is denoted by S=N . 27



To �nd the right key in a counting scheme we need a high probabilitycharacteristic and enough ciphertext pairs to guarantee the existence of sev-eral right pairs. This means that for a characteristic with probability 110000we need several tens of thousands of pairs. How many pairs we need dependson the probability of the characteristic, the number of key bits that we counton and the level of identi�cation of wrong pairs that can be discarded beforethe counting. If we are looking for k key bits then we count the number ofoccurrences of 2k possible key values in 2k counters. The counters containan average count of m����2k counts where m is the number of pairs, � is theaverage count per counted pair and � is the ratio of the counted to all pairs(i.e., counted and discarded). The right key value is counted about m � ptimes using the right pairs where p is the characteristic's probability, plusthe random counts estimated above for all the possible keys. The signal tonoise ratio of a counting scheme is therefore:S=N = m � pm � � � �=2k = 2k � p� � � :A simple corollary of this formula is that the signal to noise ratio of acounting scheme is independent of the amount of pairs used in the scheme.Another corollary is that di�erent counting schemes based on the same char-acteristic but with a di�erent number of subkey bits have di�erent S=N .Usually we relate the number of pairs needed by a counting scheme tothe number of the right pairs needed. The number of right pairs needed ismainly a function of the signal to noise ratio. When the S=N is high enough,only a few occurrences of right pairs are needed to uniquely identify the rightvalue of the subkey bits. We observed experimentally that when the S=Nis about 1{2, about 20{40 occurrences of right pairs are su�cient. Whenthe S=N is much higher even 3{4 right pairs are usually enough. When theS=N is much smaller the identi�cation of the right value of the subkey bitsrequires an unreasonably large number of pairs.In many attacks we use several simultaneous characteristics. In order tominimize the number of ciphertexts needed, we can pack them into moreeconomical structures.De�nition 14 A quartet is a structure of four ciphertexts that simultane-ously contains two ciphertext pairs of one characteristic and two ciphertext28



pairs of a second characteristic. An octet is a structure of eight ciphertextsthat simultaneously contains four ciphertext pairs of each of three character-istics.Example 14 The following four plaintexts form a quartet (where  1 and  2are the plaintext XORs of the characteristics):1. A random plaintext P .2. P �  1.3. P �  2.4. P �  1 �  2.The two pairs of the �rst characteristic are the pairs labeled (1, 2) and (3,4) and the two pairs of the second characteristic are the pairs labeled (1, 3)and (2, 4).The use of these structures can be done in two ways. When an attackuses n pairs of each one of two characteristics we can use n=2 quartets whichcontain the same information as each of the n pairs of each characteristic.Thus, we save half the data. Using three characteristics we can save 2=3 ofthe data. The other approach is used when an attack can simultaneouslyuse two characteristics while counting the same bits. Then we can divide thedata so that half of the pairs are based on the �rst characteristic and theother half on the second. When quartets can be used we can save half thedata, and when octets can be used we can save 2=3 of the data.3 DES reduced to four roundsIn section 2 we de�ned the notions of pairs and characteristics. In thissection we describe how it can be used to cryptanalyze DES reduced to fourrounds. This cryptanalysis is quite simple since it uses a characteristic withprobability 1, but it serves as a good introductory example to the method ofdi�erential cryptanalysis. 29



In this attack we use the following one-round characteristic 
1 with prob-ability 1 which is an instance of the characteristic described in example 9:
1P = 20 00 00 00 00 00 00 00xA0 = 0x a0 = 0x always

1T = 20 00 00 00 00 00 00 00xF

where in the second round b0 = L0 � A0 = 20 00 00 00x.In the �rst round the characteristic has a0 = 0 ! A0 = 0 with probabil-ity 1. The single bit di�erence between the two plaintexts starts to play arole in the second round in S1. Since the inputs to S1 di�er only in one bit,at least two output bits must di�er. Typically such two bits enter three Sboxes in the third round (c0 = a0 � B0 = B0), where there is a di�erence ofone bit in each S box input. Thus, about six output bits di�er at the thirdround. These bits are XORed with the known di�erence of the input of S1in the second round (d0 = b0�C 0), making a di�erence of about seven bits inthe input of the fourth round and about 11 bits in the entries of the S boxes(due to the E expansion). Such an avalanche makes it very likely that theinput of all the S boxes di�er at the fourth round. Even if an input of anS box does not di�er in one pair it can di�er in another pair and the exactvalue of d0 is usually di�erent for every pair.The 28 output XOR bits of S2, . . . , S8 in B0 must be equal to zero sincetheir input XORs are zero. Since a0 � B0 = c0 = D0 � l0 (see �gure 3) thenD0 = a0 � l0 �B0: (1)When the ciphertext pair values T and T � are known then d and d� areknown to be their right halves (by d = r). Since a0, l0 and the 28 bits of B0are known, the corresponding 28 bits of D0 are known as well by equation 1.30
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Ciphertext (T)Figure 3. DES reduced to four rounds.These 28 bits are the output XORs of S boxes S2, . . . , S8. Thus, we knowthe values SEd, S�Ed and S 0Od of seven S boxes in the fourth round.Given the encrypted pairs we use a separate counting procedure for eachone of the seven S boxes in the fourth round. We try all the 64 possiblevalues of SKd and check if SId = SEd � SKd and S�Id = S�Ed � SKd yieldSOd � S�Od = S 0Od:For each key we count the number of pairs for which the test succeeds. Theright key value is suggested by all the pairs since we use a characteristic withprobability 1 which causes all the pairs to be right pairs. The other 63 keyvalues may occur in some of the pairs. It is unlikely that a value occurs in allthe pairs for which S 0I are di�erent and S 0O are di�erent. In rare cases whenmore than one key value is suggested by all the pairs a few additional pairs31



can be tried, or the analysis of the other key bits can be done in parallel forall the surviving candidates.So far we have found 7 � 6 = 42 bits of the subkey of the last round (K4).If the subkeys are calculated via the DES key scheduling algorithm theseare 42 actual key bits out of the DES 56 key bits, and 14 key bits are stillmissing. One can now try all the 214 possibilities of the missing bits anddecrypt the given ciphertexts using the resulting keys. The right key shouldsatisfy the known plaintext XOR value for all the pairs, but the other 214�1values have only probability 2�64 to satisfy this condition.Some researchers have proposed to strengthen DES by making all thesubkeys Ki independent (or at least to derive them in a more complicatedway from a longer actual key K). Our attack can be carried out even inthis case. To �nd the six missing bits of K4 and to �nd K3 we use anotherplaintext XOR value with the following characteristic 
2:
2P = 02 22 22 22 00 00 00 00xA0 = 0x a0 = 0x always

2T = 02 22 22 22 00 00 00 00xF

Where in the second round b0 = L0 � A0 = 02 22 22 22x.The value of S10Eb is zero. Thus, S10Ob = 0. As above we �nd S10Od usingequation 1 and similarly we can �nd the corresponding six key bits S1Kd.Now we know the complete fourth round subkey K4. Using K4 we par-tially decrypt all the given ciphertexts by \peeling o�" the e�ect of the lastround. As a result we remain with a three-round cryptosystem. In this cryp-tosystem the second P 0 value lets us calculate the third round subkey K3.The inputs to the third round c and c� are known as halves of the ciphertexts32



of the three-round cryptosystem. The input XOR c0 is easily calculated. Theoutput XOR C 0 is C 0 = b0 � d0 where b0 and d0 are known. The countingmethod is used again to count the number of occurrences of the possiblekeys of all the eight S boxes at the third round. The values that are countedfor all the pairs are likely to the right key values. As a result the completeK3 is found with high probability.The P 0 values used above are insu�cient to �nd a unique K2 since theS 0Eb are constant for all the pairs, and thus the right key values are indis-tinguishable from the alternative key values obtained by XORing them withS 0Eb. Although we can �nd these two possibilities for each S box, i.e., 28possibilities for K2, we cannot use the above XOR values to �nd K1 sincein both XOR values there is R0 = 0 and thus a0 = 0 and A0 = 0. Notethat a0 = 0! A0 = 0 happens regardless of the key and thus all the possiblevalues of K1 are equally likely using these XOR values. To solve this problemwe have to use an additional characteristic which has a non zero input XORfor all the S boxes of the �rst round. In addition we want to be able to dis-tinguish the key values of all the S boxes so we choose two characteristics 
3and 
4. These characteristics can be chosen arbitrarily under the followingtwo conditions:� S 0Ea 6= 0 for all the S boxes using either 
3P or 
4P .� For every particular S box S 0Ea of the characteristic 
3P is di�erent fromS 0Ea of 
4P .Then b and b� are known by decryption of the third round and B0 is knownby B0 = a0� c0 = R0� c0. The counting method is used to �nd K2. This timeit has to use the appropriate R0 value for each pair. Now a, a� and a0 areknown by decryption of the second round and A0 is known by A0 = L0 � b0.The counting method �nds K1. Using K1, K2, K3 and K4 we can decryptthe original ciphertexts to get the corresponding plaintexts and then verifytheir plaintext XOR values. If we �nd only one possibility for all the subkeysthe veri�cation must succeed. If several possibilities are found then only oneof them is likely to be veri�ed successfully, and thus the right key can beidenti�ed. 33



Typically, 16 encryptions are su�cient for this attack. These 16 encryp-tions contain eight pairs of the characteristic 
1, eight pairs of 
2, four pairsof 
3 and four pairs of 
4. In order not to increase the amount of dataneeded we use two octets that occupy four pairs of each of three plaintextXOR.4 DES reduced to six roundsThe cryptanalysis of DES reduced to six rounds is more complex than thecryptanalysis of the four round version. We use two statistical characteristicswith probability 116 , and choose the key value that is counted most often.Each one of the two characteristics lets us �nd the 30 key bits of K6 which areused at the input of �ve S boxes in the sixth round, but three of the S boxesare common so the total number of key bits found by the two characteristicsis 42. The other 14 key bits can be found later by means of exhaustive searchor by a more careful counting on the key bits entering the eighth S box inthe sixth round.
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The �rst characteristic 
1 is:
1P = 40 08 00 00 04 00 00 00xA0 = 40 08 00 00x a0 = 04 00 00 00x with probability 14B0 = 0x b0 = 0x alwaysC 0 = 40 08 00 00x c0 = 04 00 00 00x with probability 14

1T = 40 08 00 00 04 00 00 00x

F

F

F

Where in the fourth round d0 = b0 � C 0 = 40 08 00 00x.Five S boxes in the fourth round (S2, S5, . . . , S8) have zero input XORs(S 0Ed = 0) and thus their output XORs are zero (S 0Od = 0). The correspond-ing output XORs in the sixth round can be found by F 0 = c0�D0� l0. Sincethe right key value is not suggested by all the pairs (due to the probabilisticnature of the characteristic), we cannot use a separate counting procedurefor the subkey bits entering each S box. In order to increase the S=N weshould simultaneously count on subkey bits entering several S boxes. Thebest approach is to count on all the 30 countable subkey bits together, whichmaximizes the probability that the right key value is the one counted most of-ten. A straightforward implementation of this method requires 230 counters,which is impractical on most computers. However, the improved countingprocedure described at the end of this section achieves exactly the same resultwith much smaller memory.The same e�cient algorithm is used to �nd the 30 key bits of S1, S2, S4,35



S5 and S6 using the second characteristic 
2 which is:
2P = 00 20 00 08 00 00 04 00xA0 = 00 20 00 08x a0 = 00 00 04 00x with probability 14B0 = 0x b0 = 0x alwaysC 0 = 00 20 00 08x c0 = 00 00 04 00x with probability 14

2T = 00 20 00 08 00 00 04 00x

F

F

F

Where in the fourth round d0 = b0 � C 0 = 00 20 00 08x.Again, �ve S boxes in the fourth round (S1, S2, S4, S5 and S6) have zeroinput XORs. The computed key values of the common S boxes S2, S5 and S6should be the same in both calculations (otherwise we should analyze morepairs or consider additional candidate keys with almost maximal counts). Ifthis test is successful, we have probably found 42 bits of K6.DES has 56 key bits. 14 of them are still missing. The simplest way to�nd them is to search all the 214 possibilities for the expected plaintext XORvalue of the decrypted ciphertexts. A faster way is to start looking for thesix missing bits of K6 which enter S3 (the other eight key bits occur only inother subkeys). At �rst we use our partial knowledge of the key to �lter thegiven pairs. For each pair we check if at the �ve S boxes having S 0Ed = 0by the characteristic, the value of S 0Of obtained by f and f � and the knownkey bits form the expected value from F 0 = c0 � D0 � l0. If not then thiscannot be a right pair. Otherwise it is almost certainly a right pair (since36



Into S box e bits Key bits# SEe SKeS1 ++++++ 3+..++S2 ++3+++ +3+333S3 ++++++ ++++++S4 ++++3+ ++..++S5 3+++++ +++.++S6 ++++3+ +.+.++S7 3+++++ +++.++S8 ++3+++ ++++++Table 8. Known bits at the �fth round.the condition can be satis�ed accidentally only with probability 2�20). Forthe remainder of the cryptanalysis we use only the (roughly) 116 of the pairswhich are believed to be the right pairs. This �ltration greatly improvesthe signal to noise ratio of the following scheme, which otherwise would beimpractical.Table 8 describes the known bits of the key and the input to the Ffunction at the �fth round assuming we know the 42 key bits. The digit `3'means that the bit depends on the exact value of the missing key bits thatenter S3 in the sixth round. `+' means that it depends only on known keybits. Eight key bits are not used at all in the subkey K6, and are markedby `.'. This table shows that by guessing the six missing bits of K6 we canverify its correctness by calculating e and e� for each right pair by a singleround decryption with K6 and by verifying that the values of S20Oe, S30Oeand S80Oe (for which all the input and key bits are known) are as expectedby E 0 = d0 � f 0. Furthermore, we can verify that there are values of themissing key bits (for each S box separately) such that the other S boxesoutput XORs are as expected. The veri�cation of most of the 64 possibilitiesof the six missing bits of K6 should fail, and with high probability only onepossibility survives. This value completes K6. Only eight key bits are missingnow. They can be found by trying all the 256 possibilities, or by applying asimilar analysis to key bits that enter S boxes in the �fth round.37



How much data is needed? The signal to noise ratio of the �rst part ofthe algorithm (which �nds 30 key bits) isS=N = 230 � 11645 = 230�4�10 = 216:The S=N is high and thus only 7{8 right pairs of each characteristic areneeded. Since the characteristics' probability is 116 , we need about 120 pairsof each characteristic for the analysis. The S=N of the later part isS=N = 26 � 14 = 16:This is lower, but we do not care since we can almost certainly identify anduse only the 7{8 right pairs from the �rst part (while eliminating most of thenoise) and intersect the sets of possible key values. To reduce the numberof ciphertexts needed we use quartets which combine the two characteristics.As a result only 240 ciphertexts (representing 120 pairs of each characteristic)are needed for the complete cryptanalysis.In order to decrease the amount of memory needed in the �rst part ofthis attack we devised an equivalent but faster counting algorithm that usesnegligible memory and can count on all the countable subkey bits simulta-neously. This algorithm can be used in any counting scheme that needs ahuge memory but analyses a relatively small number of pairs (after �lteringout all the identi�able wrong pairs). The idea behind this algorithm is todescribe the pairs and the possible key values by a graph. In this graph eachpair is a vertex and every two pairs which suggest a common key value havea connecting edge labeled by this value. Thus, each key value forms a cliquewhich contains all its suggesting pairs. The largest clique corresponds to thekey value which is counted by the largest number of pairs. In our implemen-tation, for each of the �ve S boxes we keep a bit mask of 64 bits, one bitfor each possible key. Given the values of SE, S�E and S 0O we set the bits ofthe key masks that correspond to possible keys. Each pair has �ve such keymasks, one for every S box. A clique is de�ned as a set of pairs for which foreach of the �ve key masks there is a common bit set in all the pairs in theset (i.e., the binary \and" operation is non zero for all the �ve key masks).Finding the largest clique can be done in the following way: �rst comparethe key masks of every pair with all the following pairs in the pairs list. At38



each comparison there is usually at least one key mask without any commonbit set. For the remaining possibilities we try to \and" the result with thirdpairs, fourth pairs and so on until no more pairs can be added to the clique.Given the largest clique we can easily compute the corresponding key bits bylooking at each key mask for the key value it represents.Using the clique algorithm with 240 ciphertexts it takes about 0.3 sec-onds on a COMPAQ personal computer to �nd the key in 95% of the testsconducted on DES reduced to six rounds. When 320 ciphertexts are usedthe program succeeds in almost all the cases. The program uses about 100Kbytes of memory, most of which is devoted to various preprocessed tablesused to speed up the algorithm.5 DES reduced to eight roundsDES reduced to eight rounds can be broken using about 25000 ciphertextpairs for which the plaintext XOR is P 0 = 40 5C 00 00 04 00 00 00x. Themethod �nds 30 bits of K8. 18 additional key bits can be found using similarmanipulations on the pairs. The remaining eight key bits can be found usingexhaustive search.
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The following characteristic is used in this analysis:
P = 40 5C 00 00 04 00 00 00xA0 = 40 08 00 00x a0 = 04 00 00 00x with probability 14= P (0A 00 00 00x)B0 = 04 00 00 00x b0 = 00 54 00 00x with probability 10�1664�64= P (00 10 00 00x)C 0 = 0 c0 = 0 alwaysD0 = 04 00 00 00x d0 = 00 54 00 00x with probability 10�1664�64E 0 = 40 08 00 00x e0 = 04 00 00 00x with probability 14

T = 40 5C 00 00 04 00 00 00x
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F

F

This characteristic has probability 110485:76 . The input XOR in the sixthround of a right pair isf 0 = d0 � E 0 = b0 � A0 = L0 = 40 5C 00 00x:Consequently, for �ve S boxes S 0Ef = S 0If = 0 and S 0Of = 0.Note There is an additional �ve-round characteristic with probability about40



133000 . Its plaintext XOR is
P = 04 04 07 80 00 20 20 00x:In this characteristic only four S boxes in the sixth round satisfy S 0Ef = 0.There are other characteristics for which either the probability or the numberof unchanged S boxes in the sixth round are smaller, and thus their use isless advantageous.In right pairs the �ve S boxes S2, S5, . . . , S8 satisfy S 0Ef = S 0If = 0and S 0Of = 0. By H 0 = l0 � g0 = l0 � e0 � F 0 we can �nd the outputXORs of the corresponding S boxes in the eighth round. The input dataof the eighth round is known from the ciphertexts. Therefore, we can usethe counting method to �nd the 30 subkey bits entering the �ve S boxesat the eighth round. The signal to noise ratio of this counting scheme isS=N = 23045�10485:76 = 100.Counting on 30 subkey bits demands a huge memory of 230 counters. Inthis case the clique method is not recommended since its computation timegrows very fast (more than quadratically) with the number of pairs, while thecomputation time of the counting method is linear in the number of pairs.Nevertheless, we can reduce the amount of memory by counting on fewersubkey bits entering fewer S boxes. The remaining S boxes can be used foridenti�cation of some of the wrong pairs (in which S 0Eh 6! S 0Oh). About 20%of the entries in the pairs XOR distribution tables are impossible and thuseach remaining S box discards 20% of the wrong pairs. Counting on 24 keybits thus has S=N = 22444�0:8�10485:76 � 7:8 and counting on 18 key bits hasS=N = 21843�0:82�10485:76 � 0:6.In counting schemes that count on a reduced number of bits we can choosethe reduced set of countable S boxes arbitrarily. In this particular case wecan choose the reduced set with the advantage of increasing the character-istic's probability and the signal to noise ratio by using a slightly modi�edcharacteristic which ignores output bits that are not counted anyway. Theslightly modi�ed characteristic is similar to the original one except that inthe �fth round only one bit of S20Oe is �xed and all the combinations of theother three are allowed:e0 = 04 00 00 00x ! E 0 = P (0W 00 00 00x) = X0 0Y Z0 00x;41



where W 2 f0; 1; 2; 3; 8; 9; A; Bg, X 2 f0; 4g, Y 2 f0; 8g and Z 2 f0; 4g.Therefore at the sixth roundf 0 = X0 5V Z0 00xwhere V = Y � 4. The only possible combination in which Z = 0 is04 00 00 00x ! 40 08 00 00x which has probability 1664 . All the other com-binations (in which Z = 4) have an overall probability 2064 . We cannot counton the subkey bits S5Kh but it is still advisable to check the possibility ofS50Eh ! S50Oh which is satis�ed by 80% of the pairs. Therefore, the proba-bility of e0 ! E 0 is 1664 + 0:82064 = 3264 = 12 . The probability of the �ve-roundmodi�ed characteristic is 16�10�16643 � 16�10�32643 � 15243 . The signal to noise ratio ofa counting scheme which count on the 24 subkey bits entering S2, S6, S7 andS8 is S=N = 22444�0:8�5243 � 15:6. This signal to noise ratio allows to use onlyabout �ve right pairs. Therefore, it uses a total amount of about 25000 pairs.The signal to noise ratio of a counting scheme which counts on 18 subkey bitsentering three S boxes out of S2, S6, S7 and S8 is S=N = 21843�0:82�5243 � 1:2.This counting scheme which counts on 18 bits needs 150000 pairs and has anaverage of about 24 counts for any wrong key value and about 53 counts forthe right key value (53 = 24 + 1500005243 = 24 + 29).A summary of this cryptanalytic method using 218 memory cells is asfollows:1. Set up an array of 218 counters which is initialized by zeroes. The arraycorresponds to the 218 values of the 18 key bits of K8 entering S6, S7and S8.2. Preprocess the possible values of SI that satisfy each S 0I ! S 0O for theeight S boxes into a table. This table is used to speed up the program.3. For each ciphertext pair do:(a) Assume h0 = r0, H 0 = l0 and h = r. Calculate S 0Eh = S 0Ih and SOh0for S2, S5, . . . , S8 by h0 and H 0. Calculate SEh for S6, S7 and S8by h.(b) For each one of the S boxes S2, S5, S6, S7 and S8 check if S 0Ih 6!S 0Oh. If S 0Ih 6! S 0Oh for one of the S boxes then discard the pair asa wrong pair. 42



(c) For each one of the S boxes S6, S7 and S8: fetch from the prepro-cessed table all the values of SIh which are possible for S 0Ih ! S 0Oh.For each possible value calculate SKh = SIh � SEh. Increment byone all the counters corresponding to combinations of the possiblevalues of S6Kh, S7Kh and S8Kh.4. Find the entry in the array that contains the maximal count. The entryindex is most likely to be the real value of S6Kh, S7Kh and S8Kh whichis the value of the 18 bits 31; : : : ; 48 of K8.To �nd the other bits, we �lter all the pairs and leave just the pairs withthe expected S 0O value using the known values of h and the known bits of K8entering S6, S7 and S8. The expected number of the remaining pairs is 53.The next bits we are looking for are the twelve bits of K8 that correspondto S2 and S5. We use a similar counting method (exploiting the enhancedS=N created by the higher concentration of right pairs) and then �lter morepairs. A wrong pair is not discarded by either this �lter or its predecessorwith probability 2�20 and thus almost all the remaining pairs are right pairs.Using the known subkey bits of K8 we can calculate the values of 20 bitsof each of H and H� for each pair and thus 20 bits of each of g and g� (byg = l0 � H 0). Table 9 shows the dependence of the g bits and the subkeybits of K7 at the seventh round on the known and unknown subkey bits ofK8 at the eighth round. The digits 1, 3 and 4 mean that they depend onthe value of the unknown key bits entering the corresponding S box in theeighth round. `+' means that it depend only on the known bits of K8. Eightkey bits are not used at all in K8 and are marked by `.'.The expected value of G0 is known by the formula G0 = f 0 � h0. We cannow look for the 18 missing bits of K8 by exhaustive search of 218 possibilitiesfor every pair. Thus we know H, H� and g, g� and 40 bits of K7. For eachpair we check that the expected value of G0 holds. For the right value ofthose 18 key bits the expected G0 holds for almost all the �ltered pairs. Allthe other possible values satisfy the expected G0 value only for a few pairs(usually 2{3 pairs while the right value holds for 15 pairs). To save computertime we search primarily for the 12 key kits entering S1 and S4 in the eighthround. They su�ce to compute S30Og as seen in table 9. By similar methods43



Into S box g bits Key bits# SEg SKgS1 +4++++ 3+..4+S2 ++3++1 134333S3 +14+++ +1+41+S4 ++++31 11..1+S5 31++4+ +++.++S6 4++13+ +.+.++S7 3+4+++ +++.++S8 ++31+4 ++++++Table 9. Known bits at the seventh round.we �nd these 12 bits and then �nd the other eight bits. This completes thecalculation of the 48 bits of K8. Only eight key bits are still missing and theycan be found by exhaustive search of 256 cases, using one pair of ciphertexts,and verifying that the plaintext XOR is as expected.To save disk space we can �lter the pairs as soon as they are created anddiscard all the identi�able wrong pairs (leaving 0:85 � 13 of all the pairs).Therefore, in the case of counting on 24 bits, the 25000 pairs are reducedto about 7500 pairs. For the case of counting on 18 bits we devised anothercriterion which discards most of the wrong pairs while leaving almost all theright pairs. This criterion is based on a carefully chosen weighting functionand discards any pair whose weight is lower than a particular threshold.This criterion is the extension of the �ltering of the identi�able wrong pairs(where the threshold is actually zero) and is based on the idea that a rightpair typically suggests more possible key values than a wrong pair. Theweighting function is the product of the number of possible keys of each ofthe �ve countable S boxes (i.e., the number in the corresponding entry inthe pairs XOR distribution tables). The threshold is chosen to maximizethe amount of discarded pairs, while leaving as many right pairs as possible.The best threshold value was experimentally found to be 8192 which discardsabout 97% of the wrong pairs and leaves almost all the right pairs. Thisreduces the number of pairs we actually analyze from 150000 to about 7500,with a corresponding reduction in the running time of the attack.44



S2I S2�I S2O S2�O123456 123456 1234 1234000010 001010 0001 1011000110 001110 1110 0100010001 011001 1100 0110010101 011101 0001 1011100000 101000 0000 1010100010 101010 1110 0100100100 101100 0111 1101100110 101110 1011 0001Table 10. The possible instances of 08x ! Ax by S2 (in binary).The attacking program �nds the key in less than two minutes on a COM-PAQ personal computer with 95% success rate (using 150000 pairs). Using250000 pairs the success rate is increased to almost 100%. The program uses460K bytes of memory, most of it for the counting array (one byte su�cesfor each counter since the maximum count is about 53, and thus the totalarray size is 218 bytes), and the preprocessed speed up tables. The programwhich counts using 224 memory cells �nds the key using only 25000 pairs.5.1 Enhanced characteristic's probabilityIn addition to the statistical behavior of the characteristic we can use thepossible values of individual input and output bits of the S boxes. Letslook at the �rst round of the characteristic. We have 08x ! Ax by S2 withprobability 1664 . Table 10 describes the possible input and output values.We can see that the input bits number 2 and 6 are always equal. Inaddition for 1216 of the input values they are both 0 and for 416 of them theyare both 1. If we know the XOR of the key bits entering these two bitsof S2 in the �rst round (i.e., bits 57 and 42 of the key) we can use onlyplaintexts whose corresponding bits (i.e., bits 5 and 9) have the same XORvalue (causing bits number 2 and 6 to be equal). Other pairs of plaintextscannot satisfy the characteristic. The statistics and the S=N ratio are then45



twice as good, and let us use less than half the number of pairs.If we know the values of both bits in a key we can choose the two bits inthe plaintexts s.t. the bit values entering S2 are both zero. In this case thestatistics for S2 becomes 1216 instead of 1664 . Thus we get a factor of three in thestatistics and the S=N . The higher S=N lets us use less than 13 of the pairsneeded originally. A factor of four can be easily obtained by a characteristicthat holds for all the inputs in which bit number 1 has value 1 and both bitsnumber 2 and 6 have value 0.5.2 Extension to nine roundsThe �ve-round characteristic can be extended to six rounds by concatenatingit to the following characteristic:
P = 84 41 13 46 40 5C 00 00xA0 = 80 41 13 46x a0 = 40 5C 00 00x with probability about 1100= P (30 EF 00 00x)
T = 04 00 00 00 40 5C 00 00xF

This characteristic has probability 12�14�16643 � 1100 and thus the probabilityof the concatenated six-round characteristic is about 11000000 .DES reduced to nine rounds can be broken using 30-million pairs by amethod based on this six-round characteristic and using an array of size 230with S=N = 23045�1000000 � 1. The �rst part of the algorithm that �nds the �rst30 key bits is almost the same as in the eight rounds algorithm except thatit counts on all the 30 bits at once. The second part of the algorithm thatuses table 9 is slightly di�erent since the key scheduling at the ninth round46



is based on a shift of one bit instead of two bits. The input part stays thesame.6 DES with an arbitrary number of roundsThe following iterative characteristic can be used to cryptanalyze (at leastin principle) variants of DES with an arbitrary number of rounds.Notation The value 19 60 00 00x is denoted by  .The iterative characteristic is:
P = ( ; 0) = 19 60 00 00 00 00 00 00xA0 = 0 a0 = 0 alwaysB0 = 0 b0 =  = with probability about 123419 60 00 00x
T = (0;  ) = 00 00 00 00 19 60 00 00x
F

F

Due to the importance of this iterative characteristic, throughout this paperwe refer it as the iterative characteristic.Lemma 2 The iterative characteristic has probability 14�8�10643 � 1234 .Proof S 0Eb 6= 0 only at three S boxes: S1, S2 and S3, for which:S10Eb = S10Ib = 03x ! S10Ob = 0 with probability 1464S20Eb = S20Ib = 32x ! S20Ob = 0 with probability 864S30Eb = S30Ib = 2Cx ! S30Ob = 0 with probability 1064and for the other S boxes (S4, . . . , S8):47



Number of rounds Probability3 12345 1550007 � 2�249 � 2�3211 � 2�4013 � 2�4815 � 2�56Table 11. The probability of the iterative characteristic versus number ofrounds. S 0Eb = S 0Ib = 0 ! S 0Ob = 0 always.Thus B0 = 0 with probability 14�8�10643 � 1234 .Theorem 2 By an iterative concatenation of the iterative characteristicwith itself and with the one-round characteristic with probability 1 (describedin example 9) we get characteristics with probabilities as summarized in ta-ble 11. In addition the plaintext XORs and the ciphertext XORs of thesecharacteristics are equal:
P = 
T = 19 60 00 00 00 00 00 00x = ( ; 0)and for the next round (w.l.g. a �ve-round characteristic)f 0 =  and �ve of its S boxes satisfy S 0Ef = 0.Proof The results of this theorem are derived from de�nition 11 and lemma 2.The XOR data during the intermediate rounds looks like:
P = ( ; 0)a0 = 0 ! A0 = 0 always48



b0 =  ! B0 = 0 with probability about 1234c0 = a0 �B0 = 0 ! C 0 = 0 alwaysd0 =  ! D0 = 0 with probability about 1234e0 = c0 �D0 = 0 ! E 0 = 0 always...and so forth for any number of rounds.Note There is another value for which lemma 2 and theorem 2 hold withthe same probabilities. This value is  y = 1B 60 00 00x. There are severaladditional values for which the probabilities are smaller. The best of themis  z = 00 19 60 00x for which the probability is exactly 1256 . The extensionof this iterative characteristic to 15 rounds has probability 2�56.There are several possible types of attacks, depending on the number ofadditional rounds in the cryptosystem that are not covered by the character-istic itself. The attack on DES reduced to eight rounds in section 5 uses a�ve-round characteristic and there were three additional rounds. This kind ofattack is called a 3R-attack. The other kinds of attacks are a 2R-attack withtwo additional rounds and a 1R-attack with one additional round (wherethe characteristic causes r0 to be �xed). A 0R-attack is also possible but itcan be reduced to a 1R-attack with a better statistics and the same S=N .A 0R-attack has the advantage that the right pairs can be recognized al-most without mistakes (the probability of a wrong pair to survive is 2�64)and thus the memory requirements can become negligible using the cliquemethod. For a �xed cryptosystem it is advisable to use the shortest possiblecharacteristic due to its better statistics. Thus, a 3R-attack is advisable overa 2R-attack and both are advisable over a 1R-attack.In the following sections the actual attacks on DES reduced to 8{16rounds are described. All these attacks �nd some bits of the subkey of thelast round. The other bits of the subkey of the last round can be calculatedusing these known bits and a reduction of the cryptosystem to a smallernumber of rounds can be done. Only eight bits do not appear in the subkeyof the last round and they can be found by trying all the 256 possible keys.49



6.1 3R-attacksIn 3R-attacks counting can be done on all the bits of the subkey of the lastround entering the S boxes that have zero input XORs at the round thatfollows the last round of the characteristic. The four, six, eight and nine-round attacks described in the previous sections are of this type.In DES reduced to eight rounds the �rst 30 subkey bits can be found usingthe iterative characteristic with �ve rounds (whose probability is about 155000 )by an attack which is similar to the one described in section 5. Using an arrayof size 224 we have S=N = 22444�0:8�55000 = 1:5. We need about 220 pairs. Usingan array of size 230 we have S=N = 23045�55000 � 19. About 67% (1 � 0:85) ofthe pairs can be identi�ed in advance as wrong pairs.6.2 2R-attacksIn 2R-attacks, counting can be done on all the bits of the subkey of the lastround. Possibility checks can be done for all the previous round S boxes. AnS box whose input XOR is zero should also have an output XOR of zero, i.e.,the success rate of this check is 116 . For the other S boxes the success rate isabout 0:8.In DES reduced to nine rounds the 48 bits of K9 can be found using 226pairs using the seven-round characteristic. We know that:
P = ( ; 0)a0 = 0 ! A0 = 0 alwaysb0 =  ! B0 = 0 with probability about 1234c0 = 0 ! C 0 = 0 always...g0 = 0 ! G0 = 0 alwaysh0 =  ! H 0 = i0 � g0 = r0i0 = r0 ! I 0 = h0 � l0 = l0 �  
T = (l0; r0) 50



We can check that h0 ! H 0 and i0 ! I 0 and count the possible occurrencesof the key bits. At h0 ! H 0 �ve S boxes satisfy S 0Eh = S 0Ih = 0 and thus S 0Ohmust be zero (which happens for wrong pairs with probability 116), while theother three S boxes satisfy S 0Ih ! S 0Oh (which happens for wrong pairs withprobability 0:8). Therefore the counting on all the 48 bits of K9 has S=N =248�2�2448�0:83�( 116 )5 � 229 and counting on 18 bits has S=N = 218�2�2443�0:85�0:83�( 116 )5 � 211.Even a separate counting on the six key bits entering each S box is possiblewith S=N = 26�2�244�0:87�0:83�( 116 )5 � 10. The identi�cation of the wrong pairs leavesonly 0:83 � � 116�5 � 0:88 � 2�24 of the wrong pairs and thus only about onewrong pair is left per each right pair. The characteristic's probability is 2�24and thus we need about 226 pairs for the cryptanalysis. This attack needsmore data than the previous 3R-attack on DES reduced to nine rounds butneeds much less memory. Due to the very good identi�cation of wrong pairs(only about eight pairs are not discarded, four right pairs and four wrongpairs) it is possible to use the clique method on all the 48 bits.Eleven rounds can be broken by using the nine-round characteristic withan array of size 218 and S=N = 218�2�3243�0:85�0:83�( 116 )5 � 6 using 235 pairs. The cliquemethod can still be used on 48 subkey bits with S=N = 248�2�3248�0:83�( 116 )5 � 221 withan identi�cation that leaves 232 � 2�24 = 28 wrong pairs per each right pair.13 rounds can be broken using the eleven-round characteristic with anarray of size 230 and S=N = 230�2�4045�0:83�0:83�( 116 )5 � 4 using 243 pairs. The cliquemethod is not possible since 243 �2�24 = 219 pairs are not discarded. Countingschemes on 18 and 24 bits are not advisable due to the low S=N .15 rounds can be broken using the 13-round characteristic with an arrayof size 242 and S=N = 242�2�4847�0:8�0:83�( 116 )5 � 2:5 using 251 pairs. This is stillfaster than exhaustive search, but requires unrealistic amounts of space andciphertexts.
51



6.3 1R-attacksIn 1R-attacks counting can be done on all the bits of the subkey of the lastround entering the S boxes with non zero input XORs. Veri�cation of thevalues of r0 itself and possibility checks on all the other S boxes in the lastround can be done. For those S boxes with a zero input XOR the output XORshould be zero too, i.e., the check success rate is 116 . Since the input XOR isconstant we cannot distinguish between several subkey values. However, thenumber of such values is small (eight in all the 1R-attacks described here)and each can be checked later in parallel by the next part of the algorithm(either via exhaustive search or by a di�erential cryptanalysis attack).Ten rounds can be broken using the nine-round characteristic whereh0 =  ! H 0 = 0 with probability 1234i0 = 0 ! I 0 = 0 alwaysj 0 =  = r0 ! J 0 = l0 � i0 = l0:We can identify the right pairs easily. Those pairs satisfy r0 =  and the20 bits in l0 going out of S4, . . . , S8 are zero. This also holds for 2�52 ofthe wrong pairs. For the other three S boxes we count the possible values oftheir 18 key bits with S=N = 218�2�3243�2�52 = 232. Thus we need 234 pairs.Twelve rounds can be broken using the eleven-round characteristic withS=N = 218�2�4043�2�52 = 224 and with 242 pairs.Fourteen rounds can be broken using the 13-round characteristic withS=N = 218�2�4843�2�52 = 216 and with 250 pairs.For sixteen rounds we get S=N = 218�2�5643�2�52 = 28 using the 15-round char-acteristic. This can be broken using 257 pairs. Note that the creation of257 pairs is more time consuming than exhaustive search for the 256 possiblekeys.6.4 Summary of the cryptanalysisA summary of the cryptanalytic results appears in table 12. The description52



# of#pairs#pairs#bitsCharacte- S=N Commentsrndsneeded used foundristics4 23 23 42 1 1 16 [6]6 27 27 30 3 116 216 �8 215 213 30 5 110486 15:6[24]8 217 213 30 5 110486 1:2 [18]8 220 219 30 5 155000 1:5 [24] The iterative characteristic.9 225 224 30 6 11000000 1:0 [30] Extension to six rounds.9 226 8 48 7 2�24 229 �10 234 4 18 9 2�32 232 �11 235 211 48 9 2�32 221 �12 242 4 18 11 2�40 224 �13 243 219 48 11 2�40 4 [30]14 250 4 18 13 2�48 216 �15 251 227 48 13 2�48 2:5 [42] Needs a huge memory. Withless memory needs 257 pairs.16 257 25 18 15 2�56 28 � Slower than exhaustivesearch.Table 12. Summary of the cryptanalysis of DES.of each �eld is as follows:# of rnds: The number of rounds in the cryptosystem.#pairs needed: The number of pairs needed to cryptanalyze the cryptosys-tem. The number of ciphertexts needed is twice the number of pairs.#pairs used: The number of pairs that are actually used in the attack, ex-cluding the identi�able wrong pairs that can be easily discarded duringthe collection phase. 53



S2I S2�I S2O = S2�O123456 123456 1234000111 110101 0111001111 111101 1110010101 100111 0001010111 100101 1010Table 13. Possible inputs and outputs for 32x ! 0 by S2 (in binary).#bits found: The number of key bits found in the initial attack (using asingle characteristic). The other key bits can be found by auxiliarytechniques.Characteristic: The number of rounds and the probability of the charac-teristic used in the attack.S=N : The signal to noise ratio of the attack. The number in brackets (if any)denotes the number of initial bits found with that S=N . An asteriskdenotes that the clique method is preferable over the counting methodand then the S=N is on the number of bits found. The other key bitsare found either in parallel or at a second pass.Comments: Real comments.6.5 Enhanced characteristic's probabilityIn addition to the statistical behavior of the iterative characteristic we canuse the individual values of the input and output bits of the S boxes.In the iterative characteristic we have the following behavior. When32x ! 0 by S2 the values of the input bits number 4 and 6 are alwaysboth 1 (see table 13). It does not happen in the �rst round and thus itcannot be used as in section 5.1. Also we have 2Cx ! 0 by S3 where in 810 ofthe cases bit number 2 equals 0 and in 210 of the cases bit number 2 equals 1(see table 14). 54



S3I S3�I S3O = S3�O123456 123456 1234000010 101110 0000000011 101111 0111000111 101011 1001001111 100011 1010010001 111101 0010Table 14. Possible inputs and outputs for 2Cx ! 0 by S3 (in binary).The XOR value bit 6 of S2I and bit 2 of S3I equals the XOR value ofthe corresponding key bits in S2K and S3K since the corresponding bits inS2E and S3E are the same bit due to the bit expansion. If their XOR valueis known to be 1 then the probability of the iterative characteristic becomes14�8�8642�32 = 7210 � 1146 . If their XOR value is known to be 0 then the probabilitybecomes 14�8�2642�32 = 7212 � 1595 .The other characteristic described with the same probability has the op-posite direction. When 36x ! 0 by S2 the value of bit number 6 is always 0and thus the probabilities are exchanged. If the XOR of the key bits is 0then the probability is 1146 and if 1 it is 1595 .The attack on DES with 16 rounds is now as follows. There are sevenrounds in which the input XOR is assumed to be  . Suppose that, out ofthese seven rounds, we have n rounds (0 � n � 7) whose key bit number 6of S2K equals key bit number 2 of S3K. In this case, the probability of the15-round characteristic is� 7212�n � 7210�7�n = 4n � 7212�7 � 1:6 4n265 :For the other characteristic it is 1:647�n265 . Table 15 describes the probabilitiesfor each number of equalities among the key bits and the relative frequencyof such keys.To increase the probability (especially in the worse cases) we use quartetsbased on both characteristics. Since both characteristics allow counting on55



# of keys probability probability sum of # neededequals ratio �rst char other char probabilities ciphertexts0 1128 1:6 � 2�65 1:6 � 2�51 1:6 � 2�51 1:25 � 2521 7128 1:6 � 2�63 1:6 � 2�53 1:6 � 2�53 1:25 � 2542 21128 1:6 � 2�61 1:6 � 2�55 1:625 � 2�55 1:23 � 2563 35128 1:6 � 2�59 1:6 � 2�57 2�56 2584 35128 1:6 � 2�57 1:6 � 2�59 2�56 2585 21128 1:6 � 2�55 1:6 � 2�61 1:625 � 2�55 1:23 � 2566 7128 1:6 � 2�53 1:6 � 2�63 1:6 � 2�53 1:25 � 2547 1128 1:6 � 2�51 1:6 � 2�65 1:6 � 2�51 1:25 � 252Table 15. Probabilities by number of key bits equalities.the same S boxes we can use them simultaneously. We can see from the tablethat even though we can now break 16 rounds with less than 256 encryptions,it does not work for all the keys but only for a small fraction of them. Forthis fraction exhaustive search is still faster. Table 15 shows that althoughthe knowledge of the speci�c bit values during the rounds of the character-istics enhances the attack and decreases the number of pairs needed, theimprovement is relatively small and does not a�ect the overall complexity.7 Variants of DESThis section describes several variants of DES and how the attack works onthem.
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7.1 Modifying the P permutationAll the attacks based on the iterative characteristic are independent of thechoice of the P permutation. Thus any modi�cation of the P permutationby any other permutation cannot make the attack less successful.7.2 Modifying the order of the S boxesThe DES cryptosystem speci�es a certain order of the eight S boxes. Amodi�cation of the order of the S boxes can make the cryptosystem muchweaker. Consider for example the case in which S1, S7 and S4 are broughttogether in this order (w.l.g. in the �rst three places) and the other S boxesare set in any order. Then there is a similar iterative characteristic. Thischaracteristic is denoted by  � = 1D 40 00 00x whereS1: 03x ! 0 with probability 1464S7: 3Ax ! 0 with probability 1664S4: 28x ! 0 with probability 1664and  � ! 0 with probability 14�16�16643 � 173 .The 15-round characteristic has probability 1737 � 2�43 and thus the 16-round cryptosystem can be attacked using 245 pairs with S=N = 218�2�4343�2�52 =221.The 17-round characteristic has probability 1738 � 2�50 and thus the 18-round cryptosystem can be attacked using 252 pairs with S=N = 218�2�5043�2�52 =214.In these attacks the clique method can be used due to the excellent iden-ti�cation of wrong pairs (only 2�53 of them remain). As in the attack basedon the iterative characteristic this attack is independent of the choice of theP permutation.
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7.3 Modifying XORs by additionsIn DES there are two XOR operations in each round. The �rst XORs theexpanded input with the subkey within the F function while the other XORsthe output of the F function with the other half of the input data. The fol-lowing subsections describe three possible modi�cations which replace someof the XOR operations by addition operations. The same analysis holds formodi�cation by subtraction operations.7.3.1 Modifying the XORs within the F functionIf we replace the occurrences of the XORs within the F function by additionoperations we get a much weaker cryptosystem. The attack uses the followingiterative characteristic:
P = 00 00 00 00 00 0C 00 00xA0 = 0 a0 = 00 0C 00 00x with probability 164B0 = 0 b0 = 0 always

T = 00 0C 00 00 00 00 00 00x

F

F

The 00 0C 00 00x ! 0 should be explained: 00 0C 00 00x is the input XOR ofthe F function. The expansion to 48 bits is 000058000000x. The addition ofthe key causes the input XOR to become 000028000000x with probability 116 .Thus the input XORs of all the S boxes except S4 is zero, while S40I = 28x.However, 28x ! 0 by S4 with probability 14 .58



The 15-round characteristic has probability ( 164)7 = 2�42. The 1R-attackcounting scheme which �nds the six subkey bits entering S4 in the sixteenthround has S=N = 26242�2�32�2�24�4 = 218. Thus the attack needs about 244 pairsof encryptions. The six key bits entering S3 can then be found using thesame encryptions with even higher signal to noise ratio. Exhaustive searchof the 244 possible keys (with 12 �xed bits) recovers the right key. The totalcomplexity of this attack is thus 245.7.3.2 Modifying all the XORsModifying all the XORs by additions change the probability of this character-istic from 2�6 to 2�8. This happens because the additional addition operation(for example c = a+B) does not change the input XOR (c0 = a0 for B0 = 0)with probability 14 . Thus the 16-round characteristic has probability 2�64,the 15-round characteristic has probability 2�58, the 14-round characteristichas probability 2�56 and the 13-round characteristic has probability 2�50.The analysis of this attack shows that 252 pairs are needed to cryptanal-ize the 14-round cryptosystem. The attacks on the 15-round and 16-roundcryptosystems are slower than exhaustive search.7.3.3 Modifying all the XORs in an equivalent DES descriptionDES has an equivalent description in which the expansion is moved to theend of the F function and all the calculations are done using 48 bits insteadof 32. The cryptosystem which is the result of modifying all the XORsin this description by additions is not equivalent to the modi�ed standardcryptosystem as described in the previous subsection. In this subsectionwe show that this cryptosystem is much weaker than the modi�ed standardcryptosystem. We can save the repeated cancellation of non zero input XORsentering S3 in the previous characteristic by doing it in the �rst addition,since during the various rounds the data bits entering each S box are keptexpanded. We get a two-round iterated characteristic with probability 116which is concatenated to a single occurrence of a one-round characteristic59



with probability 116 at the �rst round. Thus an n-round characteristic withan odd n has probability 116 � ( 116)n�12 = 2�2�2n.The 15-round characteristic has probability 2�32. A 1R-attack on the16-round cryptosystem while counting the six key bits entering S4 in thelast round has S=N = 26232�2�48�2�42�1 = 264. Thus only about 234 pairs areneeded. The other key bits entering the last round can be found using similarcharacteristics. The best three characteristics have probabilities between 2�32and 2�35, and the attacks based on them can �nd 18 key bits. Therefore, 237pairs are needed to �nd the �rst 18 key bits. The remaining 238 key bits canbe found by exhaustive search. The total complexity of this attack is thus239.7.4 Random and modi�ed S boxesIn a random S box there is a very high probability (about 0.998) that thereare two di�erent inputs that di�er in the two middle input bits of an S box(which do not a�ect the neighboring S boxes) which have the same output.In this case there is an iterative characteristic which is (w.l.g. the S box isS1 and S10I = Cx):
P = 60 00 00 00 00 00 00 00xA0 = 0 a0 = 0 alwaysB0 = 0 b0 = 60 00 00 00x with some probability

T = 00 00 00 00 60 00 00 00x

F

F
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Char Prob 8 13 rnds 13 rnds NeededProb S boxes char prob S=N Pairs132 1:00000 2�30 2�2232 1:00000 2�24 24 227332 0:99991 2�20:5 27:5 223432 0:97079 2�18 210 220532 0:68375 2�16:1 211:9 218632 0:27330 2�14:5 213:5 217732 0:07240 2�13:2 214:8 215832 0:01499 2�12 216 214932 0:00260 2�11:0 217:0 2131032 0:00039 2�10:1 217:9 212Table 16. Characteristic probabilities with random S boxes.97% of the sets of eight S boxes have such iterative characteristic with prob-ability 18 or more. The corresponding 13-round characteristics have proba-bility 2�18 for which the 3R-attack on 42 subkey bits needs 220 pairs withS=N = 210. Table 16 describes the relationship between the probability ofthe characteristics, the number of pairs needed, and the probability that aset of random S boxes has such a characteristic.In S boxes chosen as four random permutations (as in the original DES Sboxes) two di�erent inputs that di�er in the private bits of one S box musthave di�erent outputs. But there is a high probability that there are twodi�erent inputs di�ering in the input bits of two S boxes which have thesame output. In this case there is an iterative characteristic which is (w.l.g.the di�erence is in S1 and S2 and the di�ering bits of the data are by bit
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mask 7D 00 00 00x):
P = 7D 00 00 00 00 00 00 00xA0 = 0 a0 = 0 alwaysB0 = 0 b0 = 7D 00 00 00x with some probability

T = 00 00 00 00 7D 00 00 00x

F

F

In random tests we found several attacks that use 243 to 247 pairs. Weestimate that attacks that use this number of pairs can be found for morethan 90% of the 16-round cryptosystems which use S boxes chosen as fourrandom permutations.With a single modi�cation in one entry of one of the original DES S boxeswe can force this S box to have two di�erent inputs with the same output.For example, such a modi�cation may set the value of S(4) to be equal toS(0) (i.e., the third value in the �rst line to be equal to the �rst value in the�rst line). Therefore there are two di�erent inputs (0 and 4) with the sameoutput (the input XOR is 4 and the output XOR is 0). The probability of4! 0 by this S box is 132 . An iterative characteristic based on this property
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has probability 132 and is (w.l.g. the di�erence is in S1):
P = 20 00 00 00 00 00 00 00xA0 = 0 a0 = 0 alwaysB0 = 0 b0 = 20 00 00 00x with probability 132

T = 00 00 00 00 20 00 00 00x

F

F

Therefore the probability of the 15-round characteristic is 1327 = 2�35. Usinga 1R-attack 237 pairs are needed to attack the 16-round modi�ed DES withS=N = 26�2�354�2�60 = 229 in order to �nd two indistinguishable values of the �rstsix key bits.7.5 Four bits to four bits S boxesA cryptosystem similar to DES in which the E expansion is eliminated andthe S boxes map four bits to four bits is quite weak. Even the cryptosystemsthat use permutations derived from the original S boxes are easily attacked.For example, using the �rst lines of the original S boxes we can �nd the
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following four-round iterative characteristic with probability 1256 :
P = B0 00 00 00 00 00 05 00xA0 = 10 00 00 00x a0 = 00 00 05 00x with probability 14B0 = 00 00 02 00x b0 = A0 00 00 00x with probability 18C 0 = 10 00 00 00x c0 = 00 00 07 00x with probability 14= A0D0 = 00 00 02 00x d0 = B0 00 00 00x with probability 12= B0
T = 00 00 05 00 B0 00 00 00x

F

F

F

F

Using a 2R-attack only 228 pairs are needed to break the 16-round cryp-tosystem. There are several additional characteristics that can be used toattack the cryptosystem with a similar amount of pairs.8 DES with independent keysIn this section we describe an attack on DES reduced to eight rounds with in-dependent keys and its application to DES with 16 rounds with independentkeys. 64



8.1 Eight roundsThe attack on DES reduced to eight rounds with independent keys is basicallysimilar to the attack on DES reduced to eight rounds described in section 5.We start by using the same algorithm to �nd the �rst 30 bits of K8 andthen proceed to �nd the remaining bits of K8 and the bits of all the othersubkeys by variants of this algorithm. The attack uses the same characteristicas in the attack described in section 5 plus 100 pairs with additional twocharacteristics.After �nding the �rst 30 bits of K8, we �lter the pairs, identify the rightpairs and discard all the wrong pairs (with relatively few errors). The other18 bits of K8 cannot be found yet since we cannot assume that the subkeysare related to each other by the key scheduling algorithm. To avoid thisproblem we �rst look for bits of K7. Table 9 shows the bits in g that can becalculated for any given ciphertext (the known key bits there are irrelevantto our case). For each of the eight S boxes of the seventh round and foreach of its 64 possible key values we count the number of pairs for whichthis key value is possible. A key value is possible for an S box in a pair ifthere is an input pair to the S box whose computable bits have the calculatedvalue, the other bits have any value and the output XOR is as expected bythe characteristic and the ciphertexts (by G0 = f 0 � h0 = f 0 � r0). The mostfrequent key value is likely to be the right key value. Since there is not enoughdata to make this key value unique we look for the set of key values withmaximal counts and choose the bits that have the same value in all the set.Those bits are likely to have the right values. The other bits stay unknown.Experience has shown that the known bits of S1Kh, S3Kh and S4Kh are atthe locations denoted by `1' bits in 2Fx, 27x and 3Cx respectively. If some ofthese bits are unknown it is almost certainly due to a mistaken value of theknown bits of K8.By the knowledge of the subkey bits of the eighth round we can calculateseveral input bits of the seventh round for any ciphertext. The input to theseventh round g has missing bits that enter all the S boxes. There is oneS box whose input depends just on one missing bit while the inputs of allthe other S boxes depend on two missing bits at least. This S box is S1whose input bit could be calculated if an output of S4 of the eighth round65



was known. To �nd the key bits of S4Kh we try all the 64 possibilities ofits value for each pair, and �nd the key bits value by the counting method.Now each of the inputs of S3Eg and S4Eg have one missing bit: S3Eg couldbe calculated if S1Oh was known and S4Eg could be calculated if S3Oh wasknown. To �nd these subkey bits we try all the 128 possibilities of S1Khand the missing bit of S3Kg and then the 128 possibilities of S3Kh and themissing bit of S4Kg. Now K8 is completely known. To �nd K7 we repeatthe algorithm of �nding K7 described above with the di�erence that now weknow all K8. Only one bit of K7 remains indistinguishable. This bit is bitnumber 2 of S1Kg.So far we used the �ltered pairs. These pairs are assumed to be rightpairs whose f 0 is as expected. They cannot help �nding K6 since the inputXORs of �ve of the S boxes are zero so this part of K6 can not be foundat all. The other three S boxes have constant input XORs so there are twoindistinguishable values for the subkey bits entering each S box. In order to�nd K6 we have to use wrong pairs for which the characteristic holds in the�rst three of the �ve rounds. From now on we use all the pairs and �lterthem by a di�erent criterion in each phase of the cryptanalysis.K6: To �nd K6 we decrypt two rounds of the ciphertexts and get thevalues of f and f �. We assume that the �rst three rounds of the characteristichold in the chosen pairs so d0 is as expected with zero input XORs enteringsix S boxes. Thus we can calculate the output XORs of these S boxes in thesixth round by F 0 = c0 � D0 � g0. Since c0 = 0 and S 0Ed is zero in the six Sboxes, we get that F 0 = g0 in the output bits of these S boxes. The �lteringchooses all the pairs for which f 0 and F 0 satisfy S 0Ef ! S 0Of for S1, S2, S5,. . . , S8. Using the resultant pairs we count on the 12 subkey bits entering S1and S2 and the missing bit of K7 (needed for the decryption of the seventhround).To �nd the other bits of K6 we �lter the pairs again by using the knownbits of K6 to check the output XOR of S1 and S2, and count on S5Kf , . . . ,S8Kf , a separate counting for each S box (we have a very good �ltering sothe S=N is high enough). In parallel we count on S3Kf and on S4Kf usingthe assumption that e0 is as expected by the characteristic (four rounds hold)and the �lter that discards any pair for which S 0Oe 6= 0 for S1, S3, . . . , S866



(since only S20Ee 6= 0). Several possibilities are found for some of the S boxes'key bits, and the following phases are run on each one of them in parallel.K5: We assume c0 = 0 and d0 = b0. Then D0 = e0 where e and e� arecalculated by a partial decryption. S 0Od must be zero in the six S boxes inwhich S 0Ed = 0. We �lter the pairs and leave only those that have S 0Od = 0.Then we count on each of the eight S boxes of the �fth round. Severalpossibilities can be found for some of the SKe's. A list of all the possibilitiesof K5 is created and used to try each one of them in parallel in the followingphases.K4: At the second round there must be S20Eb = S60Eb = 0 for any pair(these S box inputs do not depend on the di�ering bits of the plaintexts). dand d� are found by a partial decryption. In additionD0 = a0�B0�e0 so S20Odand S60Od are known and there must be S20Ed ! S20Od and S60Ed ! S60Od. Ifit does not hold for even one pair it is not a �ltering problem. It must be awrong value of the subkeys K5, . . . , K8. A separate counting is done for eachof the six S boxes S1, S2, S5, . . . , S8. The counting on the other S boxes S3and S4 is done only for pairs whose d0 is as expected by the characteristicsince otherwise we cannot know the value of S30Od and S40Od because S30Oband S40Ob are unknown. Since S30Ed and S40Ed are constants there are twoindistinguishable values for each of their keys. As usual we create a list ofthe possible K4 values and try them in parallel.K3: c and c� can be found by a partial decryption of the following roundsusing K4, . . . , K8. S 0Ea = 0 in all the S boxes except S2. Thus S 0Oc can befound for S1, S3, . . . , S8 by C 0 = L0 � A0 � d0. For every pair there mustbe S 0Ec ! S 0Oc. Therefore, even if only one S box (S1 or S3, . . . , S8) of onepair does not match S 0Ec ! S 0Oc it must be that the values of K4, . . . , K8are wrong. If this does not happen, the counting is done in parallel for allthe S boxes except S2 using all the pairs. S20Ea 6= 0, thus the calculation ofS20Oc is impossible without further assumptions. Therefore we assume thatthe values of A0 and b0 are as expected by the characteristic. The �lteringdiscards any pair that does not have S 0Ob = 0 for S1, S2 and S5, . . . , S8 usingB0 = a0 � c0 = R0 � c0 (since we assume S 0Eb = 0 in these S boxes). Thecounting of S2Kc is done using the �ltered pairs.K2 and K1: The plaintext XOR used above is useless to �nd K2 and67



K1 since all the pairs have S20Eb = S60Eb = 0 and for all the S boxes of the�rst round except S2 there is S 0Ea = 0. The key bits cannot be found atall for these S boxes. For K1 and K2 we must use another plaintext XOR.We need only 100 such pairs, which can be obtained without adding newciphertexts by arranging some of the original ciphertexts in quartets. Thisplaintext XOR and the algorithm of �nding K1 and K2 are very similar tothe case of K1 and K2 in the four round version. See at the end of section 3for more details.This attack was implemented in C on a COMPAQ personal computer. It�nds the key in less than two minutes with 95% success rate using 150000pairs. Using 250000 pairs the success rate is almost 100%. The program uses460K bytes of memory, most of it for the counting array (of size 218 bytes)and the preprocessed optimization tables. The program which counts using224 memory cells �nds the key using only 25000 pairs. As demonstratedby these �gures, DES reduced to eight rounds with independent subkeys isalmost as easy to solve as the case of dependent subkeys.8.2 sixteen roundsDES with independent keys with any number of rounds is vulnerable to simi-lar attacks. Lets concentrate on DES with 16 rounds with independent keys.As we noticed in section 6 we can �nd eight possibilities for 18 bits of K16using 257 pairs. Three characteristics can be used to cover the subkey bitsentering all the S boxes in the 16th round. The three characteristics are theiterative characteristic itself, a similar iterative characteristic which is nonzero in the input XORs of S3, S4 and S5 whose 15 round probability is 2�56and a similar characteristic with non zero input XORs to S6, S7 and S8 whose15 round probability is about 2�57. Altogether, about 259 pairs are neededto �nd two possibilities for the six bits entering each of the S boxes, exceptS2 whose bits are completely determined by two characteristics. Therefore27 possibilities for K16 are found. We try in parallel all the 128 possibilitiesof the value of K16 and reduce the cryptanalytic problem to a DES reducedto 15 rounds. Since we know how to attack DES reduced to 15 rounds withless data in a complexity that is smaller by a factor of 26 then trying the128 possibilities takes up to twice the time of �nding the possibilities of K16.68



Most of the possibilities are discarded during this reduction and reductions tofewer rounds are possible with even smaller complexity. Therefore the crypt-analysis of all the DES with 16 rounds with independent keys takes about261 steps and use 259 pairs. Even though this is an impractical complexitybound, it is much faster than the 2768 complexity of exhaustive search.9 The Generalized DES Scheme (GDES)The Generalized DES Scheme (GDES) is an attempt to speed up DES whichwas suggested by Schaumuller-Bichl[16,18]. The speed up is obtained byincreasing the ratio between the block size and the number of calculations ofthe F function.The GDES blocks are divided into q parts of 32 bits each. The F functionis calculated once per round on the rightmost part, and the result is XORedinto all the other parts, which are then cyclically rotated to the right. Afterthe last round the order of the parts is exchanged to make the encryptionand decryption di�er only in the order of the subkeys. The scheme is shownin �gure 4, where n is the number of rounds of the GDES cryptosystem,B(j)i = B(j�1)i�1 � F (B(q)i�1; Ki) j 2 f2; : : : ; qg; i 2 f1; : : : ; ngB(1)i = B(q)i�1 i 2 f1; : : : ; ng,B0 = (B(1)0 ; : : : ; B(q)0 ) is the plaintext and Btn = (B(q)n ; : : : ; B(1)n ) is the cipher-text.9.1 GDES propertiesThis section describes several properties of GDES.1. In GDES with n < q,B(i)0 � ' = B(n+i)n 8i 2 f1; : : : ; q � ng69
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Figure 4. The Generalized DES Scheme.
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where ' = nLj=1F (B(q)j�1; Kj).Thus, the following formulae are satis�ed for any i; j 2 f1; : : : ; q � ng:B(i)0 � B(j)0 = B(n+i)n �B(n+j)nB(i)0 = B(j)0 () B(n+i)n = B(n+j)nand for pairs of plaintexts for which B(q�n+1)0 , . . . , B(q)0 are kept con-stant (i.e., B0(q�n+1)0 = : : : = B0(q)0 = 0):B0(i)0 = B0(m+i)m = B0(n+i)n 8i 2 f1; : : : ; q � ng; 8m 2 f0; : : : ; ng:2. In GDES with n � q, any pair of encryptions in which B(q�n+2)0 , . . . ,B(q)0 are kept constant satis�es:B0(q�n+1)0 = B0(q)n�1 = B0(1)n :3. For any odd q and any n the following equation is satis�ed:qMj=1B(j)0 = qMj=1B(j)m = qMj=1B(j)n 8m 2 f0; : : : ; ng:4. In GDES with n = q � 1, B0(j)0 = 0 8j 2 f2; : : : ; qgimplies that B0(j)n = 0 8j 2 f1; : : : ; q � 1gand B0(q)n = B0(1)0 :5. In GDES with n = 2q � 2, B0(1)0 = �1B0(2)0 = �2B0(j)0 = 0 8j 2 f3; : : : ; qg71



where �1 = 44 08 00 00x and �2 = 04 00 00 00x or �1 = 00 20 04 08xand �2 = 00 00 04 00x implies thatB0(j)n = 0 8j 2 f1; : : : ; q � 2gB0(q�1)n = �2B0(q)n = �1with probability 116 since �2 ! �1 � �2 with probability 14 . There areadditional values for �1 and �2 with smaller probabilities.6. In GDES with n = 2q � 1, B0(1)0 =  and B0(j)0 = 0 8j 2 f2; : : : ; qg(where  is the value used in section 6:  = 19 60 00 00x) implies thatB0(j)n = 0 8j 2 f1; : : : ; q � 1gand B0(q)n =  with probability about 1234 . GDES with n = lq � 1 satis�es it for anyl � 2 with probability about � 1234�l�1.9.2 Cryptanalysis of GDESThis section describes how to cryptanalyze GDES for various values of n andq. We assume that q is even (as suggested in [16,18]), but note that odd q canbe attacked by variants of our technique. All the attacks �nd the subkeysand are independent of the key scheduling algorithm. The special case ofq = 8 and n = 16 which is suggested in [16,18] as a faster and more securealternative to DES is breakable with just six ciphertexts in a fraction of asecond on a personal computer. 72



9.2.1 A known plaintext attack for n = qUsing a known plaintext attack we are given several plaintexts (each one ofthe form B0 = (B(1)0 ,. . . ,B(q)0 )) and the corresponding ciphertexts (each oneof the form Btn = (B(q)n ,. . . ,B(1)n )). ThennMj=1F (B(q)j�1; Kj) = qMj=1 �B(j)0 � B(j)n �and for any i 2 f1; : : : ; ngnMj=1j 6=i F (B(q)j�1; Kj) = B(q+1�i)0 �B(q+1�i)n :Thus the output of the F functions isF (B(q)i�1; Ki) = B(q+1�i)0 �B(q+1�i)n � qMj=1 �B(j)0 �B(j)n �and the input of the F functions isB(q)i�1 = B(q+1�i)0 � i�1Mj=1F (B(q)j�1; Kj):We thus have SE and SO of each one of the 8n S boxes. As a result weget only four choices for the six subkey bits of each S box. Using two or threeencryptions the choices can be �ltered by leaving only the ones that appearin all the encryptions, and thus all the subkey bits can be found.9.2.2 A chosen plaintext attack for n = qUsing a chosen plaintext attack with pairs whose plaintext XORs are knownwe can compute the input and output XORs of the F functions by the samemethod used in the known plaintext attack. We can thus �nd all the subkeys(starting with the subkey of the last round and working backwards towardsthe �rst round) using three pairs of ciphertexts with di�erent plaintext XORs.73



9.2.3 A chosen plaintext attack for n = 2q � 1Using a chosen plaintext attack with pairs satisfyingB0(j)0 = 0 8j 2 f2; : : : ; qgand any B0(1)0 6= 0, we getB0(j)q�1 = 0 8j 2 f1; : : : ; q � 1gand B0(q)q�1 = B0(1)0 :The rest of the encryption is based on q rounds and thus a chosen plaintextattack similar to the one for n = q can be used to �nd q subkeys by analyzingthree ciphertext pairs.The other q � 1 subkeys can be found using the above chosen plaintextattack with two additional ciphertexts.9.2.4 A chosen plaintext attack for n = 3q � 2This attack is similar to the previous one, and uses ciphertext pairs satisfying:B0(1)0 = �1B0(2)0 = �2B0(j)0 = 0 8j 2 f3; : : : ; qg:where �1 and �2 are de�ned in section 9.1. The right pairs are about 116 of allthe pairs. We can identify most of the wrong pairs by checking that the inputXOR cannot cause the output XOR. This happens with probability about0:8 for each S box. Thus only 0:88q = 0:16q of the wrong pairs remain. Whenq � 3 this is less than 0:88�3 = 1250 of the pairs. This excellent identi�cationmakes it possible to consider only 48 pairs, and identify the three expectedoccurrences of right pairs among them. We can further decrease this amountto 24 pairs by using quartets of two XOR values.74



9.2.5 A chosen plaintext attack for n = lq � 1This attack works for n = lq�1 rounds for l � 3. It is similar to the previousones using B0(1)0 =  B0(j)0 = 0 8j 2 f2; : : : ; qg:The characteristic holds with probability � 1234�l�2. The identi�cationleaves 0:88q�5 �� 116�5 of the wrong pairs. Thus if 0:88q�5 �2�20 � � 1234�l�2 (i.e.,l < q3 +4:7) then the identi�cation is excellent and only three right pairs areneeded (among the 3 � 234l�2 pairs considered) for counting the occurrencesfor each S box separately. Otherwise we can count on several S boxes simul-taneously using more memory and a better S=N . Counting on the 48 bits ofthe subkey of the last round hasS=N = 248 � 2�8l48 � 0:88q�13 � 2�20 � 248�8l+2:5q:This attack shows that any GDES which is faster than DES is also lesssecure than DES. GDES with n = 8q rounds is just as fast as DES. ConsiderGDES with n = 8q � 1 which is slightly faster than DES. Then the usablecharacteristic has 7q � 1 rounds and six repetitions of the iterative charac-teristic. Thus its probability is about � 1234�6 � 2�48. Counting on all the 48bits of the subkey of the last round hasS=N = 248 � 2�4848 � 0:88q�13 � 2�20 � 22:5q:Thus about 4{8 right pairs are needed, giving a total of 8 � 248 = 251 pairs.This complexity decreases rapidly when we try to make GDES even fasterby making n substantially smaller than 8q.9.2.6 The actual breaking algorithm for n = 2qThe breaking algorithm for the recommended case of n = 2q needs six ci-phertexts with particular plaintext XOR values. In this section we describe75



an attack on the extension of GDES which uses independent subkeys, whichneeds 16 encryptions. Note that for n = 16 and q = 8 the extended attackuses only 16 � 64 = 1024 ciphertext bits in order to �nd the 16 � 48 = 768 keybits, giving an almost optimal ratio of 1.33 ciphertext bits per key bit.The attacker chooses a random plaintext P , encrypts the following 16plaintexts, and uses only the resultant ciphertexts.� The plaintext P itself.� The nine plaintexts obtained from P by XORing 66 00 00 00x,60 60 00 00x, 60 00 60 00x, 60 00 00 60x, 60 00 00 06x, 9E 5F AC 7Dx,F7 A5 35 C7x, 7A FA 78 D5x and 21 22 E3 2Cx into B(1)0 (the �rst32 bits of P ).� The six plaintexts obtained from P by XORing A6 BD EF B7x,F4 F3 82 3Cx, 4F 5C 37 51x, 2B 76 7A DBx, 5A 19 F9 68x and33 EE DD FFx into all the B(i)0 blocks.These XOR values are chosen by the following criteria:1. The �rst plaintext is the randomly chosen basis for the di�erentialattack.2. Five plaintexts have the maximal number of unchanged inputs to Sboxes in the qth round compared to P and to each other. For thevalues chosen at least �ve of the inputs to each S box are unchanged,which makes it possible to �nd the subkey of the last round.3. Four other plaintexts have a maximal di�erence in the S boxes of theqth round. This is used to �nd the subkeys of the q + 1th and allthe subsequent rounds (There is not enough variability in the previousvalues to �nd all those subkeys).4. Six plaintexts have a maximal di�erence in the S boxes of the �rst qrounds. This makes it possible to �nd the �rst q subkeys.76



The cryptanalytic algorithm is as follows. At �rst the attacker tries to�nd the subkey of the last round. Each one of the 15 pairs consisting of Pand the �rst �ve plaintexts has a di�erent set of six S boxes whose inputXORs in B(1)0 are zero. All the other B(i)0 ; i 2 f2; : : : ; qg have input XORswhich are trivially zero. Thus each one of the �rst q � 1 F functions havethe same input and output values in all the pairs. In each pair the qth Ffunction has zero input and output XORs in six of the eight S boxes. Usingthis knowledge we get the output XOR of these six S boxes in the last (2qth)round by the formula: F 0(B(q)n�1; Kn) = qMj=2B0(j)n :The input XOR is easily computed as B0(q)n�1 = B0(1)n and the input itself isB(1)n . Now we try all the possible key bits for each S box separately andcheck that for the given input XOR we get the given output XOR value. Foreach S box there are at least �ve pairs which can distinguish values of thekey bits. The (almost certainly unique) value suggested by all the pairs isthe key of the corresponding S box. Therefore, the whole subkey of the lastround is found. Now a decryption of the last round can be done reducing thecryptosystem to 2q � 1 rounds.Note that if the subkeys are derived by the DES key scheduling algorithmthen 48 bits out of the 56 key bits are known at this point. The others canbe easily found by trying all the 256 possibilities of the missing eight keybits. We thus proceed to analyze the case of independent subkeys.In the following q� 1 rounds we get the input and the input XOR of theF function from the (partially decrypted) ciphertexts. The input XOR iscalculated by the formula:F 0(B(q)r�1; Kr) = B0(1)0 � qMj=2B0(j)rwhere r is the round number (r 2 fq+1; : : : ; 2q�1g). In this case the �rst tenciphertexts are used. The additional four ciphertexts are needed primarilyto �nd K(q + 1) since in the �rst six encryptions there are too many zeroXOR bits and more variety is needed. These added ciphertexts do not help77



in the nth round since there we want the output XORs of the S boxes in theqth round to be zero.In the remaining q rounds we use all the 16 ciphertexts. The additionalciphertexts have non zero di�erences in all the S boxes in all the rounds,whereas the �rst ten had a constant value during the �rst q� 1 rounds. Theinput XOR is calculated by the formula:F 0(B(q)r�1; Kr) = '� qMj=2B0(j)rwhere r is the round number (r 2 f1; : : : ; qg) and ' is' = (B0(1)0 ; if r < q;B0(2)0 ; if r = q.9.2.7 ConclusionsGDES with n = q = 8 is breakable using a known plaintext attack with threeciphertexts. With a key scheduling similar to DES, GDES is vulnerable to aknown plaintext attack when n = q + 1 as well.GDES with q = 8 and n = 16 was suggested in [16,18]. The 15-roundvariant is easily breakable using the n = 2q�1 attack with three ciphertexts.The 16-round version is breakable using the extension to n = 2q with sixciphertexts in 0.2 seconds on a COMPAQ personal computer. If independentkeys are used then it is breakable with 16 ciphertexts in three seconds on thesame computer.GDES with q = 8 and n = 22 is breakable using the n = 3q � 2 attackwith 48 ciphertexts (24 pairs). GDES with q = 8 and n = 31 is breakableusing the n = 4q�1 attack with 250000 pairs and S=N = 2182342�0:813 � 27 withmemory of size 218. Even GDES with q = 8 and n = 63 is weaker than DESand is breakable using 252 ciphertexts. In general, any GDES which is fasterthan DES is also less secure than DES.
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10 Non-di�erential attacks on DES reducedto few roundsIn this section we describe several novel attacks on DES reduced to 3{6rounds which are not based on the ciphertext pair paradigm. These attacksare of three kinds: ciphertext only attacks, known plaintext attacks andstatistical known plaintext attacks.10.1 Ciphertext only attacks10.1.1 A three-round attackThis attack assumes that the eight plaintext bytes are ASCII characterswhose most signi�cant bits are zeroes. The Initial Permutation (IP ) movesthe most signi�cant bits of all these bytes into a single byte. This byte is the�fth byte of the permuted plaintext which is the �rst byte of the right half.Given a ciphertext T = (l; r) we can easily calculate eight bits of the outputof the second round by B = a� c = R� r. From table 26 we see that theseeight bits are the output of seven S boxes in the second round (where two ofthem come from S5). The attack is as follows:1. We try all the possibilities of the key bits entering S5 in the secondround and all the key bits entering the six S boxes S1, S2, S3, S4, S6and S8 in the third round. Their output bits are XORed with the databits entering S5 in the second round. Three bits are counted in bothrounds and thus 39 bits are exhaustively tried.2. Using the tried key bits and any ciphertext we �nd the output of thesix S boxes in the third round and the input and output of S5 in thesecond round.3. We compare the two computed output bits of S5 in the second roundto their expected value. If they are di�erent then the 39 key bits arewrong. A quarter of the tried keys have the expected value. By trying79



additional ciphertexts we can discard more key values. We stop whenone candidate remains.Since we start with 239 possible keys and only 14 of them survive each test,we need about log4 239 = 19:5 ciphertexts. When the correct 39 key bits aredetermined, we can exhaustively try all the possible values of the remaining17 bits by checking whether the decoded plaintexts are ASCII characters.The attack thus needs a total of 239 steps and 20 ciphertexts to break DESreduced to three rounds.10.1.2 Another three-round attackIn this attack we assume that the plaintext bytes belong to a smaller set inwhich the three most signi�cant bits are constant. Such sets are the ASCIIcapital letters, the ASCII lower case letters and the ASCII digits. The threemost signi�cant bits of all the eight plaintext bytes are moved to three bytesby the initial permutation. These three bytes are the �rst byte of the left halfand the �rst and second bytes of the right half. Since the �rst and secondbytes of the right half are constant in all the plaintext blocks, the inputs ofS2 and S3 in the �rst round are constant and thus their outputs are constantas well. We can calculate the output bits of the third round by the equation:C = L� A� l: (2)Two bits of the eight constant bits in L have corresponding constant bitsin A: one of them is an output of S2 and the other is an output of S3 (seetable 26). Since l is known, the two bits in C are known up to a XOR with aconstant. These bits are outputs of S2 and S3. Trying all the 64 possibilitiesof the key bits entering S2 in the third round, we can check that in any pairof ciphertexts the output bit of S2 satis�es C1 � l1 = C2 � l2. Since half thekeys satisfy this condition, we need about 1 + log2 64 = 7 ciphertexts to �ndthe six key bits entering S2 in the third round. The same ciphertexts can beused to �nd the six key bits entering S3 in the third round. This leaves 44unknown key bits, which can be found in 244 steps with seven ciphertexts.80



10.1.3 A four-round attackThis attack is an extension of the previous three-round attack and assumes(as there) that the three most signi�cant bits of each plaintext byte areconstant. In this attack two bits of C are found by the equation:C = L� A� d = L� A� rwhich is similar to equation 2. Then two output bits (one in S2 and one in S3in the third round) are known up to a constant. We try all the possible keyvalues of the six key bits of S2 (or similarly S3) in the third round and all thepossible key values of the six S boxes in the fourth round whose output bitsare XORed with the data bits entering S2 (or S3) in the third round. Wetry a total of 36 key bits entering the fourth round and six key bits enteringthe third round, but �ve bits are common (six when using S3) and thus wehave to try 237 possible key values. We need about 1+ log2 237 = 1+37 = 38ciphertexts to make the computed key unique.10.2 Known plaintext attacks10.2.1 A three-round attackThe DES key scheduling algorithm divides the 56 key bits into two halves.Each half has 28 bits, and supplies the key bits to four S boxes.Consider DES reduced to three rounds with a single known plaintext/ciphertextpair. The exclusive-or value of the output of the �rst round and the thirdround is known by the equation:A� C = L� l:We �rst try all the 228 possibilities of one half of the key. Each candidatemakes it possible to compute the output of four S boxes in the �rst roundand the output of the same S boxes in the third round. We know theirexpected exclusive-or value. Since the value has 16 bits, only about 2�16 ofthe candidates survive this test. Thus we get about 212 possibilities for the81



�rst 28 bits of the key. In a similar way we get about 212 possibilities for theother 28 bits of the key. Therefore we �nd about 212 � 212 = 224 possibilitiesfor the full key, which can be exhaustively searched. The complexity of thisalgorithm is about 229, and can be reduced to about 221 by choosing the keybits entering each S box sequentially rather than in parallel, and discardingpartial keys as soon as they lead to a contradiction.10.3 Statistical known plaintext attacks10.3.1 A three-round attackIn this attack we use the fact that in a pairs XOR distribution table, ifwe know that the output XOR is zero then the input XOR is zero withprobability 14 . Given the plaintext and the ciphertext of an encryption wecan easily calculate A � C = L � l. Then the following algorithm is usedfor each S box. Choose only the encryptions whose output XOR from this Sbox is zero ( 116 of the encryptions): SOa� SOc = 0. If SIa� SIc = 0 then thecorresponding bits of a�c = R�r equal SKa�SKc. We count the number ofoccurrences of each such XOR value. The right value is suggested by about14 of the encryptions. Each other value is suggested by about 34 � 163 of theencryptions. The value that appears most frequently is likely to be the valueof SKa�SKc. This algorithm is used for each S box and thus we �nd 8�6 = 48bits that are XORs of the actual key bits. Then trying 28 possibilities wecan �nd the full 56 bit key. We need about four occurrences of the rightvalue of the key XOR for each S box, i.e., total of about 4 � 4 � 16 = 256plaintext/ciphertext pairs.10.3.2 A four-round attackIn this attack we use the fact that for all the S boxes there is a weak correla-tion between the value of the XOR of the four output bits and the value of bitnumber 2 of the input. In particular, for every two inputs of an S box, if theXOR of the four output bits of the �rst input equals the corresponding valueof the second input then both bits 2 of the input are equal with a certain82



probability. This probability is di�erent for each S box and varies between0.56 and 0.70.Given the plaintext and the ciphertext of an encryption we can easilycalculate SOa � SOc by A� C = L� l:Then the following algorithm is used separately for each S box. For everyencryption calculate the (single bit) XOR of the four output bits of the �rstround and the four output bits of the third round by the above equation.This value is likely to be equal to the XOR of bit number 2 of the inputsof the S box in these two rounds. SIa is known up to a XOR with the key(by the plaintext) and thus bit number 2 of the input in the third round isknown up to a XOR with a constant with a high probability. This constantis the XOR of the corresponding bit number 2 in SKa � SKc. Thus byD = l � c we �nd the corresponding output bit in the fourth round up tothat constant with a high probability. We try all the 64 possibilities of thekey bits entering the corresponding S box in the fourth round and the twopossibilities of the constant and verify that the speci�c output bit of the Sbox equals its expected value. The right key value is counted in about 56%{70% of the encryptions, depending on the exact S box. Any wrong key valueis counted in about half of the encryptions. The key value which is countedmost frequently is likely to be the right value. This attack �nds a total ofseven bits: six of them are actual key bits and the seventh is a XOR of twokey bits.The attack obtains the best results when the probability is as high aspossible. To increase the probability we use only encryptions with speci�cvalues of SOa � SOc which maximize this probability. For instance, whenS5Oa � S5Oc = 0 this probability is about 0.81. There is a tradeo� be-tween the number of allowed values and the corresponding probability. Asthe number of allowed values increases, the probability decreases so we needmore data to carry out the attack. However, as the number of allowed valuesdecreases we need more data to make the occurrence of these values suf-�ciently probable. Table 17 describes the best tradeo� achievable by thisattack. To make the best use of this attack it is advisable to use about200 plaintext/ciphertext pairs, for which we can �nd almost 28 key bit, andsearch exhaustively for the (about 228) remaining possibilities of the key. Us-83



By Finding Average Best tradeo�S box Bits of Probability Values EncryptionsS1 S4 66% 16 75S2 S8 57% 8 195S3 S1 58% 7 240S4 S2 56% 9 370S5 S1 70% 16 50S6 S8 61% 8 135S7 S5 60% 14 210S8 S6 63% 12 120Table 17. Number of encryptions needed to �nd SKd for each S box.ing about 370 plaintext/ciphertext pairs we can �nd almost 42 key bits andsearch exhaustively for the (about 214) remaining possibilities of the key.10.3.3 A �ve-round attackThis �ve-round attack is similar to the previous algorithm. We can calculateB � D = R � r. Then an input XOR bit of the S box in the second andfourth round is known with probability between 0.56 and 0.70. As a result,an output bit of A�E is known up to a XOR with a constant by L�A = band d� E = l and thus A� E = b� d� L� l:Using a counting method that counts on the key bits entering the same Sbox in the �rst round, the key bits entering the corresponding S box in the�fth round, and the constant, we can �nd 13 bits of the key: six of themare actual key bits from the �rst round, six are actual key bits from the �fthround, and the thirteenth is a XOR of two key bits. The amount of dataneeded to �nd these 13 key bits is about the same as in the previous attack.
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10.3.4 A six-round attackThis attack is again similar to the attack on �ve rounds, but we also haveto count all the possibilities of the 36 subkey bits of the sixth round whichenter S boxes whose output bits enter the counted S box in the �fth roundby the P permutation. In total we count on 49 bits. The total complexityof this attack is about 255{256 but the basic operation (which is similar toa single application of the F function) is much simpler than an encryption,and thus the time needed is marginally faster than exhaustive search.
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14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 70 15 7 4 14 2 13 1 10 6 12 11 9 5 3 84 1 14 8 13 6 2 11 15 12 9 7 3 10 5 015 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13Table 18. S1 table.
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 103 13 4 7 15 2 8 14 12 0 1 10 6 9 11 50 14 7 11 10 4 13 1 5 8 12 6 9 3 2 1513 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9Table 19. S2 table.
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 813 7 0 9 3 4 6 10 2 8 5 14 12 11 15 113 6 4 9 8 15 3 0 11 1 2 12 5 10 14 71 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12Table 20. S3 table.
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 1513 8 11 5 6 15 0 3 4 7 2 12 1 10 14 910 6 9 0 12 11 7 13 15 1 3 14 5 2 8 43 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14Table 21. S4 table.87



2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 914 11 2 12 4 7 13 1 5 0 15 10 3 9 8 64 2 1 11 10 13 7 8 15 9 12 5 6 3 0 1411 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3Table 22. S5 table.
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 1110 15 4 2 7 12 9 5 6 1 13 14 0 11 3 89 14 15 5 2 8 12 3 7 0 4 10 1 13 11 64 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13Table 23. S6 table.
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 113 0 11 7 4 9 1 10 14 3 5 12 2 15 8 61 4 11 13 12 3 7 14 10 15 6 8 0 5 9 26 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12Table 24. S7 table.
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 71 15 13 8 10 3 7 4 12 5 6 11 0 14 9 27 11 4 1 9 12 14 2 0 6 10 13 15 3 5 82 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11Table 25. S8 table.88



From ToBit S box Bit Mask Bit S box Bit Mask Missingno. & bit (hex) no. & bit (hex) S box1 S1 1 80 00 00 00 9 S2.6 S3.2 00 80 00 00 S72 2 40 00 00 00 17 S4.6 S5.2 00 00 80 003 3 20 00 00 00 23 S6.4 00 00 02 004 4 10 00 00 00 31 S8.4 00 00 00 025 S2 1 08 00 00 00 13 S3.6 S4.2 00 08 00 00 S66 2 04 00 00 00 28 S7.5 S8.1 00 00 00 107 3 02 00 00 00 2 S1.3 40 00 00 008 4 01 00 00 00 18 S5.3 00 00 40 009 S3 1 00 80 00 00 24 S6.5 S7.1 00 00 01 00 S110 2 00 40 00 00 16 S4.5 S5.1 00 01 00 0011 3 00 20 00 00 30 S8.3 00 00 00 0412 4 00 10 00 00 6 S2.3 04 00 00 0013 S4 1 00 08 00 00 26 S7.3 00 00 00 40 S214 2 00 04 00 00 20 S5.5 S6.1 00 00 10 0015 3 00 02 00 00 10 S3.3 00 40 00 0016 4 00 01 00 00 1 S8.6 S1.2 80 00 00 0017 S5 1 00 00 80 00 8 S2.5 S3.1 01 00 00 00 S818 2 00 00 40 00 14 S4.3 00 04 00 0019 3 00 00 20 00 25 S6.6 S7.2 00 00 00 8020 4 00 00 10 00 3 S1.4 20 00 00 0021 S6 1 00 00 08 00 4 S1.5 S2.1 10 00 00 00 S422 2 00 00 04 00 29 S7.6 S8.2 00 00 00 0823 3 00 00 02 00 11 S3.4 00 20 00 0024 4 00 00 01 00 19 S5.4 00 00 20 0025 S7 1 00 00 00 80 32 S8.5 S1.1 00 00 00 01 S526 2 00 00 00 40 12 S3.5 S4.1 00 10 00 0027 3 00 00 00 20 22 S6.3 00 00 04 0028 4 00 00 00 10 7 S2.4 02 00 00 0029 S8 1 00 00 00 08 5 S1.6 S2.2 08 00 00 00 S330 2 00 00 00 04 27 S7.4 00 00 00 2031 3 00 00 00 02 15 S4.4 00 02 00 0032 4 00 00 00 01 21 S5.6 S6.2 00 00 08 00Table 26. The P permutation table.89



B The pairs XOR distribution tables of theS boxes
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Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 42x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 23x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 04x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 25x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 66x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 127x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 48x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 49x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 810x 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 611x 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 012x 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 013x 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 614x 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 015x 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 416x 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 617x 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 018x 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 219x 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 01Ax 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 81Bx 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 21Cx 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 01Dx 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 01Ex 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 21Fx 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 420x 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 1221x 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 822x 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 1023x 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 1024x 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 425x 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 226x 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 027x 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 428x 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 229x 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 42Ax 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 22Bx 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 42Cx 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 62Dx 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 62Ex 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 42Fx 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 230x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 431x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 832x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 033x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 434x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 635x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 036x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 037x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 438x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 1039x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 03Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 03Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 23Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 03Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 43Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 43Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2Table 27. The pairs XOR distribution table of S1.91



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 4 0 2 6 4 0 14 8 6 8 4 6 22x 0 0 0 2 0 4 6 4 0 0 4 6 10 10 12 63x 4 8 4 8 4 6 4 2 4 2 2 4 6 2 0 44x 0 0 0 0 0 6 0 14 0 6 10 4 10 6 4 45x 2 0 4 8 2 4 6 6 2 0 8 4 2 4 10 26x 0 12 6 4 6 4 6 2 2 10 2 8 2 0 0 07x 4 6 6 4 2 4 4 2 6 4 2 4 4 6 0 68x 0 0 0 4 0 4 0 8 0 10 16 6 6 0 6 49x 14 2 4 10 2 8 2 6 2 4 0 0 2 2 2 4Ax 0 6 6 2 10 4 10 2 6 2 2 4 2 2 4 2Bx 6 2 2 0 2 4 6 2 10 2 0 6 6 4 4 8Cx 0 0 0 4 0 14 0 10 0 6 2 4 4 8 6 6Dx 6 2 6 2 10 2 0 4 0 10 4 2 8 2 2 4Ex 0 6 12 8 0 4 2 0 8 2 4 4 6 2 0 6Fx 0 8 2 0 6 6 8 2 4 4 4 6 8 0 4 210x 0 0 0 8 0 4 10 2 0 2 8 10 0 10 6 411x 6 6 4 6 4 0 6 4 8 2 10 2 2 4 0 012x 0 6 2 6 2 4 12 4 6 4 0 4 4 6 2 213x 4 0 4 0 8 6 6 0 0 2 0 6 4 8 2 1414x 0 6 6 4 10 0 2 12 6 2 2 2 4 4 2 215x 6 8 2 0 8 2 0 2 2 2 2 2 2 14 10 216x 0 8 6 4 2 2 4 2 6 4 6 2 6 0 6 617x 6 4 8 6 4 4 0 4 6 2 4 4 4 2 4 218x 0 6 4 6 10 4 0 2 4 8 0 0 4 8 2 619x 2 4 6 4 4 2 4 2 6 4 6 8 0 6 4 21Ax 0 6 8 4 2 4 2 2 8 2 2 6 2 4 4 81Bx 0 6 4 4 0 12 6 4 2 2 2 4 4 2 10 21Cx 0 4 6 6 12 0 4 0 10 2 6 2 0 0 10 21Dx 0 6 2 2 6 0 4 16 4 4 2 0 0 4 6 81Ex 0 4 8 2 10 6 6 0 8 4 0 2 4 4 0 61Fx 4 2 6 6 2 2 2 4 8 6 10 6 4 0 0 220x 0 0 0 2 0 12 10 4 0 0 0 2 14 2 8 1021x 0 4 6 8 2 10 4 2 2 6 4 2 6 2 0 622x 4 12 8 4 2 2 0 0 2 8 8 6 0 6 0 223x 8 2 0 2 8 4 2 6 4 8 2 2 6 4 2 424x 10 4 0 0 0 4 0 2 6 8 6 10 8 0 2 425x 6 0 12 2 8 6 10 0 0 8 2 6 0 0 2 226x 2 2 4 4 2 2 10 14 2 0 4 2 2 4 6 427x 6 0 0 2 6 4 2 4 4 4 8 4 8 0 6 628x 8 0 8 2 4 12 2 0 2 6 2 0 6 2 0 1029x 0 2 4 10 2 8 6 4 0 10 0 2 10 0 2 42Ax 4 0 4 8 6 2 4 4 6 6 2 6 2 2 4 42Bx 2 2 6 4 0 2 2 6 2 8 8 4 4 4 8 22Cx 10 6 8 6 0 6 4 4 4 2 4 4 0 0 2 42Dx 2 2 2 4 0 0 0 2 8 4 4 6 10 2 14 42Ex 2 4 0 2 10 4 2 0 2 2 6 2 8 8 10 22Fx 12 4 6 8 2 6 2 8 0 4 0 2 0 8 2 030x 0 4 0 2 4 4 8 6 10 6 2 12 0 0 0 631x 0 10 2 0 6 2 10 2 6 0 2 0 6 6 4 832x 8 4 6 0 6 4 4 8 4 6 8 0 2 2 2 033x 2 2 6 10 2 0 0 6 4 4 12 8 4 2 2 034x 0 12 6 4 6 0 4 4 4 0 4 6 4 2 4 435x 0 12 4 6 2 4 4 0 10 0 0 8 0 8 0 636x 8 2 4 0 4 0 4 2 0 8 4 2 6 16 2 237x 6 2 2 2 6 6 4 8 2 2 6 2 2 2 4 838x 0 8 8 10 6 2 2 0 4 0 4 2 4 0 4 1039x 0 2 0 0 8 0 10 4 10 0 8 4 4 4 4 63Ax 4 0 2 8 4 2 2 2 4 8 2 0 4 10 10 23Bx 16 4 4 2 8 2 2 6 4 4 4 2 0 2 2 23Cx 0 2 6 2 8 4 6 0 10 2 2 4 4 10 4 03Dx 0 16 10 2 4 2 4 2 8 0 0 8 0 6 2 03Ex 4 4 0 10 2 4 2 14 4 2 6 6 0 0 6 03Fx 4 0 0 2 0 8 2 4 0 2 4 4 4 14 10 6Table 28. The pairs XOR distribution table of S2.92



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 2 0 4 2 12 0 14 0 4 8 2 6 102x 0 0 0 2 0 2 0 8 0 4 12 10 4 6 8 83x 8 6 10 4 8 6 0 6 4 4 0 0 0 4 2 24x 0 0 0 4 0 2 4 2 0 12 8 4 6 8 10 45x 6 2 4 8 6 10 6 2 2 8 2 0 2 0 4 26x 0 10 6 6 10 0 4 12 2 4 0 0 6 4 0 07x 2 0 0 4 4 4 4 2 10 4 4 8 4 4 4 68x 0 0 0 10 0 4 4 6 0 6 6 6 6 0 8 89x 10 2 0 2 10 4 6 2 0 6 0 4 6 2 4 6Ax 0 10 6 0 14 6 4 0 4 6 6 0 4 0 2 2Bx 2 6 2 10 2 2 4 0 4 2 6 0 2 8 14 0Cx 0 0 0 8 0 12 12 4 0 8 0 4 2 10 2 2Dx 8 2 8 0 0 4 2 0 2 8 14 2 6 2 4 2Ex 0 4 4 2 4 2 4 4 10 4 4 4 4 4 2 8Fx 4 6 4 6 2 2 4 8 6 2 6 2 0 6 2 410x 0 0 0 4 0 12 4 8 0 4 2 6 2 14 0 811x 8 2 2 6 4 0 2 0 8 4 12 2 10 0 2 212x 0 2 8 2 4 8 0 8 8 0 2 2 4 2 14 013x 4 4 12 0 2 2 2 10 2 2 2 2 4 4 4 814x 0 6 4 4 6 4 6 2 8 6 6 2 2 0 0 815x 4 8 2 8 2 4 8 0 4 2 2 2 2 6 8 216x 0 6 10 2 8 4 2 0 2 2 2 8 4 6 4 417x 0 6 6 0 6 2 4 4 6 2 2 10 6 8 2 018x 0 8 4 6 6 0 6 2 4 0 4 2 10 0 6 619x 4 2 4 8 4 2 10 2 2 2 6 8 2 6 0 21Ax 0 8 6 4 4 0 6 4 4 8 0 10 2 2 2 41Bx 4 10 2 0 2 4 2 4 8 2 2 8 4 2 8 21Cx 0 6 8 8 4 2 8 0 12 0 10 0 4 0 2 01Dx 0 2 0 6 2 8 4 6 2 0 4 2 4 10 0 141Ex 0 4 8 2 4 6 0 4 10 0 2 6 4 8 4 21Fx 0 6 8 0 10 6 4 6 4 2 2 10 4 0 0 220x 0 0 0 0 0 4 4 8 0 2 2 4 10 16 12 221x 10 8 8 0 8 4 2 4 0 6 6 6 0 0 2 022x 12 6 4 4 2 4 10 2 0 4 4 2 4 4 0 223x 2 2 0 6 0 2 4 0 4 12 4 2 6 4 8 824x 4 8 2 12 6 4 2 10 2 2 2 4 2 0 4 025x 6 0 2 0 8 2 0 2 8 8 2 2 4 4 10 626x 6 2 0 4 4 0 4 0 4 2 14 0 8 10 0 627x 0 2 4 16 8 6 6 6 0 2 4 4 0 2 2 228x 6 2 10 0 6 4 0 4 4 2 4 8 2 2 8 229x 0 2 8 4 0 4 0 6 4 10 4 8 4 4 4 22Ax 2 6 0 4 2 4 4 6 4 8 4 4 4 2 4 62Bx 10 2 6 6 4 4 8 0 4 2 2 0 2 4 4 62Cx 10 4 6 2 4 2 2 2 4 10 4 4 0 2 6 22Dx 4 2 4 4 4 2 4 16 2 0 0 4 4 2 6 62Ex 4 0 2 10 0 6 10 4 2 6 6 2 2 0 2 82Fx 8 2 0 0 4 4 4 2 6 4 6 2 4 8 4 630x 0 10 8 6 2 0 4 2 10 4 4 6 2 0 6 031x 2 6 2 0 4 2 8 8 2 2 2 0 2 12 6 632x 2 0 4 8 2 8 4 4 8 4 2 8 6 2 0 233x 4 4 6 8 6 6 0 2 2 2 6 4 12 0 0 234x 0 6 2 2 16 2 2 2 12 2 4 0 4 2 0 835x 4 6 0 10 8 0 2 2 6 0 0 6 2 10 2 636x 4 4 4 4 0 6 6 4 4 4 4 4 0 6 2 837x 4 8 2 4 2 2 6 0 2 4 8 4 10 0 6 238x 0 8 12 0 2 2 6 6 2 10 2 2 0 8 0 439x 2 6 4 0 6 4 6 4 8 0 4 4 2 4 8 23Ax 6 0 2 2 4 6 4 4 4 2 2 6 12 2 6 23Bx 2 2 6 0 0 10 4 8 4 2 4 8 4 4 0 63Cx 0 2 4 2 12 2 0 6 2 0 2 8 4 6 4 103Dx 4 6 8 6 2 2 2 2 10 2 6 6 2 4 2 03Ex 8 6 4 4 2 10 2 0 2 2 4 2 4 2 10 23Fx 2 6 4 0 0 10 8 2 2 8 6 4 6 2 0 4Table 29. The pairs XOR distribution table of S3.93



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 02x 0 0 0 8 0 4 4 8 0 4 4 8 8 8 8 03x 8 6 2 0 2 4 8 2 6 0 4 6 0 6 2 84x 0 0 0 8 0 0 12 4 0 12 0 4 8 4 4 85x 4 2 2 8 2 12 0 2 2 0 12 2 8 2 2 46x 0 8 8 4 8 8 0 0 8 0 8 0 4 0 0 87x 4 2 6 4 6 0 16 6 2 0 0 2 4 2 6 48x 0 0 0 4 0 8 4 8 0 4 8 8 4 8 8 09x 8 4 4 4 4 0 8 4 4 0 0 4 4 4 4 8Ax 0 6 6 0 6 4 4 6 6 4 4 6 0 6 6 0Bx 0 12 0 8 0 0 0 0 12 0 0 12 8 12 0 0Cx 0 0 0 4 0 8 4 8 0 4 8 8 4 8 8 0Dx 8 4 4 4 4 0 0 4 4 8 0 4 4 4 4 8Ex 0 6 6 4 6 0 4 6 6 4 0 6 4 6 6 0Fx 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 010x 0 0 0 0 0 8 12 4 0 12 8 4 0 4 4 811x 4 2 2 16 2 4 0 2 2 0 4 2 16 2 2 412x 0 0 0 8 0 4 4 8 0 4 4 8 8 8 8 013x 8 2 6 0 6 4 0 6 2 8 4 2 0 2 6 814x 0 8 8 0 8 0 8 0 8 8 0 0 0 0 0 1615x 8 4 4 0 4 8 0 4 4 0 8 4 0 4 4 816x 0 8 8 4 8 8 0 0 8 0 8 0 4 0 0 817x 4 6 2 4 2 0 0 2 6 16 0 6 4 6 2 418x 0 8 8 8 8 4 0 0 8 0 4 0 8 0 0 819x 4 4 4 0 4 4 16 4 4 0 4 4 0 4 4 41Ax 0 6 6 4 6 0 4 6 6 4 0 6 4 6 6 01Bx 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 01Cx 0 8 8 8 8 4 0 0 8 0 4 0 8 0 0 81Dx 4 4 4 0 4 4 0 4 4 16 4 4 0 4 4 41Ex 0 6 6 0 6 4 4 6 6 4 4 6 0 6 6 01Fx 0 0 12 8 12 0 0 12 0 0 0 0 8 0 12 020x 0 0 0 8 0 0 0 12 0 0 0 12 8 12 12 021x 0 4 8 0 8 4 8 8 4 0 4 4 0 4 8 022x 8 2 2 0 2 4 8 6 2 8 4 6 0 6 6 023x 4 6 2 8 2 4 0 2 6 0 4 6 8 6 2 424x 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 025x 0 8 4 4 4 0 0 4 8 8 0 8 4 8 4 026x 0 6 6 0 6 4 8 2 6 8 4 2 0 2 2 827x 4 6 2 8 2 4 0 2 6 0 4 6 8 6 2 428x 16 4 4 0 4 4 4 4 4 4 4 4 0 4 4 029x 0 6 2 8 2 4 0 2 6 8 4 6 8 6 2 02Ax 0 2 2 16 2 4 4 2 2 4 4 2 16 2 2 02Bx 8 0 4 0 4 8 16 4 0 0 8 0 0 0 4 82Cx 8 4 4 4 4 0 8 4 4 8 0 4 4 4 4 02Dx 4 2 6 4 6 8 0 6 2 0 8 2 4 2 6 42Ex 16 0 0 0 0 16 0 0 0 0 16 0 0 0 0 162Fx 16 0 0 0 0 0 16 0 0 16 0 0 0 0 0 1630x 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 031x 0 8 4 4 4 0 0 4 8 8 0 8 4 8 4 032x 16 6 6 4 6 0 4 2 6 4 0 2 4 2 2 033x 0 2 6 4 6 8 8 6 2 0 8 2 4 2 6 034x 0 12 12 8 12 0 0 0 12 0 0 0 8 0 0 035x 0 4 8 0 8 4 8 8 4 0 4 4 0 4 8 036x 0 2 2 4 2 0 4 6 2 4 0 6 4 6 6 1637x 0 2 6 4 6 8 8 6 2 0 8 2 4 2 6 038x 0 4 4 0 4 4 4 4 4 4 4 4 0 4 4 1639x 0 6 2 8 2 4 0 2 6 8 4 6 8 6 2 03Ax 0 4 4 0 4 8 8 4 4 8 8 4 0 4 4 03Bx 16 4 4 0 4 0 0 4 4 0 0 4 0 4 4 163Cx 0 4 4 4 4 0 8 4 4 8 0 4 4 4 4 83Dx 4 2 6 4 6 8 0 6 2 0 8 2 4 2 6 43Ex 0 2 2 8 2 12 4 2 2 4 12 2 8 2 2 03Fx 8 4 0 8 0 0 0 0 4 16 0 4 8 4 0 8Table 30. The pairs XOR distribution table of S4.94



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 4 0 10 8 6 0 4 2 2 12 10 2 42x 0 0 0 4 0 10 6 4 0 6 4 2 4 8 10 63x 8 2 4 6 4 4 2 2 6 8 6 4 4 0 2 24x 0 0 0 8 0 4 10 6 0 6 6 4 8 6 0 65x 12 2 0 4 0 4 8 2 4 0 16 2 0 2 0 86x 0 8 4 6 4 6 2 2 4 4 6 0 6 0 2 107x 2 0 4 8 4 2 6 6 2 8 6 2 2 0 6 68x 0 0 0 2 0 8 10 4 0 4 10 4 8 4 4 69x 8 6 0 4 0 6 6 2 2 10 2 8 6 2 0 2Ax 0 6 8 6 0 8 0 0 8 10 4 2 8 0 0 4Bx 4 2 2 4 8 10 6 4 2 6 2 2 6 2 2 2Cx 0 0 0 10 0 2 10 2 0 6 10 6 6 6 2 4Dx 10 4 2 2 0 6 16 0 0 2 10 2 2 4 0 4Ex 0 6 4 8 4 6 10 2 4 4 4 2 4 0 2 4Fx 4 4 0 8 0 2 0 2 8 2 4 2 8 4 4 1210x 0 0 0 0 0 4 4 12 0 2 8 10 4 6 12 211x 6 6 10 10 4 0 2 6 2 4 0 6 2 4 2 012x 0 2 4 2 10 4 0 10 8 6 0 6 0 6 6 013x 0 0 6 2 8 0 0 4 4 6 2 8 2 8 10 414x 0 12 2 6 4 0 4 4 8 4 4 4 6 2 4 015x 4 8 0 2 8 0 2 4 2 2 4 2 4 8 8 616x 0 6 10 2 14 0 2 2 4 4 0 6 0 4 6 417x 0 6 8 4 8 4 0 2 8 4 0 2 2 8 6 218x 0 10 8 0 6 4 0 4 4 4 6 4 4 4 0 619x 0 4 6 2 4 4 2 6 4 2 2 4 12 2 10 01Ax 0 2 16 2 12 2 0 6 4 0 0 4 0 4 4 81Bx 2 8 12 0 0 2 2 6 8 4 0 6 0 0 8 61Cx 0 10 2 6 6 6 6 4 8 2 0 4 4 4 2 01Dx 4 6 2 0 8 2 4 6 6 0 8 6 2 4 2 41Ex 0 2 6 2 4 0 0 2 12 2 2 6 2 10 10 41Fx 0 6 8 4 8 8 0 6 6 2 0 6 0 6 2 220x 0 0 0 8 0 8 2 6 0 4 4 4 6 6 8 821x 0 0 0 6 6 2 6 4 6 10 14 4 0 0 4 222x 14 4 0 10 0 2 12 2 2 2 10 2 0 0 2 223x 2 0 0 4 2 2 10 4 0 8 8 2 6 8 0 824x 6 2 8 4 4 4 6 2 2 6 6 2 6 2 2 225x 6 0 0 8 2 8 2 6 6 4 2 2 4 2 6 626x 12 0 0 4 0 4 4 4 0 8 4 0 12 8 0 427x 12 2 0 2 0 12 2 2 4 4 8 4 8 2 2 028x 2 8 4 6 2 4 6 0 6 6 4 0 2 2 2 1029x 6 4 6 8 8 4 6 2 0 0 2 2 10 0 2 42Ax 4 4 0 2 2 4 6 2 0 0 6 4 10 4 4 122Bx 4 6 2 6 0 0 12 2 0 4 12 2 6 4 0 42Cx 8 6 2 6 4 8 6 0 4 4 0 2 6 0 6 22Dx 4 4 0 4 0 6 4 2 4 12 0 4 4 6 4 62Ex 6 0 2 4 0 6 6 4 2 10 6 10 6 2 0 02Fx 10 4 0 2 2 6 10 2 0 2 2 4 6 2 2 1030x 0 4 8 4 6 4 0 6 10 4 2 4 2 6 4 031x 0 6 6 4 10 2 0 0 4 4 0 0 4 6 12 632x 4 6 0 2 6 4 6 0 6 0 4 6 4 10 6 033x 8 10 0 14 8 0 0 8 2 0 2 4 0 4 4 034x 0 4 4 2 14 4 0 8 6 8 2 2 0 4 6 035x 0 4 16 0 8 4 0 4 4 4 0 8 0 4 4 436x 4 4 4 6 2 2 2 12 2 4 4 8 2 4 4 037x 4 2 2 2 4 2 0 8 2 2 2 12 6 2 8 638x 0 4 8 4 12 0 0 8 10 2 0 0 0 4 2 1039x 0 8 12 0 2 2 2 2 12 4 0 8 0 4 4 43Ax 0 14 4 0 4 6 0 0 6 2 10 8 0 0 4 63Bx 0 2 2 2 4 4 8 6 8 2 2 2 6 14 2 03Cx 0 0 10 2 6 0 0 2 6 2 2 10 2 4 10 83Dx 0 6 12 2 4 8 0 8 8 2 2 0 2 2 4 43Ex 4 4 10 0 2 4 8 8 2 2 0 2 6 8 4 03Fx 8 6 6 0 4 2 2 4 4 2 8 6 2 4 6 0Table 31. The pairs XOR distribution table of S5.95



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 6 0 2 6 2 0 4 2 4 6 16 14 22x 0 0 0 2 0 10 6 10 0 2 4 8 6 6 8 23x 0 8 0 8 0 6 4 6 4 4 4 12 2 4 2 04x 0 0 0 8 0 0 8 0 0 6 8 10 2 4 10 85x 10 2 4 4 4 8 8 4 2 2 0 4 0 8 0 46x 0 8 4 4 8 4 2 2 12 0 2 6 6 2 2 27x 6 6 4 0 2 10 2 2 2 2 6 6 8 0 6 28x 0 0 0 6 0 2 16 4 0 2 6 2 4 12 6 49x 10 4 2 6 0 2 6 2 4 0 8 6 4 4 2 4Ax 0 14 4 4 0 2 2 2 10 4 4 4 6 4 2 2Bx 4 6 2 0 2 2 12 8 2 2 2 6 8 2 0 6Cx 0 0 0 12 0 10 4 6 0 8 4 4 2 12 2 0Dx 12 0 2 10 6 4 4 2 4 2 6 0 2 6 0 4Ex 0 6 4 0 4 4 10 8 6 2 4 6 2 0 6 2Fx 2 2 2 2 6 2 6 2 10 4 8 2 6 4 4 210x 0 0 0 8 0 8 0 12 0 4 2 6 8 4 6 611x 6 2 6 4 6 2 6 4 6 6 4 2 4 0 6 012x 0 8 4 2 0 4 2 0 4 10 6 2 8 6 4 413x 6 6 12 0 12 2 0 6 6 2 0 4 0 2 4 214x 0 4 6 2 8 6 0 2 6 10 4 0 2 4 6 415x 2 2 6 6 4 4 2 6 2 6 8 4 4 0 4 416x 0 4 14 6 8 4 2 6 2 0 2 0 4 2 0 1017x 2 6 8 0 0 2 0 2 2 6 0 8 8 2 12 618x 0 4 6 6 8 4 2 2 6 4 6 4 2 4 2 419x 2 6 0 2 4 4 4 6 4 8 6 4 2 2 6 41Ax 0 6 6 0 8 2 4 6 4 2 4 6 2 0 4 101Bx 0 4 10 2 4 4 2 6 6 6 2 2 6 6 2 21Cx 0 0 8 2 12 2 6 2 8 6 6 2 4 0 4 21Dx 2 4 0 6 8 6 0 2 6 8 6 0 2 4 0 101Ex 0 10 8 2 8 2 0 2 6 4 2 4 6 4 2 41Fx 0 6 6 8 6 4 2 4 4 2 2 0 2 4 2 1220x 0 0 0 0 0 6 6 4 0 4 8 8 4 6 10 821x 2 8 6 8 4 4 6 6 8 4 0 4 0 2 2 022x 16 2 4 6 2 4 2 0 6 4 8 2 0 2 2 423x 0 4 0 4 4 6 10 4 2 2 6 2 4 6 6 424x 10 8 0 6 12 6 10 4 8 0 0 0 0 0 0 025x 0 2 4 2 0 4 4 0 4 0 10 10 4 10 6 426x 2 2 0 12 2 2 6 2 4 4 8 0 6 6 8 027x 8 4 0 8 2 4 2 4 0 6 2 4 4 8 2 628x 6 8 4 6 0 4 2 2 4 8 2 6 4 2 2 429x 2 4 4 0 8 8 6 8 6 4 0 4 4 4 2 02Ax 6 0 0 6 6 4 6 8 2 4 0 2 2 4 6 82Bx 12 0 4 0 0 4 2 2 2 6 10 6 10 2 4 02Cx 4 2 6 0 0 6 8 6 4 2 2 8 4 6 4 22Dx 6 2 2 6 6 4 4 2 6 2 4 8 4 2 4 22Ex 4 6 2 4 2 4 4 2 4 2 4 6 4 10 4 22Fx 10 0 4 8 0 6 6 2 0 4 4 2 6 2 2 830x 0 12 8 2 0 6 0 0 6 6 0 2 8 2 6 631x 2 6 10 4 2 2 2 4 6 0 2 6 0 2 4 1232x 4 2 2 8 10 8 8 6 0 2 2 4 4 2 2 033x 4 2 2 2 6 0 4 0 10 6 6 4 0 4 8 634x 0 4 4 2 6 4 0 4 6 2 6 4 2 8 0 1235x 6 12 4 2 4 2 2 4 8 2 2 0 6 4 4 236x 0 2 2 4 4 4 4 0 2 10 12 4 0 10 4 237x 10 2 2 6 14 2 2 6 2 0 4 6 2 0 4 238x 0 4 14 0 8 2 0 4 4 4 2 0 8 2 4 839x 2 4 8 0 6 2 0 6 2 6 4 2 8 6 2 63Ax 8 4 0 4 6 2 0 4 6 8 6 0 6 0 4 63Bx 0 4 6 6 2 2 2 14 0 12 0 4 2 2 8 03Cx 0 6 16 0 2 2 2 8 4 2 0 12 6 2 2 03Dx 0 6 2 2 2 6 8 2 4 2 6 2 6 2 4 103Ex 4 2 2 4 4 0 6 10 4 2 4 6 6 2 6 23Fx 0 4 6 6 4 8 4 0 4 8 4 0 4 8 2 2Table 32. The pairs XOR distribution table of S6.96



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 2 0 4 4 14 0 12 4 6 2 6 6 42x 0 0 0 0 0 12 2 2 0 4 0 4 8 12 6 143x 8 2 12 2 6 8 6 0 6 4 4 2 2 0 0 24x 0 0 0 8 0 4 4 8 0 8 8 12 2 6 2 25x 6 0 0 2 8 0 8 4 0 2 6 0 10 6 6 66x 0 2 12 0 8 4 8 2 4 4 4 2 6 0 6 27x 4 6 4 12 0 4 2 0 0 14 2 6 4 0 0 68x 0 0 0 8 0 0 6 10 0 4 12 4 6 6 0 89x 10 8 4 8 6 2 2 0 2 6 8 2 0 6 0 0Ax 0 10 6 2 12 2 4 0 4 4 6 4 4 0 0 6Bx 0 2 2 2 4 8 6 4 4 0 4 2 6 4 2 14Cx 0 0 0 4 0 4 8 4 0 2 6 0 14 12 8 2Dx 6 6 2 4 2 6 4 6 6 4 8 8 0 2 0 0Ex 0 12 10 10 0 2 4 2 8 6 4 2 0 0 2 2Fx 2 0 0 0 6 8 8 0 6 2 4 6 8 0 6 810x 0 0 0 4 0 2 8 6 0 6 4 10 8 4 8 411x 6 10 10 4 4 2 0 4 4 0 2 8 4 2 2 212x 0 0 8 8 2 8 2 8 6 4 2 8 0 0 8 013x 4 4 2 2 8 6 0 2 2 2 0 4 6 8 14 014x 0 8 6 2 8 8 2 6 4 2 0 2 8 6 0 215x 4 4 8 2 4 0 4 10 8 2 4 4 4 2 0 416x 0 6 10 2 2 2 2 4 10 8 2 2 0 4 10 017x 8 2 4 2 6 4 0 6 4 4 2 2 0 4 8 818x 0 16 2 2 6 0 6 0 6 2 8 0 6 0 2 819x 0 8 0 2 4 4 10 4 8 0 6 4 2 6 2 41Ax 0 2 4 8 12 4 0 6 4 4 0 2 0 6 4 81Bx 0 6 2 6 4 2 4 4 6 4 8 4 2 0 10 21Cx 0 8 4 4 2 6 6 6 6 4 6 8 0 2 0 21Dx 4 4 4 0 0 2 4 2 4 2 2 4 10 10 8 41Ex 0 0 2 2 12 6 2 0 12 2 2 4 2 6 8 41Fx 2 2 10 14 2 4 2 4 4 6 0 2 4 8 0 020x 0 0 0 14 0 8 4 2 0 4 2 8 2 6 0 1421x 4 2 6 2 12 2 4 0 6 4 10 2 4 2 2 222x 10 6 0 2 4 4 10 0 4 0 12 2 8 0 0 223x 0 6 2 2 2 4 6 10 0 4 8 2 2 6 0 1024x 4 2 0 6 8 2 6 0 8 2 2 0 8 2 12 225x 2 0 2 16 2 4 6 4 6 8 2 4 0 6 0 226x 6 10 0 10 0 6 4 4 2 2 4 6 2 4 2 227x 4 0 2 0 2 2 14 0 4 6 6 2 12 2 4 428x 14 4 6 4 4 6 2 0 6 6 2 2 4 0 2 229x 2 2 0 2 0 8 4 2 4 6 4 4 6 4 12 42Ax 2 4 0 0 0 2 8 12 0 8 2 4 8 4 4 62Bx 16 6 2 4 6 10 2 2 2 2 2 2 4 2 2 02Cx 2 6 6 8 2 2 0 6 0 8 4 2 2 6 8 22Dx 6 2 4 2 8 8 2 8 2 4 4 0 2 0 8 42Ex 2 4 8 0 2 2 2 4 0 2 8 4 14 6 0 62Fx 2 2 2 8 0 2 2 6 4 6 8 8 6 2 0 630x 0 6 8 2 8 4 4 0 10 4 4 6 0 0 2 631x 0 8 4 0 6 2 2 6 6 0 0 2 6 4 8 1032x 2 4 0 0 6 4 10 6 6 4 6 2 4 6 2 233x 0 16 6 8 2 0 2 2 4 2 8 4 0 4 6 034x 0 4 14 8 2 2 2 4 16 2 2 2 0 2 0 435x 0 6 0 0 10 8 2 2 6 0 0 8 6 4 4 836x 2 0 2 2 4 6 4 4 2 2 4 2 4 16 10 037x 6 6 6 8 4 2 4 4 4 0 6 8 2 4 0 038x 0 2 2 2 8 8 0 2 2 2 0 6 6 4 10 1039x 4 4 16 8 0 6 4 2 4 4 2 6 0 2 2 03Ax 16 6 4 0 2 0 2 6 0 4 8 10 0 0 4 23Bx 2 0 0 2 0 4 4 4 2 6 2 6 6 12 12 23Cx 0 0 8 0 12 8 2 6 6 4 0 2 2 4 6 43Dx 2 4 12 2 2 2 0 4 6 10 2 6 4 2 0 63Ex 4 6 6 6 2 0 4 8 2 10 4 6 0 4 2 03Fx 14 0 0 0 8 0 6 8 4 2 0 0 4 8 4 6Table 33. The pairs XOR distribution table of S7.97



Input Output XORXOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 6 0 16 10 0 0 0 6 0 14 6 2 42x 0 0 0 8 0 10 4 2 0 10 2 4 8 8 6 23x 6 0 2 8 2 6 4 0 6 6 6 2 2 0 8 64x 0 0 0 2 0 4 6 12 0 6 8 4 10 4 8 05x 4 10 6 0 0 2 6 0 4 10 4 6 8 2 0 26x 0 0 10 4 6 4 4 8 2 6 4 2 4 2 2 67x 6 2 8 2 8 10 6 6 4 2 0 4 0 0 0 68x 0 0 0 4 0 6 4 2 0 8 6 10 8 2 2 129x 8 4 0 6 0 4 4 6 2 4 6 2 12 2 0 4Ax 0 0 16 4 6 6 4 0 4 6 4 2 2 0 0 10Bx 2 8 0 6 2 6 0 4 4 10 0 2 10 2 6 2Cx 0 0 0 2 0 10 10 6 0 6 6 6 2 6 10 0Dx 6 0 4 10 2 0 8 6 2 2 6 10 2 2 2 2Ex 0 0 6 8 4 8 0 2 10 6 2 4 6 2 4 2Fx 8 0 4 2 2 4 2 2 2 6 4 6 0 2 14 610x 0 0 0 4 0 0 8 12 0 0 8 8 2 10 6 611x 0 6 4 6 2 2 6 6 4 6 4 6 0 4 4 412x 0 4 0 8 6 2 8 4 2 4 4 6 2 4 10 013x 4 2 2 6 8 6 2 2 14 2 2 4 2 2 2 414x 0 16 4 2 6 0 2 6 4 0 4 6 4 6 4 015x 0 10 6 0 6 0 2 8 2 2 0 8 2 6 6 616x 0 12 6 4 6 0 0 0 8 6 6 2 2 6 4 217x 0 6 8 0 6 2 4 6 6 0 2 6 4 4 2 818x 0 12 2 2 8 0 8 0 10 4 4 2 4 2 0 619x 6 4 8 0 8 0 4 2 0 0 12 2 4 6 2 61Ax 0 4 6 2 8 8 0 4 8 0 0 0 6 2 0 161Bx 2 4 8 10 2 4 2 8 2 4 8 2 0 2 4 21Cx 0 12 6 4 6 4 2 2 6 0 4 4 2 10 2 01Dx 8 6 0 0 10 0 0 8 10 4 2 2 2 8 4 01Ex 0 4 8 6 8 2 4 4 10 2 2 4 2 0 6 21Fx 4 2 4 2 6 2 4 0 2 6 2 2 2 16 8 220x 0 0 0 16 0 4 0 0 0 14 6 4 2 0 4 1421x 0 0 2 10 2 8 10 0 0 6 6 0 10 2 2 622x 8 0 6 0 6 4 10 2 0 6 8 0 4 4 2 423x 4 8 0 6 0 4 8 6 2 2 10 4 8 0 0 224x 4 0 4 8 4 6 2 4 8 6 2 0 0 4 4 825x 0 4 6 8 2 8 8 0 4 2 4 4 2 2 6 426x 2 6 0 6 4 4 4 6 6 0 4 4 10 4 2 227x 6 6 0 0 2 2 6 2 4 4 6 10 2 6 2 628x 10 2 6 2 4 12 12 0 2 2 4 0 0 0 2 629x 4 0 0 14 2 10 4 2 8 6 4 0 4 2 2 22Ax 8 8 0 2 0 2 4 0 2 6 8 14 2 8 0 02Bx 2 2 0 0 4 2 10 4 6 2 4 0 6 4 8 102Cx 2 6 6 2 4 6 2 0 2 6 4 0 6 4 10 42Dx 8 0 4 4 6 2 0 0 6 8 2 4 6 4 4 62Ex 6 2 2 4 2 2 6 12 4 0 4 2 8 8 0 22Fx 8 12 4 6 6 4 2 2 2 2 4 2 2 4 0 430x 0 4 6 2 10 2 2 2 4 8 0 0 8 4 6 631x 4 6 8 0 4 6 0 4 4 6 10 2 2 4 4 032x 6 6 6 2 4 6 0 2 0 6 8 2 2 6 6 233x 6 6 4 2 4 0 0 10 2 2 0 6 8 4 0 1034x 0 2 12 4 10 4 0 4 12 0 2 4 2 2 2 435x 6 4 4 0 10 0 0 4 10 0 0 4 2 8 8 436x 4 6 2 2 2 2 6 8 6 4 2 6 0 4 10 037x 2 2 8 2 4 4 4 2 6 2 0 10 6 10 2 038x 0 4 8 4 2 6 6 2 4 2 2 4 6 4 4 639x 4 4 4 8 0 6 0 6 4 8 2 2 2 4 8 23Ax 8 8 0 4 2 0 10 4 0 0 0 4 8 6 8 23Bx 8 2 6 4 4 4 4 0 6 4 4 6 4 4 4 03Cx 0 6 6 6 6 0 0 8 8 2 4 8 4 2 4 03Dx 2 2 8 0 10 0 2 12 0 4 0 8 0 2 6 83Ex 6 4 0 0 4 4 0 10 6 2 6 12 2 4 0 43Fx 0 6 6 0 4 4 6 10 0 6 8 2 0 4 8 0Table 34. The pairs XOR distribution table of S8.98
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