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Abstract

We show that if the private exponent d used in the RSA public-key cryptosystem is less than
NO-292 then the system is insecure. This is the first improvement over an old result of Wiener
showing that when d is less than N?-2% the RSA system is insecure. We hope our approach can be
used to eventually improve the bound to d less than N5,
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1 Introduction

To speed up RSA signature generation one is tempted to use a small private exponent d. Unfortunately,
Wiener [14] showed over ten years ago that if one uses d < N%25 then the RSA system can be broken.
Since then there have been no improvements to this bound. Verheul and Tilborg [13] showed that
as long as d < N5 it is possible to expose d in less time than an exhaustive search; however, their
algorithm requires exponential time as soon as d > N2,

In this paper we give the first substantial improvement to Wiener’s result. We show that as long
as d < N%?% one can efficiently break the system. In particular, when d < N%?%? an attacker can
recover the private RSA key given the public key. We hope our approach will eventually lead to what
we believe is the correct bound, namely d < N%3. Our results are based on the seminal work of
Coppersmith [3].

Wiener describes a number of clever techniques for avoiding his attack while still providing fast
RSA signature generation. One such suggestion is to use a large value of e. Indeed, Wiener’s attack
provides no information as soon as e > N1, In contrast, our approach is effective as long as e < N187,
Consequently, larger values of e must be used to defeat the attack. We discuss this variant in Section 6.

2 Overview of Our Approach

Recall that an RSA public key is a pair of integers (N, e) where N = pq is the product of two n-bit
primes. For simplicity, we assume ged(p — 1,9 — 1) = 2. The corresponding private key is an integer

d satisfying e -d = 1 mod @ where ¢(N) = N —p — g+ 1. Note that both e and d are typically less
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than ¢(N). It follows that there exists an integer &k such that

N +1
ed—i—k(%—z%):l. (1)

Writing s = —28¢ and A = Y we know:

kE(A+s)=1 (mod e).

Throughout the paper we write e = N for some «. Typically, e is of the same order of magnitude
as N (e.g. e > N/10) and therefore « is very close to 1. As we shall see, when « is much smaller than
1 our results become even stronger.

Suppose the private exponent d satisfies d < N?. Wiener’s results show that when § < 0.25 the
value of d can be efficiently found given e and N. Our goal is to show that the same holds for larger
values of §. By equation (1) we know that

2d€ §—1
k| < —— < 3de/N < 3¢' T .
< gy = el

Similarly, since both p and ¢ are less than 2v/N we know that

|s| < 2NO5 = 2¢1/(2),

To summarize, taking o &~ 1 (which is the common case) and ignoring small constants, we end up
with the following problem: find integers k and s satisfying

E(A+s)=1 (mode) where |s|<e’® and |k < €. (2)

The problem can be viewed as follows: given an integer A, find an element “close” to A whose inverse
modulo e is “small”. We refer to this as the small inverse problem. Clearly, if for a given value of § < 0.5
one can efficiently list all the solutions to the small inverse problem, then RSA with private exponent
smaller than N? is insecure (simply observe that given s modulo e one can factor N immediately, since
e > s). Currently we can solve the small inverse problem whenever § < 1 — %\/ﬁ ~ 0.292.

Remark 1. A simple heuristic argument shows that for any ¢ > 0, if k is bounded by €%5~¢ (i.e.
d < 0.5) then the small inverse problem (equation (2)) is very likely to have a unique solution. The
unique solution enables one to break RSA. Therefore, the problem encodes enough information to
suggest that RSA with d < N9 is insecure. For d > N5 we have that & > N%®, so the small inverse
problem will no longer have a unique solution. Therefore, we believe this approach can be used to
show that d < N9 is insecure, but gives no results for d > N°°.

The next section gives a brief introduction to lattices over Z". A first pass at a solution to the
small inverse problem when « is close to 1 is given in Section 4. In Section 5, we improve this approach
and prove the main result of the paper. Section 6 provides a solution for arbitrary «. In Section 7,
we discuss a variant of our attack which works for unbalanced RSA moduli. These are moduli N = pq
where p is much larger than ¢. Finally, Section 8 describes experimental results with the attack
algorithm.



3 Preliminaries

Let u1,...,uy € Z" be linearly independent vectors with w < n. A lattice L spanned by (u1, ..., uy) is
the set of all integer linear combinations of wy, ..., u,. We say that the lattice is full rank if w = n. We
state a few basic results about lattices and lattice basis reduction and refer to [9] for an introduction.
Lattice basis reductions are frequently used in the cryptanalysis of public key systems [6].

Let L be a lattice spanned by (ui,...,uy,). We denote by uj,...,u} the vectors obtained by
applying the Gram-Schmidt process to the vectors uj,...,u,. We define the determinant of the

lattice L as
det(L H [Jui Il

where ||.|| denotes the Euclidean norm on vectors. If L is a full rank lattice then the determinant of
L is equal to the determinant of the w X w matrix whose rows are the basis vectors uq, ..., Uy.

Fact 3.1 (LLL) Let L be a lattice spanned by (uy, ..., uy). The LLL algorithm, given (uy, ..., Uy),
runs in polynomial time and produces a new basis (by,...,by) of L satisfying:

L)1 < 206 |17 for all 1 <i < w.
2. For all i, if b —b*—i-zj lu] then |pj| < 3 for all 5.

We note that an LLL-reduced basis satisfies some stronger properties, but those are not relevant
to our discussion.

Fact 3.2 Let L be a lattice and by,...b, be an LLL-reduced basis of L. Then
1by]| < 2%/% det(L)/®.

Proof Since b; = b} the bound immediately follows from:

de£) = [TIEiN = =2 .
In the spirit of a recent result due to Jutla [7] we provide a bound on the norm of other vectors in
an LLL reduced basis. For a basis (u1,...,u,) of a lattice L, define
u;‘;iu . mlnl ||u* ||

Fact 3.3 Let L be a lattice spanned by (uy,...,uy,) and let (by,...by) be the result of applying LLL
to the given basis. Suppose ', > 1. Then

lball < 2% det(L)w—1

Proof It is well known that v},
Consequently, [|b1]| > u*. . We obtain

n*

is a lower bound on the length of the shortest vector in L.

sl w—1o—(w—1)2
12 A

min

det (L Hllb*ll > [b3]] - ol te 2 >

Hence,

1
b3l < 27 [det( )] T < 9% det(L) 7,

u* -

min
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which leads to
1 5
b2]1* < [1b3]1 + 1“171“2 < 20l det(L) =T + 29 2 det(L)w < 2% det(L)w-T.

Note that det(L) > 1 since u, > 1. The bound now follows. ]

min

Similar bounds can be derived for other b;’s. For our purposes the bound on b is sufficient.

4 Solving the Small Inverse Problem

In this section we focus on the case when e is of the same order of magnitude as N, i.e. if e = N® then
« is close to 1. To simplify the exposition, in this section we simply take a = 1. In the next section
we give the general solution for arbitrary . When a = 1 the small inverse problem is the following:
given a polynomial f(z,y) = z(A+y) — 1, find (z0, y) satisfying

f(zo,y0) =0 (mod ¢) where |ao| < e’ and [yo| < e”®.

We show that the problem can be solved whenever § < 1 — %\/i ~ 0.292. We begin by giving an
algorithm that works when § < % - % 7 =~ 0.284. Our solution is based on a powerful technique due to
Coppersmith [3], as presented by Howgrave-Graham [5]. We note that for this particular polynomial

our results beat the generic bound given by Coppersmith. For simplicity, let X = ¢’ and Y = €%,

Given a polynomial h(z,y) = 3, ; a; jz'y?, we define ||h(z,y)|? = > |az2,j|. The main tool we

use is stated in the following fact. The fact shows that if a polynomial A(z,y) has low norm then every
small root of A(z,y) modulo a big modulus is also a root of h(x,y) over the integers.

Fact 4.1 (HG98) Let h(z,y) € Z[z,y] be a polynomial which is a sum of at most w monomials.
Suppose that

a. h(zg,yo) = 0 mod e™ for some positive integer m where |zo| < X and |yo| <Y, and
b A X, y¥)| < e/ V.

Then h(xg,yo) = 0 holds over the integers.
Proof Observe that

o ii (To\! (Yo\I
|h(z0,%0)] = ‘Z ai,j%yﬁ‘ = Z‘”JXZY] (Y) (?) =
< 3 |axiy? (Y> (7) <Y fai XY <
< ValhEX, gy < e,
but since h(zg,yo) = 0 modulo ™ we have that h(zg,yo) = 0. "

Fact 4.1 suggests that we should be looking for a polynomial with small norm that has (xg,yo) as
a root modulo e™. To do so, given a positive integer m we define the polynomials

gik(z,y) =" fF(z,y)e™* and  hj(z,y) =y [Pz, y)em

We refer to the g; , polynomials as 2-shifts and the h;j polynomials as y-shifts. Observe that (o, o)
is a root of all these polynomials modulo ¢™ for £k = 0,...,m. We are interested in finding a low-
norm integer linear combination of the polynomials g; (X, yY") and h; (X, yY). To do so we form
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Figure 1: The matrix spanned by g;x and hjy for £ =0,...,3,2=0,...,3 —k, and j = 0,1. The -
symbols denote non-zero entries whose value we do not care about.

a lattice spanned by the corresponding coefficient vectors. Our goal is to build a lattice that has
sufficiently small vectors and then use LLL to find them. By Fact 3.2 we must show that the lattice
spanned by the polynomials has a sufficiently small determinant.

Given an integer m, we build a lattice L spanned by the coefficient vectors of the polynomials for
k=0,...,m. For each k we use g; x(X,yY) for i =0,...,m—Fk and use hj,(zX,yY) for j =0,...,t
for some parameter ¢ that will be determined later. For example, when m = 3 and ¢ = 1 the lattice
is spanned by the rows of the matrix in Figure 1. Since the lattice is spanned by a lower triangular
matrix, its determinant is only affected by entries on the diagonal, which we give explicitly. Each
“block” of rows corresponds to a certain power of . The last block is the result of the y-shifts. In the
example in Figure 1, ¢ = 1, so only linear shifts of y are given. As we shall see, the y-shifts are the
main reason for our improved results.

We now turn to calculating the determinant of the lattice L. A routine calculation shows that the
determinant of the submatrix corresponding to all = shifts (i.e. ignoring the y-shifts by taking ¢ = 0)

18
det, = em(m+1)(m+2)/3 . Xm(m+1)(m+2)/3 . Ym(m+1)(m+2)/6'

For example, when m = 3 the determinant of the submatrix excluding the bottom block is e2° X 20y 10,
Plugging in X = e’ and Y = ¢%® we obtain

det, = m(m+1)(m+2)(5+48)/12 _ o 252m3ro(m®)
It is interesting to note that the dimension of the submatrix is w = (m + 1)(m +2)/2, and so the w’th
root of the determinant is D, = ¢™(®+49)/6_ For us to be able to use Fact 4.1, we must have D, < ™,

implying (5 + 49) < 6. We obtain § < 0.25. This is exactly Wiener’s result. It turns out that any
lattice formed by taking only the z-shifts cannot be used to improve on Wiener’s result.

To improve on Wiener’s result we include the y-shifts into the calculation. For a given value of m
and ¢, the product of the elements on the diagonal of the submatrix corresponding to the y-shifts is:

dety _ etm(m+1)/2 . Xtm(m+1)/2 . Yt(m+1)(m+t+1)/2'
Plugging in the values of X and Y, we obtain:

. 2
det, = etm(m+1)(140)/2+t(m+1)(m+t+1)/4 _ e#tmﬁ—i—%-ﬁ-o(tmﬁ)‘



The determinant of the entire matrix is det(L) = det; - det, and its dimension is w = (m + 1)(m +
2)/2+t(m+1).

We intend to apply Fact 4.1 to the shortest vectors in the LLL-reduced basis of L. To do so, we
must ensure that the norm of by is less than ¢™//w. Combining this with Fact 3.2, we must solve for

the largest value of ¢ satisfying
det(L) < €™/,

where y = (w2®)"/2. Since the dimension w is only a function of § (but not of the public exponent e€), v
is a fixed constant, negligible compared to ¢™¥. Manipulating the expressions for the determinant and
the dimension to solve for § requires tedious arithmetic. We provide the exact solution in Appendix A.
Here, we carry out the computation ignoring low order terms. That is, we write

2

m
wo = 7+tm+0(m2),
det(L) = o"T"m+ hmi e rolm),

To satisfy det(L) < e™" we must have

5+45 5 3+26, 5, mt? 1 4 )
Tm-l— 1 tm +T<§m +tm”~.

This leads to
m?(—1 +46) — 3tm(1 — 20) + 3t2 < 0

m(1—26)

For every m the left hand side is minimized at ¢ = —=—. Plugging this value in leads to:

m? | -1+ 40 — 2(1 —26)% + 2(1 —20)%| <0,

implying —7 + 285 — 126 < 0. Hence,

7 1
§ < = — =\/T~0.284.
<q S\f

Hence, for large enough m, whenever d < N%2%4~¢ for any fixed ¢ > 0 we can find a bivariate
polynomial ¢g; € Z[z,y] such that g1 (zg,yo) = 0 over the integers. Unfortunately, this is not enough.
To obtain another relation, we use Fact 3.3 to bound the norm of b3. Observe that since the original
basis for L is a triangular matrix, v’ is simply the smallest element on the diagonal. This turns out
to be the element in the last row of the z-shifts, namely, v, = X™Y™, which is certainly greater
than 1. Hence, Fact 3.3 applies. Combining Fact 4.1 and Fact 3.3 we see that by will yield an additional
polynomial gy satisfying go(zo,yo) = 0 if

det(L) < e™w=1) /o
where 7' = (w2w)wT_1 For large enough m, this inequality is guaranteed to hold, since the mod-
ifications only effect low order terms. Hence, we obtain another polynomial go € Z[z,y] linearly
independent of ¢g; such that g2(zg,y0) = 0 over the integers. We can now attempt to solve for yy by
computing the resultant h(y) = Res;(g1,92). Then yy must be a root of h(y). The roots of h(y) are
easily determined, and one such root will expose yy = p—‘gq, allowing us to find the factorization of V.



Although the polynomials g1, g are linearly independent, they may not be algebraically indepen-
dent; they might have a common factor. Indeed, in the general case we cannot guarantee that the
resultant h(x) is not identically zero. Consequently, we cannot claim our result as a theorem. At the
moment it is a heuristic. Our experiments show it is a very good heuristic, as discussed in Section 8.
We could not find a single example where the algorithm fails. The reason the algorithm works so well
is that in our lattice, short vectors produced by LLL appear to behave as independent vectors.

Remark 2. The reader may be wondering why we construct the lattice L using z-shifts and y-shifts
of f, but do not explicitly use mixed shifts of the form z'y’ f¥. The reason is that all mixed shifts of f
over the monomials used in L are already included in the lattice. That is, any polynomial z'y/ f¥em—*
can be expressed as an integer linear combination of x-shifts and y-shifts. To see this, observe that
for any i, 7, we have

7 u Jj—i 1
SR S SUNETEES 3 SIS
u=0 v=0 u=1v=0
for some integer constants b, , and c,,. Note that when j <4 the second summation is vacuous and
hence zero. It now follows that

7 u Jj—t i
i, 7 £k_m—k __ v, u—v pv+k _m—v—k v, u pvt+k _m—v—k __
z'yl ffe = E E by e’z f e + E E cupe’y  f e =

u=0 v=0 u=1v=0
7 u J—tr 1
v v
= E § bu,ve “Ju-—vptk T § E Cupw€ * hu,v+k
u=0 v=0 u=1v=0

Consequently, ziy? f¥e™* is already included in the lattice.

5 Improved Determinant Bounds

The results of the last section show that the small inverse problem can be solved when § < 0.284. The
bound is derived from the determinant of the lattice L, which gives an upper bound on the lengths of
the shortest vectors of the lattice. In this section, we improve the bounds on the lengths of the shortest
vectors of L, and show that these improved bounds imply the attack is effective for all d < N9-292,

We begin with a brief discussion of how we may improve the bounds on the shortest vectors. In
the last section, we compute the determinant of a matrix M built from the coefficients vectors of
shifts and powers of f. Since M is triangular, this is just the product of the entries on the diagonal,
carefully balanced so that this product is less than e™*. Once § > 0.284 the approach no longer works,
as this product exceeds e for every m. But if some of the larger, “damaging” terms of this product
were removed, we might be able to afford greater values of . Intuitively, this suggests that we should
“throw away” rows of M with large contributions to the diagonal. Unfortunately, the resulting lattice
is not full rank, and computing its determinant is not so easy. What we will show is that a judicious
choice of rows to eliminate results in lattice for which there is an improved bound on the determinant,
leading to a successful attack for all 6 < 0.292. Specifically, we show that as long as ¢ < 0.292, there
is a rank w’ < w sublattice L' of L that satisfies the desired determinant bound of ¢”*’. This results
in better bounds on the length of the shortest vectors of L' (and hence of L). Most of this section
is devoted to developing the necessary tools for bounding the determinant of non-full rank lattices.
These results may be of independent interest.



We use the following approach. First, we introduce the notion of geometrically progressive matrices,
and state the main theorem to be used to bound the determinant of a submatrix of any geometrically
progressive matrix. A proof of this theorem is given in Appendix B. Second, we show that the portion
of the matrix M developed in Section 4 corresponding to the y-shifts is geometrically progressive,
yielding desirable bounds on the rectangular matrix formed from selected rows of M. Third, we
review the new determinant computation and conclude that the attack outlined in Section 4 works for
all d < N0-292,

Geometrically Progressive Matrices

Recall the lattice L defined from the coefficients vectors of shifts and powers of the bivariate polynomial
f(z,y). Of particular interest is the inclusion of the y-shifts hy ¢(2X,yY’), which lead to a result
improving on Wiener’s bound. We begin by noting that there is a natural organization of these rows
corresponding to y-shifts into “blocks” hy 1,...,hy for K =0,...,m, and that a similar organization
is induced on the corresponding columns (that is, those columns that are zero in every row induced
by an z-shift). To keep the results of this section general, we work with generic matrices in which the
rows and columns have been divided into ¢ 41 blocks of size b. Specifically, let a,b be positive integers
and let M be an (a+1)b x (a4 1)b matrix. We index the columns by pairs (4,7), withi =0,...,a and
j =1,...,b, so that the pair (¢,5) corresponds to the (bi + j)th column of M. Similarly, we use the
pair (k,¢) to index the (bk + £)th row of M, for k =0,...,a and £ =1,...,b. The entry in the (7, j)th
column of the (k,¢)th row is denoted M (i, j, k,¢). Note that the diagonal entries of M are precisely
those of the form M (k, ¢, k,?).

Definition 5.1 Let C, D, cy,c1, 2, 3,4, 0 be real numbers with C, D, 3 > 1. A matriz M is said to
be geometrically progressive with parameters (C, D, ¢y, c1, co, c3, ¢4, B) if the following conditions
hold for all i, k=0,...,a and j, £ =1,...,b:

(i) |M(i,4,k,0)| < C - Deoteriteajteshteal
(i) M(k,¢,k,¢) = Deoterktcal+czkteal
(iii) M (i,4,k,2) =0 whenever i >k or j > /.
(iv) Ber +e¢3 >0 and Beg + ¢4 > 0.

When the parameters C,D,cy,c1,ca,c3,c4,0 are understood we say simply that M is geometrically
progressive.

The following theorem bounds the determinant of a geometrically progressive matrix from which
some rows are removed. A proof is given in Appendix B.

Theorem 5.1 Let M be an (a + 1)b x (a + 1)b geometrically progressive matriz with parameters (C,
D, ¢y, c1, 2, c3, ¢4, (), and let B be a real number. Define

Sp:={(k,0) € {0,...,a} x{1,...,b} | M(k,¢,k,¢) < B},
and set w := |Sp|. If L is the lattice defined by the rows (k,f) € Sp of M, then

det(L) < ((a+ 1)b)*2(1+ )" ] Mk, 6k, 0).
(kyZ)ESB



The basic idea is that when we remove rows with large entries on the diagonal, the resulting subma-
trix yields a sublattice with a determinant close to what is expected, to within a certain multiplicative
erTor.

A Geometrically Progressive Submatrix

Recall the procedure outlined in Section 4 for creating the lattice L. We define the polynomials

m—k

and  heg(z,y) = y' fF (2, y)emF,

gi,k?(xJ y) = I‘ka(.’L‘, y)em_k
and form a lattice from the coeflicients vectors of every g; (¢ X, yY) and hy (2 X,yY ), for k =0,...,m,
1=0,....m—k,and £=1,... ¢

We denote by M, the portion of the matrix M with rows corresponding to the y-shifts hy; and
columns corresponding to variables of the form 2"y", v > u. Specifically, M is the (m+ 1)t x (m+ 1)t
lower-right-hand submatrix of the matrix M presented in Section 4. We make the following claim
about the entries of M,.

Lemma 5.2 For all positive integers m,t, the matriz M, is geometrically progressive with parameters
(m*™, e, m, %4—6, —%, -1, 1, 2).

Proof  For simplicity, we take e = N¢ with a = 1. Let (k,£) be given with £ = 0,...,m and
¢=1,...,t. The row (k,#) of M, corresponds to the y-shift h;(2X,yY ). Observe

k U
hep(@X,yY) = "y Y R X, yY) = 303 ety

u=0 v=0
where
Cu = (5) (:) (—1)k—uem—k gu=v xuyvie
The column (i,j) for i = 0,...,m and j = 1,...,t corresponds to the coefficient of z'y**/ in

hek(zX,yY"), which by the above is

- k i k—i_m—k gb—j yivitj
My(27]7k7£) = Ciitj—t = (’L> (Z‘i‘j_g) (_1) e ATI XY

It is easy to see that the above quantity equals 0 whenever ¢ > k or j > £, satisfying condition (iii).
Writing X =, Y = e? and knowing A < e, we see

lMy(i,j,k,eﬂs‘(’?)( Z )(—1)’”em“%+5)"%f’“”

ot < m2m . emt(5H8)i—g—k+l
1 i+g5—4 -

satisfying condition (i). Furthermore, a routine calculation confirms
L 1
My(ka Lk, Z) = €m+(§+6)k—§l—k+g’

satisfying condition (ii). Lastly, observe 2-(3+6)+(—1) =20 > 0 and 2-—3+1 > 0, so condition (iv)
is met. Hence, M, is geometrically progressive with parameters (m?™, e, m, % + 4, —%, -1,1,2). =m

Remark 3. When « < 1 we find that M, is geometrically progressive with parameters (m?™, e, m,

% + %, % —1, —1, 1, 2a). For o > 1, we have that M, is geometrically progressive with parameters
((2m)?™, e, m, % + g, —i, -1, é, 2a). The proofs of these statements follow as above, with the

slight modification in the latter case where we use A < 2e!/® instead of A < e.



Bounding the Determinant of the New Lattice

We now have the tools necessary to find improved bounds on the short vectors of L. Namely, we now
would like to show that for all d < N"2%2) LLL finds short vectors in M that give rise to polynomials
g1(z,y) and go(x,y) such that g;(zo,yo) = 0 and g2(zo, yo) = 0 holds over the integers.

We begin by setting the parameter ¢ := (1 — 26)k. Note that this means our lattice will include
twice as many y-shifts as used in Section 4, which, as we shall see, is the reason for the improved
results. Define M; as follows: Take every row g; ; of M corresponding to the z-shifts, and take only
those rows hyy of M whose entry on the diagonal is less than or equal to €. That is, we throw
away those rows hyj where the the last entry exceeds e™. Clearly, the lattice L; described by M is
a sublattice of L, so short vectors in L; will be in L.

Since all z-shifts are present in M;, we may perform Gaussian elimination to set the first (m +
1)(m + 2)/2 off-diagonal columns of every row to zero. Specifically, there is a unitary matrix A over
R such that M, := AM, is a matrix of the following form:

1 x xy e xmym y y2 .. yt | e | Imym+1 e xmym+t

x-shifts A 0

selected y-shifts 0 M,

where A is a diagonal matrix and M; consists of selected rows of M. Furthermore, since A is unitary,
the determinant of the lattice Lo described by M, is equal to det(L;).

We would like to obtain a good bound on det(Ls). Since the z-shifts and selected y-shifts portions
of the lattice Ly are orthogonal, it is sufficient to bound the determinant of each separately. Let w' be
the number of rows of M, and let Lj be the lattice induced by M,. The determinant of the lattice
Ly is det(Lz) = det(A) - det(L} ), and its dimension is w = (m + 1)(m + 2)/2 + w’. We aim to show
det(Ly) < €™/ where 7 = (w2¥)¥/2. As we shall see, the dimension w is only a function of § (but
not of e), so v is only a fixed constant, negligible compared to ™"

We begin by computing w’. Let S C {0,...,m} x {1,...,t} be the subset of indices such that
My(k, 0, k,£) < e™ for (k,£) € S, so that w' = |S|. Since (k,¢) € S only if

1 1
em+(5— 5)k+5¢ < M

we know ¢ < (1 — 2d)k. Since we have taken ¢ = (1 — 2d)m, we know every every pair (k,¢) satisfies
< (1—=20)k <t s0l<(1—20)k ifand only if (k,¢) € S. Thus
m m 1
w' =S| =Y [(1=28)k] > [(1 - 26)k —1]:(5—5)m2+0(m2),
k=0 k=0
implying
w=w'+ (m+1)(m+2)/2 = (1 — §)m?* + o(m?).

Now we bound det(Lj ). Since this lattice is defined by the rows (k,¢) € S of My, by Theorem 5.1
we have

det(L)) < [(m+1)(1 —28)m]"/* (1 +m*™) " T My(k, 0,k ¢)
(kL)eS
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m |(1—20)k]
< [(m+1)(1 = 20)m]”/? (1 + m?>™)@)’ IT II o (0= 5)k+ 5
k=0 (=0
2

< [(m+1)(1 - 28)m]" 7 (1 + m2m) @)

Note that [(m +1)(1 — 2(5)771]“”/2 (1 + m2m)(®)* js a function of only § (but not of e), and thus is
negligible compared to em’. Finally, recall from Section 4 that

det(A) = det,, = ™mHNm+2)/3 | xm(m+1)(m+2)/3 ym(mt1)(m+2)/6 (12 +5)m® +o(m®)

Thus, we need the bound

det(L1) = det(A) det(L;) < e(%ﬁ-%)m»”»-i—(%—?—%)m +o(m?) < M — (1=0)m —|—o(m3)7

which leads to
1 26 62

_L 20 07 3 3
( 6+3 3>m +o(m”) <0,

implying 202 — 46 + 1 > 0. Hence, we need

V2

0<1—— =0.292.
< 2

Thus, when ¢ < 0.292, for sufficiently large m we have det(L;) < '™, implying the norm A; of
the shortest vector of L; satisfies A\ < 7’¢™. Then the b; found by LLL in L satisfies by < yv'e™,
where vy depends only on § and is thus negligible compared to ™. This vector b; yields a polynomial
g1(z,y) such that g1 (zo,yo) holds over the integers.

Let M{ be the result of applying the Gram-Schmidt orthogonalization process to M;. It is easy
to see that the length of a vector in the z-shifts portion of M7 is simply the corresponding entry on
the diagonal of M, and the length of a vector in the y-shifts portion of M* is bounded from below by
the corresponding entry on the diagonal of Mi. S0 .., is simply XY™ which is certainly greater
than 1. So as in Section 4, a similar bound on bs can be established, yielding two linearly independent
relations g1 (xg,yo) = 0 and g2(xp,yo) = 0 which hold over the integers.

6 Cryptanalysis of Arbitrary e

In his paper, Wiener suggests using large values of e when the exponent d is small. This can be done
by adding multiples of ¢(N) to e before making it known as the public key. When e > N1, Wiener’s
attack will fail even when d is small. We show that our attack applies even when e > N is used.

As described in Section 2, we solve the small inverse problem:
k(A+s)=1 (mode) where |k < 2¢1*°a" and |s| < 2et/%,

for arbitrary values of «. We build the exact same lattice used in Section 4. Working through the
calculations one sees that the determinant of the lattice in question is

dety (L) = % @ati—3)to(m?)
dety(L) _ e%(2a+6—%)+"‘7’52%+o(tm2)_

11



The dimension is as before. Therefore, to apply Fact 4.1 we must have

m3 3 tm? 1 mt? 1 m3
—(2 o—— —(2 0 — — — < — 4+ tm?
P Vi vl G Vi o ML
which leads to

m? (20 + 46 — 3) — 3tm(1 — 26) + 3t> < 0.

As before, the left hand side is minimized at ., = %m(l — 20), which leads to
1
m?[20 + 76 — Z5 —36% <0,
and hence "
<Ly eas
<35 3( + 6a)

Indeed, for « = 1, we obtain the results of Section 4. The expression shows that when a < 1 our
attack becomes even stronger. For instance, if e ~ N2/3 then RSA is insecure whenever d < N° for

0 < % — ? ~ 0.422. Note that if e ~ N2/3 then d must satisfy d > N1/3.

When a = % the bound implies that 6 = 0. Consequently, the attack becomes totally ineffective
whenever ¢ > N!87 This is an improvement over Wiener’s attack, which becomes ineffective as soon
as e > N5,

7 Cryptanalysis of Unbalanced RSA

In this section we study the case when the difference between the primes p and ¢ is large. Suppose
p < N8 and p < ¢ (and therefore 8 < 1/2). For simplicity, we again assume that e = N® with a ~ 1.

Unfortunately, we cannot follow the approach of Section 4 directly, for the following reason. In
this case, the small inverse problem now becomes: given a polynomial f(z,y) = z(4 +y) — 1, find
(x0,yo) satisfying

f(zo,50) =0 (mod e) where |zo] <€’ and |yo| < ',

Since only a weaker bound of e!=# is known on the solution yy = p + ¢, using the previous approach
requires a stronger bound on zg, and therefore §. In fact, a routine calculation shows that once
[ < 1/4, this approach produces no results even for § close to zero.

Therefore, a modified approach is needed. Returning to the RSA equation, recall equation (1):

N+1 p+gq
d+k|——— | =
ea + < 7 2 )

Writing A = N + 1, we know:

E(A—p—¢q)=2 (mod e).
As before, we know the bound
2de §—1
k| < —— < 3de/N < 3e'ta ~ ¢,

we now have |p| < N? and |q| < N'=7P.
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We now have an equation with three unknowns, k, p, ¢, the product of two of which is known. We
may view this problem as follows: given a polynomial f(z,y,2) = z(A +y + 2) — 2, find (20, Yo, 20)
satisfying:

f(z0,90,20) =0 (mod e) where |zg| <€, |yo| <€”, |z| <e'™P, and yozo = N.

We now follow an approach similar to the one used in Section 4. It is easy to prove a variant of
Fact 4.1 for three variables, and as before, we wish to find a polynomial with small norm that has
(x0,Y0,20) as a root. Given an integer m we define the polynomials

° g’i,k(x7y7 Z) = xifk(nyJz)em_k

)
4 hj,k(nyJz) = yjfk(nyJz)em_k7 and

o W@y, 2) == 2 fR (g, 2)em

taking care to substitute N for all occurrences of the product yz. We refer to the g;; as the z-
shifts, the h; as the y-shifts, and the hj . as the z-shifts. We are interested in finding a low-norm
integer combination of the polynomials giyky(a;X, yY,2Z), hjr(zX,yY,2Z), and hy , (v X,yY, 2Z), where
X =N% Y = NP and Z = N'# are bounds on the respective variables. Again, we build a lattice
from the coefficients vectors of the polynomials forallk = 0,...,m; weuse: =0,...,m—k, j =0,...,t,
and £ = 0,...,u, for some ¢ and u to be optimized later. We use LLL to find short vectors in this
lattice, giving rise to two polynomials G1(x,y, z) and Ga(x,y, z) that share (zg,yo, 20) as a root over
the integers. Plugging in z = N/y, we reduce these to the bivariate equations Hi(z,y) and Hy(z,y)
and take resultants to reveal yy = p.

One additional optimization can be made. We modify the polynomials above, instead using
Y9k X, yY,22), yhjr(xX,yY,27Z), and ychfq,k(acX, yY,zZ), for some ¢ which can also be opti-
mized. We refer to this as the overall shift. Now in order to use Fact 4.1 we require the resulting short
vector to be less than the weaker bound of p©e™. This technique is most useful when ¢ is much larger
than p, since it eliminates occurrences of the variable z.

The optimization problem for ¢, u, and c¢ is straightforward but tedious. Once the optimal overall
shift and the optimal number of y- and z-shifts for a given  are found, the determinant of the resulting
lattice will be small enough to use Facts 3.2 and 4.1 provided ¢ is sufficiently small. Below is a listing
of values of ¢ for which we can launch a successful attack. Here we assume p < N? and d < N°.

3 5
1/2 02847
1/3  0.3183
1/4  0.3647
1/6  0.4412
1/10  0.5391
1/50  0.7750

1/100  0.8387
1/1000  0.9483

In these experiments, we did not take into account the optimizations suggested in Section 5. Therefore,
further improvements may be possible.

It is interesting that low private key attacks become more effective for more unbalanced RSA
moduli. Unbalanced moduli are used in RSA for paranoids introduced by Shamir [11].
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8 Experiments

We ran several dozen experiments to test our results when d > N2, Our experiments were carried out
using the LLL implementation available in Victor Shoup’s NTL package [12]. In all our experiments
LLL produced two independent relations ¢;(z,y) and go(z,y). In every case, the resultant h(y) :=
Res:(g1(z,v), 92(z,y)) with respect to x was a polynomial of the form h(y) = (y + p + ¢)h1(y), with
hi(y) irreducible over Z (similarly for ). Hence, the unique solution (xg, yo) was correctly determined
in every trial executed. Below we show the parameters of some attacks executed. All experiments use
the lattice described in Section 5.

Advantage over

n d 0 m t rank of lattice running time Wiener’s attack
1000 bits 280 bits 0.280 7 3 45 14 hours 30 bits
2000 bits 550 bits  0.275 7 3 45 65 hours 50 bits
4000 bits 1060 bits 0.265 5 2 25 14 hours 60 bits
10000 bits 2550 bits 0.255 3 1 11 90 minutes 50 bits

These tests were performed under Solaris running on a 500MHz Intel Pentium 111 processor. In each of
these tests, d was chosen uniformly at random in the range [%N O N ‘5] (thus guaranteeing the condition
d > N°25). Prior to these results it was not possible to break RSA for such large d.

9 Conclusions and Open Problems

Our results show that Wiener’s bound on low private exponent RSA is not tight. In particular, we
were able to improve the bound firstly from d < N%% to d < N%?47. Using an improved analysis
of the determinant, we obtained d < N%%%2. Our results also improve Wiener’s attack when large
values of e are used. We showed that our attack becomes ineffective only once e > N'¥75_ In contrast,
Wiener’s attack became ineffective as soon as e > N1,

Unfortunately, we cannot state our attack as a theorem since we cannot prove that it always
succeeds. However, experiments that we carried out demonstrate its effectiveness. We were not able
to find a single example where the attack fails. This is similar to the situation with many factoring
algorithms, where one cannot prove that they work; instead one gives strong heuristic arguments that
explain their running time. In our case, the heuristic “assumption” we make is that the two shortest
vectors in an LLL reduced basis give rise to algebraically independent polynomials. Our experiments
confirm this assumption. We note that a similar assumption is used in the work of Bleichenbacher [1]
and Jutla [7].

Our work raises two natural open problems. The first is to make our attack rigorous. More
importantly, our work is an application of Coppersmith’s techniques to bivariate modular polynomials.
It is becoming increasingly important to rigorously prove that these techniques can be applied to some
bivariate polynomials.

_1
The second open problem is to improve our bounds. A bound of d < N =% cannot be the final
answer. It is too unnatural. We believe the correct bound is d < N'/2. We hope our approach
eventually will lead to a proof of this stronger bound.

To conclude, we note that Wiener suggested a defense against the low private exponent attack
based on the Chinese Remainder Theorem (CRT). When N = pq the idea is to use a private key d
such that both d, = d mod (p — 1) and dy = d mod (¢ — 1) are small. Such d speed up RSA signature
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generation since RSA signatures are often generated modulo p and ¢ separately and then combined
using the CRT. Since d), # d, the value of d is likely to be large, namely close to ¢(IN). Consequently,
our low exponent attack does not apply to such d. It is an open problem whether there is an efficient
attack on such private keys. The best known attack runs in time min(\/dp, \/dy ).
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A Appendix A: Precise Calculation of the Determinant

We give the exact expressions evaluating to the determinant of the lattice described in Section 4. We
know

det, = em(m+1)(m+2)(5+46)/12

dety _ etm(m+1)(1+5)/2+t(m+1)(m+t+1)/4

The determinant of the entire lattice is det, -det, and its dimension is w = (m+1)(m+2)/2+t(m+1).
To satisfy det(L) = det, - det, < e we must have

4 1 1 1 1 2
m(m+1)(m+2)¥+tm(m+l) ;—5+t(m+ )(ZH_t_l— )<m(m—|—2)(m+ )-I-tm(m-l—l)

Which leads to
m(m + 2)(—1+40) + 3tm(—1+20) +3t(t+1) <0

m(1—26)—1

For every m the left hand side is minimized at ¢t = 5

. Plugging this value in leads to:
— (34 2m + Tm?) + 6(28m? + 20m) — 12m?3% < 0

implying
7 1 16 4 5

PPy S S
<6 3 +m+m2 6m

As was shown in Section 4, when m goes to infinity this values converges to

0 < ~ 0.2847

[SAREEN
“l%
\]

For a particular value of § < 0.2847 we must take m to be at least

_ 14100+ 2(=5 + 160 + 166%)1/2
7 — 285 + 1202

For example, when § = 0.27 we must take m > 10 leading to a lattice of dimension 86. This explicit
bound can be improved using the techniques of Section 5. In fact, the experiments described in
Section 8 show that a lattice of dimension 45 is sufficient for ¢ = 0.275.

B Appendix B: Proof of Theorem 5.1

This Appendix provides a proof of Theorem 5.1.

We use the following approach. First we introduce the notion of diagonally dominant matrices,
and show that there is an easy bound on the determinant of any lattice formed from a subset of the
rows of a diagonally dominant matrix M. We then show that for certain submatrices of geometrically
progressive matrices there is a unitary transformation over R that puts the submatrix into a diagonally
dominant form, giving the desired determinant bounds. We then verify that these bounds yield the
conclusion of Theorem 5.1.
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Let M be an n X n triangular matrix with rows uj,...,u,. We write the jth component of w;
as u; ;. We say that M is diagonally dominant to within a factor C' when |u; ;| < C - |u;;| for all
1,7 =1,...,n. When the factor C' is understood, we say simply that M is diagonally dominant.

Let S be a subset of the row indices. We define M |g to be the |S|xn matrix whose rows are u;,7 € S.
We say that an arbitrary w x n matrix M is diagonally dominant when there is a S C {1,...,n} and
diagonally dominant matrix M such that M = M|g and |S| = w. We say that a lattice L is diagonally
dominant when there is a basis uy, . .., u, for L such that the matrix with rows uy, ..., u, is diagonally
dominant. Diagonally dominant lattices have determinants that are easy to bound, as shown in the
following fact.

Fact B.1 Let w < n be given and take S C {1,...,n} with |S| = w. If L is a lattice spanned by the
rows u;, 1 € S of a diagonally dominant matriz M, then

det(L) < n®/2C" H |w; i
ics

Proof Observe that since ||uf|| < ||u;|| we have:

det(L) = [T lluill < [T huill < T] vCluial = n20% [ T luiil- =

€S €S 1eS €S

Now let M be an (a4 1)bx (a+ 1)b geometrically progressive matrix. Observe that if for every row
(k,£) the bound Deoteritezjteskted for the column (i,4) is less than the bound Deoteikteatteskest
for the entry on the diagonal, then by conditions (i) and (ii) on geometrically progressive matrices we
have that M is diagonally dominant to within a factor C'. The columns of interest are those in which
this bound does not hold; to wit, we call a column index (¢, 7) bad when the following condition holds:

cotciritcaj+tesk+cal cotcik+cal+csk+cal
Deoter 2)+cC3 4t ~, peota 2 3 47

or equivalently, ¢;(k — i) + c2(¢ — j) < 0. It should be noted that the “badness” of a column is a
statement about the bound on the entry in the column, which is a function of the parameters of the
geometrically progressive matrix, not of the entry itself. Indeed, the actual entry M (i, 7, k,¢) of a bad
column (4,7) could be zero, leading us to the following observation.

Remark B1. Let M be a geometrically progressive matrix and S a subset of the rows. If M (i,7,k,¢) =0
for every bad column (7, j) of every row (k,£) € S, then M|g is diagonally dominant to within a factor
C. This is because for each (7, ) that is not bad in the row (k,£), we have

M(i,j,k,0) < C - Dotartertakial < g potaktetiabial - o.M (k, 0,k 0).

Remark B1 suggests that we should be looking for a submatrix M |s whose entries are zero in bad
columns. Although this is unlikely for any submatrix M|g of the matrix M developed in Section 4,
what we shall see is that there is a unitary transformation over R that eliminates entries at bad columns
in rows of M|g. Once the diagonal dominance of this transformed submatrix has been established,
Fact B.1 can then be employed to bound the determinant of the corresponding lattice.

Our goal now is to show that special submatrices of geometrically progressive matrices can be put
into a diagonally dominant form. Consider the following situation: suppose we take a subset S of
the rows of a geometrically progressive matrix M and wish to bound the determinant of the lattice
described by M|s. We wish to guarantee that there are “enough” rows included in S so that we may
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eliminate all nonzero entries at bad columns in rows of M|g. We prove this for certain natural subsets
S in Lemma B.2. We then use this guarantee to show that such an elimination procedure will be
successful; namely, we show that there is a unitary transformation U over R such that U - M|g is
diagonally dominant. This is shown in Lemma B.3, leading directly to a proof of Theorem 5.1.

Lemma B.2 Let M be an (a + 1)b x (a + 1)b geometrically progressive matriz with parameters (C,
D, ¢y, c1, c2, c3, ¢4, B), let B € R be a constant. Define

Sp = {(k,£) €{0,...,a} x {1,...,b} | M(k,£,k,¢) < B} .

For all (k,¢) € Sg and i < k,j < ¥, if column (i,7) is bad in row (k,£) then (i,7) € Sp.
Proof We begin by assuming that (7, ) is bad, so De1(k=)+e2(=3) < 1 and thus

DO-Derlk=i)+(3-Dexe—i) _ ( Dcl(k,i)+82(l,j)>(ﬂ S (3)

Seeking contradiction, we now assume (7,7) € Sp, that is, M(i,7,4,7) > B. It follows that
D(Cl+63)i+(c2+c4)j _ M(i,j,i,j) >B> M(k,f,k,f) _ D(Cl+C3)k+(C2+C4)Z‘

Hence
Dlertes)(k—i)+(catca)(0—5) < 1. (4)

Combining equations (3) and (4) yields

pBeites)(k—i)+(Beatea)(t—i) < 1 (5)

Note that ¢ < k and j < £ by the hypotheses of the theorem, and we are guaranteed B¢y + ¢35 > 0
and fco 4+ ¢4 > 0 since M is geometrically progressive. So (Bcy + ¢3)(k — i) + (Bea + ¢c4)(£ — 5) > 0.

Furthermore, D > 1, so
pBertes)(k—i)+(Beatea)(t=j) > pO — 1

contradicting equation (5). Hence, (i,7) € Sp as desired. ]

Lemma B.3 Let M be an (a + 1)b x (a + 1)b geometrically progressive matriz with parameters (C,
D, ¢y, c1, co, c3, ¢4, ), let B € R be a constant, define

Spi={(k,0) € {0,...,a} x {1,...,b} | M(k,£,k,£) < B},

and set w = |Sg|. There is a w X w unitary matriz U over R such that U - M|s, is diagonally
dominant to within a factor (1 + C)¥.

Proof  We proceed by induction. There are w rows in the matrix M|g,, and we build matrices U,
such that the last r rows of U, - M|s, are diagonally dominant! to within a factor (1 + C)¥, and the
first w — 7 rows identical to those in M|g,. The U we seek is Uy,.

Clearly, Uy = I trivially satisfies this condition. Now suppose we have a unitary matrix U,_; over
R such that the last  —1 rows of U,_; - M|g, are diagonally dominant to within a factor (1+C)" and
the first w—r rows are identical to those of M|g,. We would like to find U, that satisfies this condition
for the last r rows, and we do this by finding a unitary matrix V over R such that U, :=V - U,_;
satisfies this condition. Roughly speaking, the purpose of V' is to “clean up” row (w —r +1) of M|g,;

'To say that the last r rows of a w x n matrix M are diagonally dominant means simply that M|(w_r+1) _____ w 18
diagonally dominant.
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that is, it guarantees that (1 + C)" times the last column of row (w — r + 1) dominates all other
columns of row (w —7r+1)in V-U,_1 - M|s,.

Since Mg, is formed from rows of M, we may choose a pair (k,£) such that row (w —r + 1) of
M]|s, is the (k,¢)th row of M. By Lemma B.2, for every bad column (z, j) satisfying ¢ < k and j < ¢,
the corresponding row (i, 7) is in Sp. So there are at most w — 1 bad columns with nonzero entries in
the row (clearly, (k,#) is not bad.)

We build V in stages by constructing elementary row operations Vi,...,V,,_1 and letting V' :=
Vw—1-Vw—_2---Vi. BEach V, sets another bad column (s, j5) in the row to 0, so that the (w —r + 1)th
row of Vg---Vi - U,_1 - M|s, has nonzero entries in at most w — s — 1 bad columns. We show that
each Vy increases every column of the row by at most a factor of (1 + C).

Define

o8 .= (V- V1 -Up_y - M|SB)|{w7T+1},

that is, v(*) is the (w + r — 1)th row of Vy--- Vi - U, 1 - M|s,. We denote the entry in the (i,5)th
column of v(*) as v(*)(i, j). We maintain the following three invariants for s = 1,...,w — 1:

(1) [0®)(i,5)] < (1+C)*C - Deotaitenteskted for all columns (i, j);
(ii) i > k or j > ¢ implies v(¥)(i, j) = 0; and,
(iii) the number of bad columns with nonzero entries in v(*) is at most w — s — 1.

These conditions are satisfied trivially for s = 0, since v(%) is identical to row (k,2) of the geo-
metrically progressive matrix M. Now suppose that every column (4, 7) of v(*~1) satisfies these three
conditions. If there are no nonzero entries of v(*=1) at bad columns, we are done, and may take
Viy ...y Vip—1 := I. Otherwise, let (is,j5) be the rightmost bad column such that v~ (i,, j,) # 0.
Since v~V (iy, 7,) # 0, we know by the inductive hypothesis that iy < k and j, < ¢. Since (i, js)

is also bad, we know that (is,75) € Sp. So we may pick a t such that row (is,js) of M is row ¢ of
. (s=1) (4.4 .

M|s,. Define Vy to be the elementary row operation that subtracts A%T(l;];)) times row t from row

(w —r +1). Observe for every column (i, ),

s—1)

v D (is, 5s)
M(i57j57i57j5)
S (1 4+ C)s—lc . Dco+cli+czj+C3k+C4l

(1+ C)s—lc . Deoteristeajstceaktcal

’ M(iajuisujs)

v, 5)| <

oD, g)| +

.C - D00+cli+Czj+C3is+C4jsé
Decoteristcajstcaistcags
o (1 + C)sC . D00+Cli+02j+c3k+c4e'

So condition (i) is met.
Now let (i, ) be given with either i > k or j > £. Since v*=1 (i, j,) # 0, we know by condition (ii)

of the inductive hypothesis that ;s < k and j; < £. So either ¢ > k > 45 or § > £ > j,, implying

M(i, j,is,55) = 0. Thus

o0 (s, js)

v(s’(i,j)=v(s‘”i,j—M(z‘ Teriess)

' M(i7j7i57j5) =0-0=0,
satisfying condition (ii).
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We now claim that the number of bad columns with nonzero entries in v(*) is at most w — s — 1.
Clearly, v(®) (i, j5) = 0, and columns to the right of (i, j5) are unchanged from v*~1. Since (i, j5)
was chosen to be the rightmost nonzero bad column of v~ this implies that no nonzero column in
v to the right of (is,Js) is bad. But since this is the sth elimination step, there are at least s — 1
bad columns (%, j) to the right of (is, js) satisfying i < k and j < £. Thus, the number of bad columns
with nonzero entries in v(%) is at most w — s — 1, satisfying condition (iii).

Thus, v(* 1) has a zero in every bad column, so
v (6, 5) < (14 C)v e - Dettedtektal < (14 C)Y - M (k, £, k, €)

for all columns (4,7). Setting V := V,_1---V; and U, := V - U,_1, we have that the last r rows of
Uy - M|g, are diagonally dominant to within a factor (14 C)". Finally, taking U := U,, completes the
result. [

We are now ready to complete the proof of Theorem 5.1.

Proof of Theorem 5.1 By Lemma B.3 we have a w x w unitary matrix U over R such that U-M]|s,
is diagonally dominant to within a factor (1 + C)¥. Since U is unitary over R, the lattice L' induced
by the rows of U - M|g, has the same determinant as the lattice L induced by the rows of M]|g,,, so
by Fact B.1 yielding the desired bound

det(L) = det(L') < ((a+ 1)b)*2(1+ )" [ Mk 2k, 0). -
(k,£)ESB
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