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characteristics is:
P = 86 81 00 00 86 81 00 00xA0 = 86 81 00 00x a0 = 81 00 00 00x with probability 1=2 � 1=8B0 = 07 81 00 00x b0 = 81 00 00 00x with probability 1=2 � 1=4C 0 = 07 81 00 00x c0 = 81 00 00 00x with probability 1=2 � 1=4D0 = 86 81 00 00x d0 = 81 00 00 00x with probability 1=2 � 1=8
T = 86 81 00 00 86 81 00 00x:
F

F

F

FThe iteration of this characteristic to seven rounds have probability 1=2 � 2�11. Asimilar characteristic exist with a reverse order of the bytes in each word. From thetables in [9] we can see that about 4 � 211�2 = 224 known plaintexts are required toattack Feal-8, with success rate about 78% and that 225 known plaintexts are requiredfor success rate about 97%. This characteristic can be used to attack Feal-N with upto 20 rounds, with a complexity (and known plaintexts) smaller than of exhaustivesearch. The attack on Feal-8 was applied successfully on a personal computer. Ittakes about 10 minutes to encrypt the 224 required known plaintexts and to �nd thekey.7 SummaryIn this paper we studied Matsui's linear cryptanalysis. We showed that the formalismof di�erential cryptanalysis can be adopted to linear cryptanalysis. In particular, weshowed that characteristics can be de�ned, concatenated, and used in a very similarmanner as in di�erential cryptanalysis. Constraints on the size of S boxes weredescribed. Matsui's characteristic used to attack DES in his paper is shown to be thebest characteristic which has only up to one active S box at each round; on the otherhand, we improved his results on Feal. We attack Feal-8 using 224 known plaintextswith linear cryptanalysis. Davies' attack on DES[5] was shown to be closely related15T
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found two �ve-round characteristic with probability 1=2 + 1=32. One of them is:
P = 04 01 00 00 11 00 04 00xA0 = 04 01 00 00x a0 = 01 00 00 00x with probability 1B0 = 10 00 04 00x b0 = 04 01 00 00x with probability 1=2 + 1=8C 0 = 0 c0 = 0 with probability 1D0 = 10 00 04 00x d0 = 04 01 00 00x with probability 1=2 + 1=8E 0 = 04 01 00 00x e0 = 01 00 00 00x with probability 1
T = 04 01 00 00 11 00 04 00x:
F

F

F

F

FWe have found several iterative characteristics of Feal, which can be used to attackFeal-8 using about 224 known plaintexts with a smaller computation complexity. Thisis a much better tradeo� than in Matsui's attacks on Feal-8, which required either228 known plaintexts, for which the complexity of the analysis is 250, or 215 knownplaintexts, for which the complexity of the analysis is 264. One of these iterative
14T

ec
hn

io
n 

- 
C

om
pu

te
r 

Sc
ie

nc
e 

D
ep

ar
tm

en
t -

 T
ec

hn
ic

al
 R

ep
or

t C
S0

81
3 

- 
19

94



probabilities, among them at least eight one-round characteristics with probability1=2 � 1=4.In his attack[8] Matsui uses linearities which can be formalized by the followingthree-round characteristic with probability 1:
P = 04 04 04 00 00 01 00 00xA0 = 04 04 04 00x a0 = 00 01 00 00x with probability 1=2 � 1=2 = 0B0 = 0 b0 = 0 with probability 1C 0 = 04 04 04 00x c0 = 00 01 00 00x with probability 1=2 � 1=2 = 0
T = 04 04 04 00 00 01 00 00x
F

F

FIn his attack he sets this characteristic in rounds 3{5 and tries exhaustively values ofbits of the subkeys in rounds 1{2 and 6{8, with some auxiliary techniques. We have
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P = (00 01 04 00x; R0)A0 = 00 01 04 00x a0 = 00 00 01 01x with probability 1=2 + 1=2 = 1
T = (00 01 04 00x; R0 � 00 00 01 01x):Fand 
P = (00 00 01 04x; R0)A0 = 00 00 01 04x a0 = 00 00 00 01x with probability 1=2 � 1=2 = 0
T = (00 00 01 04x; R0 � 00 00 00 01x):FThe other 11 one-round characteristics with probability 1=2� 1=2 can be derived bycombining any number of these four characteristics by XORing the values of their a0into the new a0 and XORing the values of their A0 into the new A0. For example,the following characteristics results from a combination of the �rst three of the abovefour characteristics:
P = (04 04 04 00x; R0)A0 = 04 04 04 00x a0 = 00 01 00 00x with probability 1=2 � 1=2 = 0
T = (04 04 04 00x; R0 � 00 01 00 00x):FThese combinations are valid since no S box is active in two or more of the originalcharacteristics. Such combinations are also applicable in di�erential cryptanalysis,whenever they do not involve the same S box active in more than one characteris-tic. We have also found several additional linear characteristics of Feal with smaller12T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t C

S0
81

3 
- 

19
94



characteristic with probability about 1=2 + 2�24. We have exhaustively veri�ed thatthis iterative characteristic is the best among all the characteristics with at most oneactive S box at each round, and that Matsui's 16-round characteristic is the bestcharacteristics under the same restriction (Matsui claims that his characteristic is thebest without any restriction).6 Application to FealIn [8] Matsui described a preliminary version of linear cryptanalysis and used it toattack Feal[15,11]. For Feal there are 15 (non-trivial) one-round characteristics withprobability 1=2�1=2, based on the linearity of the least signi�cant bits in the additionoperation (a similar e�ect occurs also in di�erential cryptanalysis of Feal, in whichcharacteristics with probability 1 are based on the elimination of the carry from themost signi�cant bit). The Four basic one-round characteristics with probability 1=2�1=2 are: 
P = (04 01 00 00x; R0)A0 = 04 01 00 00x a0 = 01 00 00 00x with probability 1=2 + 1=2 = 1
T = (04 01 00 00x; R0 � 01 00 00 00x):F
P = (00 04 00 00x; R0)A0 = 00 04 00 00x a0 = 01 01 01 01x with probability 1=2 � 1=2 = 0
T = (00 04 00 00x; R0 � 01 01 01 01x):F
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5 Application to DESMatsui's 16-round linear approximation can be viewed as a 16-round characteristic.This characteristic is based on the following eight-round iterative characteristic:
P = 21 04 00 80 00 00 00 00xA0 = 21 04 00 80x = a0 = 00 00 80 00x with probability 1=2 � 20=64P (00 00 F0 00x) one a�ected key bitB0 = 00 00 80 00x = b0 = 20 00 00 00x with probability 1=2 � 2=64P (40 00 00 00x) one a�ected key bitC 0 = 01 04 00 80x = c0 = 00 00 80 00x with probability 1=2 + 10=64P (00 00 E0 00x) one a�ected key bitD0 = 0 d0 = 0 alwaysno a�ected key bitsE 0 = 01 04 00 80x = e0 = 00 00 80 00x with probability 1=2 + 10=64P (00 00 E0 00x) one a�ected key bitF 0 = 00 00 80 00x = f 0 = 20 00 00 00x with probability 1=2 � 2=64P (40 00 00 00x) one a�ected key bitG0 = 21 04 00 80x = g0 = 00 00 80 00x with probability 1=2 � 20=64P (00 00 F0 00x) one a�ected key bitH 0 = 0 h0 = 0 alwaysno a�ected key bits
T = 00 00 00 00 21 04 00 80x:

F

F

F

F

F

F

F

FThis characteristic has probability about 1=2 + 2�27. By iterating it to 16 roundsand replacing the �rst and last rounds by locally better ones, Matsui got a 16-round10T
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themselves (in the �rst m columns), and the output values of the S box (in the othern columns).Each column of M contains one bit from each input/output pair of the S box.Linear combinations of subsets of the input/output bits of the S box are representedby linear combinations of the columns. We say that a subset of bits of the input andoutput of the S box form a linear combination if for all inputs the linear combinationof these bits is zero. We say that a subset of bits of the input and output of the Sbox form an a�ne combination if for all inputs the linear combination of these bits isa constant (either all zero, or all one). Equivalently, a subset of the bits of the inputand output of the S box form a linear combination if the columns of M are linearlydependent, and a subset of the bits of the input and output of the S box form ana�ne combination if the columns ofM and the all one vector are linearly dependent.De�neM0 to be the matrix formed byM with one additional column with all thevalues ones: M0 = [Mj1]. Thus, if the rank of M equals the number of its columnsm+n, there are no linear combinations in the S box, and if the rank ofM0 equals thenumber of its columns m+ n+1, there are no a�ne combinations in the S box. TheS box has an a�ne combination of its input and output bits if rank(M0) < m+n+1.Since the number of rows ofM andM0 is 2m, the maximal rank is 2m. Therefore,if n � 2m � m the S box must have an a�ne combination of the input/outputbits. These a�ne combinations cause entries with probability 1=2� 1=2 in the linearapproximation table, which can be a major threat to the security of the cryptosystem.Similarly, if n � 2m the S box must have an a�ne combination of a subset of onlyoutput bits, which does not depend on the input bits at all! Such combinations cause(in many cases of DES-like cryptosystems) the existence of a two-round iterativecharacteristic with probability 1=2 � 1=2 (of the form 0 ! X), and thus enableattacks which require only a few known plaintexts!These a�ne combinations also hold as a�ne combinations of the bits of the di�er-ences predicted in di�erential cryptanalysis. We do not know whether in di�erentialcryptanalysis these linearities also pose a major threat.
9T
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S boxes Probability Known Plaintexts Davies' AttackS1{S2 1=2 + 2�33 266 266S2{S3 1=2 + 2�36 273 269S3{S4 1=2 + 2�44 289 286S4{S5 1=2 + 2�36 273 271S5{S6 1=2 + 2�36 273 272S6{S7 1=2 + 2�33 266 266S7{S8 1=2 + 2�28 257 257S8{S1 1=2 + 2�40 279 277Table 2. Results of Linear Cryptanalysis of DES using Davies' Characteristics.the attack based on linear cryptanalysis are given in Table 2, along with the numberof known plaintexts required for the original Davies' attacks based on the same pairsof S boxes2. Notice that the results of these two attacks are very similar.4 Constraints on the Size of the S BoxesIn this section we show new constraints on the size of S boxes. Researchers havealready studied the di�erential behavior of the size of S boxes. For example, LukeO'connor[12,13] analyzed the di�erential behavior of bijective S boxes and of compos-ite S boxes, and concluded that for large enough S boxes, even random S boxes areimmune against di�erential cryptanalysis. However, there was no result on requiredrelationships between the input size of the S boxes and their output size. In thissection we show such a relationship.In di�erential cryptanalysis we can easily reduce the probability of all the entriesin the di�erence distribution tables of the S boxes by increasing the number of outputbits of the S boxes. Whenever the number of output bits of an S box is (su�ciently)larger than the number of its input bits, it is very likely that the entries in thedi�erence distribution table will have only values 0 and 2; thus all the possible entrieshave the same low probability.Examples of cryptosystems which use such S boxes are Khufu and Khafre[10].The attack on Khafre[3,1] used exactly these properties, but still it used the speci�cstructure of Khafre.Linear cryptanalysis adds a new criteria for this relationship. We identi�ed thatwhenever the number of output bits is large enough, there must be linear and a�nerelations between these bits, which hold for all the possible inputs of the S box.Denote the number of input bits by m, and the number of output bits by n. Wecan now describe the S box by a binary matrix M with 2m rows, corresponding tothe 2m inputs of the S box, and with m+ n columns, which contain the input values2The number of known plaintexts required for Davies' attack were calculated using the equationsgiven in [5]. 8T
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analysis, the internal information contains the information about the subset of keybits participating in the linearization. Thus, if two characteristics with the same val-ues of 
P and 
T and with a similar probability exist, they might cancel the e�ectof each other if the parity of the subset of the key bits is not the same (or if theirprobabilities are the complement of each other and the parity of the subset of theirkey bits is the same). Therefore, we should be much more careful when we claim forlinear cryptanalysis' characteristics. However, if the attacker knows of all the di�erentcharacteristics whose e�ect might be canceled, he can �nd one (parity) bit of the keywhenever he identi�es that the e�ect is canceled.Davies[5] investigated an attack against DES based on the non-uniform distri-bution of the outputs of pairs of adjacent S boxes, when their inputs are uniformlydistributed. He assumes the uniform distribution in the inputs to the even rounds (oralternatively the odd rounds), and studies the resultant distribution in the outputs ofthese rounds. As a result, he receives a key-dependent distribution, which depends onthe parity of several key bits. Using a large sample of known plaintexts, he can �ndthis bit. His algorithm can be applied to any pair of adjacent S boxes, and to evenor odd rounds, thus he can �nd up to 16 potential parity bits of the key. His attackis strongly related to linear cryptanalysis1, and has a linear cryptanalysis variant. Inthe even rounds (odd rounds) the characteristics have zero values in the input andnon-zero values in the outputs, since the inputs are not involved in the linearization,but the output are involved. In the other rounds, both inputs and outputs have zerovalues. Thus, we receive the following two-round iterative characteristic for the Sboxes S7/S8 (and similar characteristics for other adjacent S boxes):
P = 0A 10 0C 21 00 00 00 00xA0 = 0A 10 0C 21x = a0 = 0 with probability 1=2 � 3=64P (00 00 00 FDx) four a�ected key bitsB0 = 0 b0 = 0 alwaysno a�ected key bits
T = 00 00 00 00 0A 10 0C 21x:F

FEach of the S boxes has a linear approximation between the two common bits to asubset of the four output bits. In S7: 03x ! Fx with probability 1=2 + 8=64 andin S8: 30x ! Dx with probability 1=2 � 12=64. The total probabilities of thesecharacteristics iterated to 16 rounds and the required number of known plaintexts for1Davies studies the overall distribution of the output bits of the S boxes, while linear cryptanalysisstudies only the parity of these bits. Thus, Davies' attack is not a special case of linear cryptanalysis.7T
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the average between all the possible random keys. In practice, in DES the probabilityholds for all the keys, due to the design rules of the S boxes[4].We can also concatenate characteristics (and de�ne n-round characteristics recur-sively):De�nition 3 An n-round characteristic 
1 = (
1P ;
1T ;
1K; 1=2 + p1) can be con-catenated with an m-round characteristic 
2 = (
2P ;
2T ;
2K; 1=2 + p2) if 
1T equalsthe swapped value of the two halves of 
2P . The concatenation of the character-istics 
1 and 
2 (if they can be concatenated) is the (n + m)-round characteristic
 = (
1P ;
2T ;
1K � 
2K ; 1=2 + 2 � p1 � p2).When we concatenate l characteristics (that can be concatenated) the probability ofthe resultant characteristic is 1=2 + p = 1=2 + 2l�1 �Qli=1 pi.A strange situation occurs for n-round characteristics: Whenever an XOR opera-tion exists in the cryptosystem (excluding XORs with subkeys within the F -function),the values of both its arguments in the characteristic must be the same, and this valueis also the output of the \XOR operation". Whenever the data is duplicated (whenthe right half of the data is input to the F -function and also becomes the left halfof the next round), both \duplicated" outputs may not be the same as the input,only their XOR value should be the same as the input. This phenomena is just theopposite to the usual operations in the cryptosystem, where an XOR operation XORsthe inputs and duplications duplicates the input; in our case, an XOR operation du-plicates the input, and duplications XOR the input with one of the original outputsto form the second output. This phenomena causes a basic di�erence between linearcryptanalysis and di�erential cryptanalysis, which can be easily viewed in the one-round characteristic with probability 1: the free variable in the linear cryptanalysischaracteristic is at the right half, while in di�erential cryptanalysis it is at the lefthalf.This phenomena is easily understood when we remind the meaning of the valuesin the characteristics: they are not actual values, neither XORs of actual values; Theyonly describe the subset of bits whose parity is statistically known. In order to knowthe parity of bits of the output of an XOR operation, we should know the paritiesof the same subsets of bits both inputs, and then we known the parity of the samesubset of the output.When we duplicate the data, we may know parity of a subset of bits. However,since we do not wish to use these bits twice (in which case one use will cancel theother use by the parity), we should use each set bit once, either in one output or inthe other output. It is also possible to use a bit which is not set in the input to theduplication, in which case a zero bit become one in both outputs. In this case, bothusages cancel each other by their parity, and thus the same e�ect as of the originalzero remains.An important di�erence between linear cryptanalysis and di�erential cryptanal-ysis is the ability to use di�erentials[6,7], in which only the values of 
P and 
Tmatter. In di�erential cryptanalysis, whenever several characteristics have the samevalues for 
P and 
T , they are developed on top of each other: they can be viewedas one di�erential, and their internal information can be ignored. In linear crypt-6T
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a random input block P , and its one-round encryption C under a random subkey Ksatis�es P �
P �C �
T �K �
K = 0, where `�' denotes binary scalar product of twobinary vectors, 
P is the subset of bits of the data before the round, 
T is the subsetof bits of the data after the round, and 
K is the subset of bits of the key whoseparity is approximated.As in di�erential cryptanalysis, it is quite easy to derive one-round characteristicswith one active S box: we only have to choose a non-zero entry in one of the S boxes,and choose the subsets 
P , 
T , 
K as the round-function requires. The followingone-round characteristic has only one active S box, and it was chosen to maximizethe probability, thus it uses the maximal entry in S5:
P = (21 04 00 80x; R0)A0 = 21 04 00 80x = a0 = 00 00 80 00x with probability 1=2 � 20=64P (00 00 F0 00x) one a�ected key bit
T = (21 04 00 80x; R0 � 00 00 80 00x):FThe best one-round characteristic does not have any active S box. This characteristichas probability 1: 
P = (0; R0)A0 = 0 a0 = 0 with probability 1no a�ected key bits
T = (0; R0):FWe can also derive one-round characteristics with more than one active S boxes:in this case we should choose the entries in two or more S boxes. However, unlike indi�erential cryptanalysis, we do not need to have the same values in common inputbits of both S boxes (due to the E expansion), so if we a�ect bits common to twoS boxes, it is not necessary that both S boxes would be active. Moreover, if bothS boxes are active, the value of the common input bits becomes the XOR of theirvalues from both S boxes, since we use the same bit twice in a linear equation, andthus it cancels itself. Note that in theory, the probability we receive in that way is5T
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the probabilities with the notation pi by their distance from half p0i = 1=2+pi. Then,the combined probability is 1=2+ p = 1=2+2 � p1 � p2. In general, if an approximationconsists of l S boxes, the combined probability is 1=2 + p = 1=2 + 2l�1 �Qli=1 pi.When a linear approximation with probability 1=2 + p is known to the attacker,he can mount an attack which requires about p�2 known plaintexts; these plaintextscan be randomly chosen, but all of them must be encrypted under the same key, andthe ciphertexts should be known to the attacker as well.The basic method of linear cryptanalysis �nds only one bit of the key, which isa parity of a subset of the key bits. Auxiliary techniques of reducing the numberof rounds of the approximations, by eliminating the �rst and/or last rounds, andcounting on all the key bits a�ecting the data at the rounds not in the approximationcan reduce the number of plaintexts required, and increase the number of key bitsthat the attack �nds.3 A Study of Linear CryptanalysisBefore we formalize the linear approximations by de�ning characteristics, we feel itis very important to mention that the bits we set in the characteristics are not theactual values of bits (or bit-di�erences as in di�erential cryptanalysis); the bits weset denote the subset of bits whose parity is approximated. The expected parity itselfis not directly denoted; however, the reader can easily identify the expected parityfrom the probability of the characteristic: if the probability is more than half, theexpected parity is zero, and if the probability is less than half, the expected parity isone.Another very important topic is the key space used in the analysis of linear crypt-analysis. There is a di�erence between the key space of the analyzed cryptosystemand the key space that the attack can handle. In di�erential cryptanalysis it wasmentioned that the attacks assume that independent keys are used. The independentkeys were de�ned as follows[1]:De�nition 1 An independent key is a list of subkeys which is not necessarily deriv-able from some key via the key scheduling algorithm.Each key in the cryptosystem's key space has an equivalent independent key derivedby the key scheduling algorithm. We observe that linear cryptanalysis also assumesthe use of independent keys. The theoretical analysis of systems with dependent keysare much harder. However, in practice it can be very well estimated by the analysisof the independent key variants. Therefore, Matsui's method to �nd 14 bits of thesubkeys still hold even if independent keys are used. Other auxiliary methods canthen be used to �nd the other bits of the �rst and the last subkeys (possibly usingadditional characteristics), and to reduce the cryptosystem to a cryptosystem with asmaller number of rounds, which is easier to analyze.De�nition 2 A one-round characteristic is a tuple (
P ;
T ;
K; 1=2 + p), in which(
P )L = (
T )L = A, (
P )R� (
T )R = a, and in which 1=2+p is the probability that4T
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Input Output subsetsubset 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx0x 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02x 0 4 -2 2 -2 2 -4 0 4 0 2 -2 2 -2 0 -43x 0 0 -2 6 -2 -2 4 -4 0 0 -2 6 -2 -2 4 -44x 0 2 -2 0 0 2 -2 0 0 2 2 4 -4 -2 -2 05x 0 2 2 -4 0 10 -6 -4 0 2 -10 0 4 -2 2 46x 0 -2 -4 -6 -2 -4 2 0 0 -2 0 -2 -6 -8 2 07x 0 2 0 2 -2 8 6 0 -4 6 0 -6 -2 0 -6 -48x 0 0 2 6 0 0 -2 -6 -2 2 4 -12 2 6 -4 49x 0 -4 6 -2 0 -4 -6 -6 6 -2 0 -4 2 -6 -8 -4Ax 0 4 0 0 -2 -6 2 2 2 2 -2 2 4 -4 -4 0Bx 0 4 4 4 6 2 -2 -2 -2 -2 -2 2 0 -8 -4 0Cx 0 2 0 -2 0 2 4 10 -2 4 -2 -8 -2 4 -6 -4Dx 0 6 0 2 0 -2 4 -10 -2 0 -2 4 -2 8 -6 0Ex 0 -2 -2 0 -2 4 0 2 -2 0 4 2 -4 6 -2 -4Fx 0 -2 -2 8 6 4 0 2 2 4 8 -2 8 -6 2 010x 0 2 -2 0 0 -2 -6 -8 0 -2 -2 -4 0 2 10 -2011x 0 2 -2 0 4 2 -2 -4 4 2 2 0 -8 -6 2 412x 0 -2 0 -2 2 -4 -2 -8 4 6 4 6 -2 4 -6 013x 0 -6 0 2 -2 4 2 0 4 -6 4 2 -6 4 -2 014x 0 4 -4 0 0 0 0 0 -4 -4 4 4 0 4 -4 015x 0 4 0 -4 -4 4 -8 -8 0 0 -4 4 8 4 0 416x 0 0 6 6 2 -2 4 0 4 0 6 2 2 2 0 017x 0 4 -6 -2 6 -2 -4 4 4 -4 -6 2 -2 2 0 418x 0 6 0 2 4 -10 -4 2 2 0 -2 0 2 4 -2 -419x 0 2 4 -6 0 -2 4 -2 6 8 6 4 10 0 2 -41Ax 0 2 2 -8 -2 4 0 2 -2 0 4 2 0 -2 -2 01Bx 0 2 6 -4 -6 0 0 2 6 8 0 -2 -4 -6 -2 01Cx 0 0 -2 2 4 0 -6 2 -2 6 -4 0 2 -2 0 01Dx 0 4 -2 6 -8 0 -2 2 10 -2 -8 -8 2 2 0 41Ex 0 -4 -8 0 -2 -2 -2 2 -2 2 -2 6 4 4 4 01Fx 0 -4 8 -8 2 -6 -6 -2 -2 2 -2 -2 -8 0 0 -420x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 021x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 022x 0 -4 -2 2 -2 2 -4 8 -4 0 -6 6 2 -2 -16 -1223x 0 0 -2 -2 6 -2 -4 4 0 0 -2 -2 -2 6 4 -424x 0 -2 6 4 0 6 -2 4 4 -6 -2 4 0 14 2 025x 0 6 2 0 0 6 2 0 -4 -6 2 -8 0 -2 6 -426x 0 2 4 -2 -2 0 2 -4 4 -2 -4 -2 6 0 -2 027x 0 -10 0 -2 6 4 6 -4 0 6 -12 2 2 0 6 -428x 0 4 -2 -2 0 4 -6 2 2 -6 4 0 6 -2 -4 029x 0 0 2 6 0 0 6 2 2 -2 -8 0 -2 -6 0 02Ax 0 0 -4 -8 6 6 6 -6 6 2 -2 -2 -8 4 -4 42Bx 0 8 0 4 6 -2 -6 6 2 6 -2 6 -4 0 4 42Cx 0 2 4 -6 0 -6 0 6 -2 -4 2 -4 -2 4 6 02Dx 0 -2 -4 -2 0 -2 -8 2 -2 0 -6 -8 -2 0 -2 42Ex 0 6 2 -4 6 4 4 -2 -10 -8 0 -2 4 -2 2 02Fx 0 6 -6 -4 6 -4 4 -2 2 4 4 -6 0 2 -2 -430x 0 2 -2 0 -4 -6 -2 -4 4 2 2 0 0 2 2 431x 0 2 -2 0 0 -2 2 0 0 -2 -2 -4 0 2 2 432x 0 6 0 -2 -2 8 2 4 0 10 0 2 -2 4 2 033x 0 -6 0 10 2 0 -2 -4 0 6 0 -10 2 4 -2 034x 0 0 -12 4 -4 0 4 -8 -4 0 -4 0 -4 -4 0 035x 0 -8 0 0 8 -4 4 0 0 -4 -4 0 4 4 -4 436x 0 4 -2 -6 -2 -2 8 0 4 -4 -2 -2 6 2 -4 037x 0 -8 -6 -6 -6 6 0 4 12 0 2 -2 2 2 4 -438x 0 2 4 -6 0 -2 4 -2 -6 4 -6 0 6 4 -2 039x 0 -2 8 2 -4 6 -4 -6 -2 -4 2 4 -2 0 2 03Ax 0 6 -10 0 2 4 0 -2 6 -4 0 2 4 -2 -2 -43Bx 0 -2 -6 -4 -10 0 -8 -2 -10 4 4 -2 0 2 -2 43Cx 0 -8 -6 -2 0 -4 2 2 -6 2 4 0 10 -2 4 43Dx 0 4 2 2 4 4 -2 2 -2 10 0 0 2 2 4 03Ex 0 -4 4 -4 2 2 -2 2 2 -2 -2 -2 4 -4 0 43Fx 0 -4 -4 -4 14 6 -6 -2 2 -2 6 -2 0 0 -4 0Table 1. The Linear Approximation Table of S5.3T
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Since all the operations in DES, except the S boxes, are linear, it su�ces to derivelinear relations of the S boxes. These relations are derived for each S box by choosinga subset of the input bits and the output bits, calculating the parity (exclusive-or) ofthese bits for each of the possible inputs of the S box, and counting the number ofinputs whose subset's parity is zero. If the S box is linear in the bits of the subset, allthe inputs must have a zero parity of the subset. If the S box is a�ne in the bits ofthe subset, all the inputs must have parity 1. Usually, a subset will have many inputswith parity 0 and many inputs with parity 1. As the number of zeroes is closer tothe number of ones, we will say that the subset is more non-linear. The least linearsubset under this de�nition is one whose half of the inputs have parity zero, and theother half inputs have parity 1.Matsui has calculated the number of zero parities for each of the 64 � 16 = 1024possible subsets of the input and the output bits of each S box. To represent thesubsets' linearity in a simple manner, he subtracts from these numbers the number ofhalf of the inputs. This way, zero values denote non-linear subsets, and high absolutevalues denote linear/a�ne or close to linear/a�ne subsets. A table which describesall these values for all the possible subsets of an S box is called a linear approximationtable of the S box. Table 1 is the linear approximation table of S5 of DES. In thislinear approximation table, we can see that 30% of the entries have value zero.The highest absolute value in the linear approximation table of S5 is �20 in entry(10x,Fx). Therefore, only in 12 out of the 64 inputs, the parity of the four output bitsis the same as the value of the second input bit! This entry was actually described byShamir[14] in 1985, but it was later described as a necessity from the design criteriaof DES, and nobody knew to point out whether it weakens DES. This speci�c entry,which is the most linear entry of all the S boxes of DES, is actually one of the threeentries used in Matsui's attack.Matsui's solution was to �nd a statistical linear expression consisting of a parityof subsets of the plaintext, ciphertext and the key, which is derived from similarexpressions of the various rounds. Thus, the parity of some set of data bits in eachround is known as a function of the parity of the previous set of bits in the previousround and the parity of several key bits. The round-linearization is based on thelinearization of the S boxes. If we would XOR the same value to the two halves ofthe data, we would remain with the same parity as before the XOR. Since the subsetof the input bits is statistically linear/a�ne to the subset of the output bits, theparity of the data after the XOR is usually the parity before the XOR XORed witha particular key-dependent constant.The probability that the approximation in an S box is valid is given as the distancefrom half; for example the probability of the above entry with value �20 is p0 =12=64 = 1=2 � 20=64. An entry with value 0 has probability p0 = 1=2; such an entryis useless to attack an cryptosystem. Any other non-zero value (either positive ornegative) can be used in attacks. An approximation may involve more than one Sbox. We will follow Coppersmith[4] and call the S boxes involved in the linearizationactive S boxes. The probability of an approximation with two active S boxes isp01 � p02 + (1 � p01) � (1 � p02), since the parity is even if either both parities of theapproximations of the two S boxes are zero, or both are one. For simplicity we denote2T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t C

S0
81

3 
- 

19
94



On Matsui's Linear CryptanalysisEli BihamComputer Science DepartmentTechnion - Israel Institute of TechnologyHaifa 32000, IsraelAbstractIn [9] Matsui introduced a new method of cryptanalysis, called Linear Crypt-analysis. This method was used to attack DES using 247 known plaintexts. Inthis paper we formalize this method and show that although in the details levelthis method is quite di�erent from di�erential cryptanalysis, in the structurallevel they are very similar. For example, characteristics can be de�ned in lin-ear cryptanalysis, but the concatenation rule has several important di�erencesfrom the concatenation rule of di�erential cryptanalysis. We show that theattack of Davies on DES is closely related to linear cryptanalysis. We describeconstraints on the size of S boxes caused by linear cryptanalysis. New resultsto Feal are also described.1 IntroductionIn EUROCRYPT'93 Matsui introduced a new method of cryptanalysis, called LinearCryptanalysis [9]. This method was used to attack DES using 247 known plaintexts.In this paper we formalize this method and show that although in the details levelthis method is quite di�erent from di�erential cryptanalysis[2,1], in the structurallevel they are very similar. For example, characteristics can be de�ned in linearcryptanalysis, but the concatenation rule has several important di�erences from theconcatenation rule of di�erential cryptanalysis. We show that the attack of Davies[5]on DES is closely related to linear cryptanalysis. We describe constraints on thesize of S boxes caused by linear cryptanalysis. New results to Feal[15,11] are alsodescribed.2 Overview of Linear CryptanalysisLinear cryptanalysis studies statistical linear relations between bits of the plaintexts,the ciphertexts and the keys they are encrypted under. These relations are usedto predict values of bits of the key, when many plaintexts and their correspondingciphertexts are known. 1T
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