
Cryptanalysis of RSA with Private Key d Less Than N 0:292Dan Boneh� Glenn Durfeeydabo@cs.stanford.edu gdurf@cs.stanford.eduAbstractWe show that if the private exponent d used in the RSA public-key cryptosystem is less thanN0:292 then the system is insecure. This is the �rst improvement over an old result of Wienershowing that when d is less than N0:25 the RSA system is insecure. We hope our approach can beused to eventually improve the bound to d less than N0:5.Keywords: RSA, low-exponent RSA, Cryptanalysis, lattice basis reduction, LLL.1 IntroductionTo speed up RSA signature generation one is tempted to use a small private exponent d. Unfortunately,Wiener [14] showed over ten years ago that if one uses d < N0:25 then the RSA system can be broken.Since then there have been no improvements to this bound. Verheul and Tilborg [13] showed thatas long as d < N0:5 it is possible to expose d in less time than an exhaustive search; however, theiralgorithm requires exponential time as soon as d > N0:25.In this paper we give the �rst substantial improvement to Wiener's result. We show that as longas d < N0:292 one can eÆciently break the system. In particular, when d < N0:292 an attacker canrecover the private RSA key given the public key. We hope our approach will eventually lead to whatwe believe is the correct bound, namely d < N0:5. Our results are based on the seminal work ofCoppersmith [3].Wiener describes a number of clever techniques for avoiding his attack while still providing fastRSA signature generation. One such suggestion is to use a large value of e. Indeed, Wiener's attackprovides no information as soon as e > N1:5. In contrast, our approach is e�ective as long as e < N1:875.Consequently, larger values of e must be used to defeat the attack. We discuss this variant in Section 6.2 Overview of Our ApproachRecall that an RSA public key is a pair of integers hN; ei where N = pq is the product of two n-bitprimes. For simplicity, we assume gcd(p � 1; q � 1) = 2. The corresponding private key is an integerd satisfying e � d � 1 mod �(N)2 where �(N) = N � p� q+1. Note that both e and d are typically less�Supported by NSF CCR-9732754.ySupported by Certicom and an NSF Graduate Research Fellowship.0An earlier version of this paper appeared in Eurocrypt '99 [2].
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than �(N). It follows that there exists an integer k such thated+ k�N + 12 � p+ q2 � = 1: (1)Writing s = �p+q2 and A = N+12 , we know:k(A+ s) � 1 (mod e):Throughout the paper we write e = N� for some �. Typically, e is of the same order of magnitudeas N (e.g. e > N=10) and therefore � is very close to 1. As we shall see, when � is much smaller than1 our results become even stronger.Suppose the private exponent d satis�es d < N Æ. Wiener's results show that when Æ < 0:25 thevalue of d can be eÆciently found given e and N . Our goal is to show that the same holds for largervalues of Æ. By equation (1) we know thatjkj < 2de�(N) � 3de=N < 3e1+ Æ�1� :Similarly, since both p and q are less than 2pN we know thatjsj < 2N0:5 = 2e1=(2�):To summarize, taking � � 1 (which is the common case) and ignoring small constants, we end upwith the following problem: �nd integers k and s satisfyingk(A+ s) � 1 (mod e) where jsj < e0:5 and jkj < eÆ: (2)The problem can be viewed as follows: given an integer A, �nd an element \close" to A whose inversemodulo e is \small". We refer to this as the small inverse problem. Clearly, if for a given value of Æ < 0:5one can eÆciently list all the solutions to the small inverse problem, then RSA with private exponentsmaller than N Æ is insecure (simply observe that given s modulo e one can factor N immediately, sincee > s). Currently we can solve the small inverse problem whenever Æ < 1� 12p2 � 0:292.Remark 1. A simple heuristic argument shows that for any � > 0, if k is bounded by e0:5�� (i.e.Æ < 0:5) then the small inverse problem (equation (2)) is very likely to have a unique solution. Theunique solution enables one to break RSA. Therefore, the problem encodes enough information tosuggest that RSA with d < N0:5 is insecure. For d > N0:5 we have that k > N0:5, so the small inverseproblem will no longer have a unique solution. Therefore, we believe this approach can be used toshow that d < N0:5 is insecure, but gives no results for d > N0:5.The next section gives a brief introduction to lattices over Zn. A �rst pass at a solution to thesmall inverse problem when � is close to 1 is given in Section 4. In Section 5, we improve this approachand prove the main result of the paper. Section 6 provides a solution for arbitrary �. In Section 7,we discuss a variant of our attack which works for unbalanced RSA moduli. These are moduli N = pqwhere p is much larger than q. Finally, Section 8 describes experimental results with the attackalgorithm.
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3 PreliminariesLet u1; : : : ; uw 2 Zn be linearly independent vectors with w � n. A lattice L spanned by hu1; : : : ; uwi isthe set of all integer linear combinations of u1; : : : ; uw. We say that the lattice is full rank if w = n. Westate a few basic results about lattices and lattice basis reduction and refer to [9] for an introduction.Lattice basis reductions are frequently used in the cryptanalysis of public key systems [6].Let L be a lattice spanned by hu1; : : : ; uwi. We denote by u�1; : : : ; u�w the vectors obtained byapplying the Gram-Schmidt process to the vectors u1; : : : ; uw. We de�ne the determinant of thelattice L as det(L) := wYi=1 ku�i k;where k:k denotes the Euclidean norm on vectors. If L is a full rank lattice then the determinant ofL is equal to the determinant of the w � w matrix whose rows are the basis vectors u1; : : : ; uw.Fact 3.1 (LLL) Let L be a lattice spanned by hu1, : : :, uwi. The LLL algorithm, given hu1, : : :, uwi,runs in polynomial time and produces a new basis hb1; : : : ; bwi of L satisfying:1. kb�i k2 � 2kb�i+1k2 for all 1 � i < w.2. For all i, if bi = b�i +Pi�1j=1 �jb�j then j�j j � 12 for all j.We note that an LLL-reduced basis satis�es some stronger properties, but those are not relevantto our discussion.Fact 3.2 Let L be a lattice and b1; : : : bw be an LLL-reduced basis of L. Thenkb1k � 2w=2 det(L)1=w:Proof Since b1 = b�1 the bound immediately follows from:det(L) =Yi kb�i k � kb1kw2�w2=2:In the spirit of a recent result due to Jutla [7] we provide a bound on the norm of other vectors inan LLL reduced basis. For a basis hu1; : : : ; uwi of a lattice L, de�neu�min := miniku�i k:Fact 3.3 Let L be a lattice spanned by hu1; : : : ; uwi and let hb1; : : : bwi be the result of applying LLLto the given basis. Suppose u�min � 1. Thenkb2k � 2w2 det(L) 1w�1Proof It is well known that u�min is a lower bound on the length of the shortest vector in L.Consequently, kb1k � u�min. We obtaindet(L) =Yi kb�i k � kb�1k � kb�2kw�12�(w�1)2=2 � u�min � kb�2kw�12�(w�1)2=2:Hence, kb�2k � 2w�12 �det(L)u�min � 1w�1 � 2w�12 det(L) 1w�1 ;3



which leads tokb2k2 � kb�2k2 + 14kb1k2 � 2w�1 det(L) 2w�1 + 2w�2 det(L) 2w � 2w det(L) 2w�1 :Note that det(L) � 1 since u�min � 1. The bound now follows.Similar bounds can be derived for other bi's. For our purposes the bound on b2 is suÆcient.4 Solving the Small Inverse ProblemIn this section we focus on the case when e is of the same order of magnitude as N , i.e. if e = N� then� is close to 1. To simplify the exposition, in this section we simply take � = 1. In the next sectionwe give the general solution for arbitrary �. When � = 1 the small inverse problem is the following:given a polynomial f(x; y) = x(A+ y)� 1, �nd (x0; y0) satisfyingf(x0; y0) � 0 (mod e) where jx0j < eÆ and jy0j < e0:5:We show that the problem can be solved whenever Æ < 1 � 12p2 � 0:292. We begin by giving analgorithm that works when Æ < 76� 13p7 � 0:284. Our solution is based on a powerful technique due toCoppersmith [3], as presented by Howgrave-Graham [5]. We note that for this particular polynomialour results beat the generic bound given by Coppersmith. For simplicity, let X = eÆ and Y = e0:5.Given a polynomial h(x; y) = Pi;j ai;jxiyj, we de�ne kh(x; y)k2 := Pi;j ja2i;jj. The main tool weuse is stated in the following fact. The fact shows that if a polynomial h(x; y) has low norm then everysmall root of h(x; y) modulo a big modulus is also a root of h(x; y) over the integers.Fact 4.1 (HG98) Let h(x; y) 2 Z[x; y] be a polynomial which is a sum of at most w monomials.Suppose thata. h(x0; y0) = 0 mod em for some positive integer m where jx0j < X and jy0j < Y , andb. kh(xX; yY )k < em=pw.Then h(x0; y0) = 0 holds over the integers.Proof Observe thatjh(x0; y0)j = ���X ai;jxi0yj0��� = ����X ai;jXiY j �x0X �i �y0Y �j���� �� X����ai;jXiY j �x0X �i �y0Y �j���� �X��ai;jXiY j�� �� pwkh(xX; yY )k < em;but since h(x0; y0) � 0 modulo em we have that h(x0; y0) = 0.Fact 4.1 suggests that we should be looking for a polynomial with small norm that has (x0; y0) asa root modulo em. To do so, given a positive integer m we de�ne the polynomialsgi;k(x; y) := xifk(x; y)em�k and hj;k(x; y) := yjfk(x; y)em�k :We refer to the gi;k polynomials as x-shifts and the hj;k polynomials as y-shifts. Observe that (x0; y0)is a root of all these polynomials modulo em for k = 0; : : : ;m. We are interested in �nding a low-norm integer linear combination of the polynomials gi;k(xX; yY ) and hj;k(xX; yY ). To do so we form4



1 x xy x2 x2y x2y2 x3 x3y x3y2 x3y3 y xy2 x2y3 x3y4e3 e3xe3 e3Xfe2 { { e2XYx2e3 e3X2xfe2 { { e2X2Yf2e { { { { { eX2Y 2x3e3 e3X3x2fe2 { { e2X3Yxf2e { { { { { eX3Y 2f3 { { { { { { { { { X3Y 3ye3 e3Yyfe2 { { e2XY 2yf2e { { { { { eX2Y 3yf3 { { { { { { { { X3Y 4Figure 1: The matrix spanned by gi;k and hj;k for k = 0; : : : ; 3, i = 0; : : : ; 3� k, and j = 0; 1. The `{'symbols denote non-zero entries whose value we do not care about.a lattice spanned by the corresponding coeÆcient vectors. Our goal is to build a lattice that hassuÆciently small vectors and then use LLL to �nd them. By Fact 3.2 we must show that the latticespanned by the polynomials has a suÆciently small determinant.Given an integer m, we build a lattice L spanned by the coeÆcient vectors of the polynomials fork = 0; : : : ;m. For each k we use gi;k(xX; yY ) for i = 0; : : : ;m�k and use hj;k(xX; yY ) for j = 0; : : : ; tfor some parameter t that will be determined later. For example, when m = 3 and t = 1 the latticeis spanned by the rows of the matrix in Figure 1. Since the lattice is spanned by a lower triangularmatrix, its determinant is only a�ected by entries on the diagonal, which we give explicitly. Each\block" of rows corresponds to a certain power of x. The last block is the result of the y-shifts. In theexample in Figure 1, t = 1, so only linear shifts of y are given. As we shall see, the y-shifts are themain reason for our improved results.We now turn to calculating the determinant of the lattice L. A routine calculation shows that thedeterminant of the submatrix corresponding to all x shifts (i.e. ignoring the y-shifts by taking t = 0)is detx = em(m+1)(m+2)=3 �Xm(m+1)(m+2)=3 � Y m(m+1)(m+2)=6 :For example, when m = 3 the determinant of the submatrix excluding the bottom block is e20X20Y 10.Plugging in X = eÆ and Y = e0:5 we obtaindetx = em(m+1)(m+2)(5+4Æ)=12 = e 5+4Æ12 m3+o(m3):It is interesting to note that the dimension of the submatrix is w = (m+1)(m+2)=2, and so the w'throot of the determinant is Dx = em(5+4Æ)=6 . For us to be able to use Fact 4.1, we must have Dx < em,implying (5 + 4Æ) < 6. We obtain Æ < 0:25. This is exactly Wiener's result. It turns out that anylattice formed by taking only the x-shifts cannot be used to improve on Wiener's result.To improve on Wiener's result we include the y-shifts into the calculation. For a given value of mand t, the product of the elements on the diagonal of the submatrix corresponding to the y-shifts is:dety = etm(m+1)=2 �Xtm(m+1)=2 � Y t(m+1)(m+t+1)=2 :Plugging in the values of X and Y , we obtain:dety = etm(m+1)(1+Æ)=2+t(m+1)(m+t+1)=4 = e 3+2Æ4 tm2+mt24 +o(tm2):5



The determinant of the entire matrix is det(L) = detx � dety and its dimension is w = (m + 1)(m +2)=2 + t(m+ 1).We intend to apply Fact 4.1 to the shortest vectors in the LLL-reduced basis of L. To do so, wemust ensure that the norm of b1 is less than em=pw. Combining this with Fact 3.2, we must solve forthe largest value of Æ satisfying det(L) < emw=
;where 
 = (w2w)w=2. Since the dimensionw is only a function of Æ (but not of the public exponent e), 
is a �xed constant, negligible compared to emw. Manipulating the expressions for the determinant andthe dimension to solve for Æ requires tedious arithmetic. We provide the exact solution in Appendix A.Here, we carry out the computation ignoring low order terms. That is, we writew = m22 + tm+ o(m2);det(L) = e 5+4Æ12 m3+ 3+2Æ4 tm2+mt24 +o(m3):To satisfy det(L) < emw we must have5 + 4Æ12 m3 + 3 + 2Æ4 tm2 + mt24 < 12m3 + tm2:This leads to m2(�1 + 4Æ) � 3tm(1� 2Æ) + 3t2 < 0For every m the left hand side is minimized at t = m(1�2Æ)2 . Plugging this value in leads to:m2 ��1 + 4Æ � 32(1� 2Æ)2 + 34(1� 2Æ)2� < 0;implying �7 + 28Æ � 12Æ2 < 0. Hence, Æ < 76 � 13p7 � 0:284:Hence, for large enough m, whenever d < N0:284�� for any �xed � > 0 we can �nd a bivariatepolynomial g1 2 Z[x; y] such that g1(x0; y0) = 0 over the integers. Unfortunately, this is not enough.To obtain another relation, we use Fact 3.3 to bound the norm of b2. Observe that since the originalbasis for L is a triangular matrix, u�min is simply the smallest element on the diagonal. This turns outto be the element in the last row of the x-shifts, namely, u�min = XmY m, which is certainly greaterthan 1. Hence, Fact 3.3 applies. Combining Fact 4.1 and Fact 3.3 we see that b2 will yield an additionalpolynomial g2 satisfying g2(x0; y0) = 0 ifdet(L) < em(w�1)=
0where 
0 = (w2w)w�12 . For large enough m, this inequality is guaranteed to hold, since the mod-i�cations only e�ect low order terms. Hence, we obtain another polynomial g2 2 Z[x; y] linearlyindependent of g1 such that g2(x0; y0) = 0 over the integers. We can now attempt to solve for y0 bycomputing the resultant h(y) = Resx(g1; g2). Then y0 must be a root of h(y). The roots of h(y) areeasily determined, and one such root will expose y0 = p+q2 , allowing us to �nd the factorization of N .6



Although the polynomials g1; g2 are linearly independent, they may not be algebraically indepen-dent; they might have a common factor. Indeed, in the general case we cannot guarantee that theresultant h(x) is not identically zero. Consequently, we cannot claim our result as a theorem. At themoment it is a heuristic. Our experiments show it is a very good heuristic, as discussed in Section 8.We could not �nd a single example where the algorithm fails. The reason the algorithm works so wellis that in our lattice, short vectors produced by LLL appear to behave as independent vectors.Remark 2. The reader may be wondering why we construct the lattice L using x-shifts and y-shiftsof f , but do not explicitly use mixed shifts of the form xiyjfk. The reason is that all mixed shifts of fover the monomials used in L are already included in the lattice. That is, any polynomial xiyjfkem�kcan be expressed as an integer linear combination of x-shifts and y-shifts. To see this, observe thatfor any i; j, we have xiyj = iXu=0 uXv=0 bu;vxu�vfv + j�iXu=1 iXv=0 cu;vyufvfor some integer constants bu;v and cu;v. Note that when j � i the second summation is vacuous andhence zero. It now follows thatxiyjfkem�k = iXu=0 uXv=0 bu;vevxu�vfv+kem�v�k + j�iXu=1 iXv=0 cu;vevyufv+kem�v�k == iXu=0 uXv=0 bu;vev � gu�v;v+k + j�iXu=1 iXv=0 cu;vev � hu;v+kConsequently, xiyjfkem�k is already included in the lattice.5 Improved Determinant BoundsThe results of the last section show that the small inverse problem can be solved when Æ < 0:284. Thebound is derived from the determinant of the lattice L, which gives an upper bound on the lengths ofthe shortest vectors of the lattice. In this section, we improve the bounds on the lengths of the shortestvectors of L, and show that these improved bounds imply the attack is e�ective for all d < N0:292.We begin with a brief discussion of how we may improve the bounds on the shortest vectors. Inthe last section, we compute the determinant of a matrix M built from the coeÆcients vectors ofshifts and powers of f . Since M is triangular, this is just the product of the entries on the diagonal,carefully balanced so that this product is less than emw. Once Æ > 0:284 the approach no longer works,as this product exceeds emw for every m. But if some of the larger, \damaging" terms of this productwere removed, we might be able to a�ord greater values of Æ. Intuitively, this suggests that we should\throw away" rows of M with large contributions to the diagonal. Unfortunately, the resulting latticeis not full rank, and computing its determinant is not so easy. What we will show is that a judiciouschoice of rows to eliminate results in lattice for which there is an improved bound on the determinant,leading to a successful attack for all Æ < 0:292. Speci�cally, we show that as long as Æ < 0:292, thereis a rank w0 < w sublattice L0 of L that satis�es the desired determinant bound of emw0 . This resultsin better bounds on the length of the shortest vectors of L0 (and hence of L). Most of this sectionis devoted to developing the necessary tools for bounding the determinant of non-full rank lattices.These results may be of independent interest. 7



We use the following approach. First, we introduce the notion of geometrically progressive matrices,and state the main theorem to be used to bound the determinant of a submatrix of any geometricallyprogressive matrix. A proof of this theorem is given in Appendix B. Second, we show that the portionof the matrix M developed in Section 4 corresponding to the y-shifts is geometrically progressive,yielding desirable bounds on the rectangular matrix formed from selected rows of M . Third, wereview the new determinant computation and conclude that the attack outlined in Section 4 works forall d < N0:292.Geometrically Progressive MatricesRecall the lattice L de�ned from the coeÆcients vectors of shifts and powers of the bivariate polynomialf(x; y). Of particular interest is the inclusion of the y-shifts hk;`(xX; yY ), which lead to a resultimproving on Wiener's bound. We begin by noting that there is a natural organization of these rowscorresponding to y-shifts into \blocks" hk;1; : : : ; hk;t for k = 0; : : : ;m, and that a similar organizationis induced on the corresponding columns (that is, those columns that are zero in every row inducedby an x-shift). To keep the results of this section general, we work with generic matrices in which therows and columns have been divided into a+1 blocks of size b. Speci�cally, let a; b be positive integersand let M be an (a+1)b� (a+1)b matrix. We index the columns by pairs (i; j), with i = 0; : : : ; a andj = 1; : : : ; b, so that the pair (i; j) corresponds to the (bi + j)th column of M . Similarly, we use thepair (k; `) to index the (bk+ `)th row of M , for k = 0; : : : ; a and ` = 1; : : : ; b. The entry in the (i; j)thcolumn of the (k; `)th row is denoted M(i; j; k; `). Note that the diagonal entries of M are preciselythose of the form M(k; `; k; `).De�nition 5.1 Let C;D; c0; c1; c2; c3; c4; � be real numbers with C, D, � � 1. A matrix M is said tobe geometrically progressive with parameters (C, D, c0, c1, c2, c3, c4, �) if the following conditionshold for all i, k = 0; : : : ; a and j, ` = 1; : : : ; b:(i) jM(i; j; k; `)j � C �Dc0+c1i+c2j+c3k+c4`.(ii) M(k; `; k; `) = Dc0+c1k+c2`+c3k+c4`.(iii) M(i; j; k; `) = 0 whenever i > k or j > `.(iv) �c1 + c3 � 0 and �c2 + c4 � 0.When the parameters C;D; c0; c1; c2; c3; c4; � are understood we say simply that M is geometricallyprogressive.The following theorem bounds the determinant of a geometrically progressive matrix from whichsome rows are removed. A proof is given in Appendix B.Theorem 5.1 Let M be an (a+ 1)b� (a+ 1)b geometrically progressive matrix with parameters (C,D, c0, c1, c2, c3, c4, �), and let B be a real number. De�neSB := f(k; `) 2 f0; : : : ; ag � f1; : : : ; bg jM(k; `; k; `) � Bg ;and set w := jSB j. If L is the lattice de�ned by the rows (k; `) 2 SB of M , thendet(L) � ((a+ 1)b)w=2(1 + C)w2 Y(k;`)2SB M(k; `; k; `):8



The basic idea is that when we remove rows with large entries on the diagonal, the resulting subma-trix yields a sublattice with a determinant close to what is expected, to within a certain multiplicativeerror.A Geometrically Progressive SubmatrixRecall the procedure outlined in Section 4 for creating the lattice L. We de�ne the polynomialsgi;k(x; y) = xifk(x; y)em�k and h`;k(x; y) = y`fk(x; y)em�k;and form a lattice from the coeÆcients vectors of every gi;k(xX; yY ) and h`;k(xX; yY ), for k = 0; : : : ;m,i = 0; : : : ;m� k, and ` = 1; : : : ; t.We denote by My the portion of the matrix M with rows corresponding to the y-shifts h`;k andcolumns corresponding to variables of the form xuyv, v > u. Speci�cally,My is the (m+1)t� (m+1)tlower-right-hand submatrix of the matrix M presented in Section 4. We make the following claimabout the entries of My.Lemma 5.2 For all positive integers m; t, the matrix My is geometrically progressive with parameters(m2m, e, m, 12 + Æ, �12 , �1, 1, 2).Proof For simplicity, we take e = N� with � = 1. Let (k; `) be given with k = 0; : : : ;m and` = 1; : : : ; t. The row (k; `) of My corresponds to the y-shift h`;k(xX; yY ). Observeh`;k(xX; yY ) = em�ky`Y `fk(xX; yY ) = kXu=0 uXv=0 cu;vxuyv+`;where cu;v = � ku��uv � (�1)k�uem�kAu�vXuY v+`:The column (i; j) for i = 0; : : : ;m and j = 1; : : : ; t corresponds to the coeÆcient of xiyi+j inh`;k(xX; yY ), which by the above isMy(i; j; k; `) = ci;i+j�` = � ki �� ii+ j � `� (�1)k�iem�kA`�jXiY i+j:It is easy to see that the above quantity equals 0 whenever i > k or j > `, satisfying condition (iii).Writing X = eÆ, Y = e 12 and knowing A < e, we seejMy(i; j; k; `)j � ����� ki �� ii+ j � `� (�1)k�iem+( 12+Æ)i� 12 j�k+`���� � m2m � em+( 12+Æ)i� 12 j�k+`;satisfying condition (i). Furthermore, a routine calculation con�rmsMy(k; `; k; `) = em+( 12+Æ)k� 12 `�k+`;satisfying condition (ii). Lastly, observe 2 �(12+Æ)+(�1) = 2Æ � 0 and 2 ��12+1 � 0, so condition (iv)is met. Hence, My is geometrically progressive with parameters (m2m, e, m, 12 + Æ, �12 , �1, 1, 2).Remark 3. When � < 1 we �nd that My is geometrically progressive with parameters (m2m, e, m,12� + Æ� , 12� � 1, �1, 1, 2�). For � > 1, we have that My is geometrically progressive with parameters((2m)2m, e, m, 12� + Æ� , � 12� , �1, 1� , 2�). The proofs of these statements follow as above, with theslight modi�cation in the latter case where we use A < 2e1=� instead of A < e.9



Bounding the Determinant of the New LatticeWe now have the tools necessary to �nd improved bounds on the short vectors of L. Namely, we nowwould like to show that for all d < N0:292, LLL �nds short vectors in M that give rise to polynomialsg1(x; y) and g2(x; y) such that g1(x0; y0) = 0 and g2(x0; y0) = 0 holds over the integers.We begin by setting the parameter t := (1 � 2Æ)k. Note that this means our lattice will includetwice as many y-shifts as used in Section 4, which, as we shall see, is the reason for the improvedresults. De�ne M1 as follows: Take every row gi;k of M corresponding to the x-shifts, and take onlythose rows h`;k of M whose entry on the diagonal is less than or equal to em. That is, we throwaway those rows h`;k where the the last entry exceeds em. Clearly, the lattice L1 described by M1 isa sublattice of L, so short vectors in L1 will be in L.Since all x-shifts are present in M1, we may perform Gaussian elimination to set the �rst (m +1)(m + 2)=2 o�-diagonal columns of every row to zero. Speci�cally, there is a unitary matrix A overR such that M2 := AM1 is a matrix of the following form:1 x xy � � � xmym y y2 � � � yt � � � xmym+1 � � � xmym+tx-shifts � 0selected y-shifts 0 M 0ywhere � is a diagonal matrix and M 0y consists of selected rows of My. Furthermore, since A is unitary,the determinant of the lattice L2 described by M2 is equal to det(L1).We would like to obtain a good bound on det(L2). Since the x-shifts and selected y-shifts portionsof the lattice L2 are orthogonal, it is suÆcient to bound the determinant of each separately. Let w0 bethe number of rows of M 0y, and let L0y be the lattice induced by M 0y. The determinant of the latticeL2 is det(L2) = det(�) � det(L0y), and its dimension is w = (m + 1)(m + 2)=2 + w0. We aim to showdet(L2) < emw=
 where 
 = (w2w)w=2. As we shall see, the dimension w is only a function of Æ (butnot of e), so 
 is only a �xed constant, negligible compared to emw.We begin by computing w0. Let S � f0; : : : ;mg � f1; : : : ; tg be the subset of indices such thatMy(k; `; k; `) � em for (k; `) 2 S, so that w0 = jSj. Since (k; `) 2 S only ifem+(Æ� 12 )k+ 12 ` < em;we know ` � (1 � 2Æ)k. Since we have taken t = (1 � 2Æ)m, we know every every pair (k; `) satis�es` � (1� 2Æ)k � t, so ` � (1� 2Æ)k if and only if (k; `) 2 S. Thusw0 = jSj = mXk=0b(1 � 2Æ)kc � mXk=0[(1� 2Æ)k � 1] = (12 � Æ)m2 + o(m2);implying w = w0 + (m+ 1)(m+ 2)=2 = (1� Æ)m2 + o(m2):Now we bound det(L0y). Since this lattice is de�ned by the rows (k; `) 2 S of My, by Theorem 5.1we have det(L0y) � [(m+ 1)(1 � 2Æ)m]w0=2 (1 +m2m)(w0)2 Y(k;`)2SMy(k; `; k; `)10



� [(m+ 1)(1 � 2Æ)m]w0=2 (1 +m2m)(w0)2 mYk=0 b(1�2Æ)kcỲ=0 em+(Æ� 12 )k+ 12 `� [(m+ 1)(1 � 2Æ)m]w0=2 (1 +m2m)(w0)2e( 512� 2Æ3 � Æ23 )m3+o(m3):Note that [(m+ 1)(1 � 2Æ)m]w0=2 (1 + m2m)(w0)2 is a function of only Æ (but not of e), and thus isnegligible compared to em3 . Finally, recall from Section 4 thatdet(�) = detx = em(m+1)(m+2)=3 �Xm(m+1)(m+2)=3 � Y m(m+1)(m+2)=6 = e( 512+ Æ3 )m3+o(m3):Thus, we need the bounddet(L1) = det(�) det(L0y) � e( 512+ Æ3 )m3+( 512� 2Æ3 � Æ23 )m3+o(m3) < emw = e(1�Æ)m3+o(m3);which leads to ��16 + 2Æ3 � Æ23 �m3 + o(m3) < 0;implying 2Æ2 � 4Æ + 1 � 0. Hence, we needÆ < 1� p22 � 0:292:Thus, when Æ < 0:292, for suÆciently large m we have det(L1) � 
0emw, implying the norm �1 ofthe shortest vector of L1 satis�es �1 � 
0em. Then the b1 found by LLL in L satis�es b1 � 

0em,where 

0 depends only on Æ and is thus negligible compared to em. This vector b1 yields a polynomialg1(x; y) such that g1(x0; y0) holds over the integers.Let M�1 be the result of applying the Gram-Schmidt orthogonalization process to M1. It is easyto see that the length of a vector in the x-shifts portion of M�1 is simply the corresponding entry onthe diagonal of M1, and the length of a vector in the y-shifts portion of M� is bounded from below bythe corresponding entry on the diagonal of M1. So umin is simply XmY m, which is certainly greaterthan 1. So as in Section 4, a similar bound on b2 can be established, yielding two linearly independentrelations g1(x0; y0) = 0 and g2(x0; y0) = 0 which hold over the integers.6 Cryptanalysis of Arbitrary eIn his paper, Wiener suggests using large values of e when the exponent d is small. This can be doneby adding multiples of �(N) to e before making it known as the public key. When e > N1:5, Wiener'sattack will fail even when d is small. We show that our attack applies even when e > N1:5 is used.As described in Section 2, we solve the small inverse problem:k(A+ s) � 1 (mod e) where jkj < 2e1+ Æ�1� and jsj < 2e1=2�;for arbitrary values of �. We build the exact same lattice used in Section 4. Working through thecalculations one sees that the determinant of the lattice in question isdetx(L) = em33� (2�+Æ� 34 )+o(m3);dety(L) = e tm22� (2�+Æ� 12 )+mt22 12�+o(tm2):11



The dimension is as before. Therefore, to apply Fact 4.1 we must havem33� (2� + Æ � 34) + tm22� (2� + Æ � 12) + mt22 12� < m32 + tm2;which leads to m2(2�+ 4Æ � 3)� 3tm(1� 2Æ) + 3t2 < 0:As before, the left hand side is minimized at tmin = 12m(1� 2Æ); which leads tom2[2� + 7Æ � 154 � 3Æ2] < 0;and hence Æ < 76 � 13(1 + 6�)1=2:Indeed, for � = 1, we obtain the results of Section 4. The expression shows that when � < 1 ourattack becomes even stronger. For instance, if e � N2=3 then RSA is insecure whenever d < N Æ forÆ < 76 � p53 � 0:422. Note that if e � N2=3 then d must satisfy d > N1=3.When � = 158 the bound implies that Æ = 0. Consequently, the attack becomes totally ine�ectivewhenever e > N1:875. This is an improvement over Wiener's attack, which becomes ine�ective as soonas e > N1:5.7 Cryptanalysis of Unbalanced RSAIn this section we study the case when the di�erence between the primes p and q is large. Supposep < N�, and p < q (and therefore � � 1=2). For simplicity, we again assume that e = N� with � � 1.Unfortunately, we cannot follow the approach of Section 4 directly, for the following reason. Inthis case, the small inverse problem now becomes: given a polynomial f(x; y) = x(A + y) � 1, �nd(x0; y0) satisfying f(x0; y0) � 0 (mod e) where jx0j < eÆ and jy0j < e1�� :Since only a weaker bound of e1�� is known on the solution y0 = p+ q, using the previous approachrequires a stronger bound on x0, and therefore Æ. In fact, a routine calculation shows that once� < 1=4, this approach produces no results even for Æ close to zero.Therefore, a modi�ed approach is needed. Returning to the RSA equation, recall equation (1):ed+ k�N + 12 � p+ q2 � = 1:Writing A = N + 1, we know: k(A� p� q) � 2 (mod e):As before, we know the bound jkj < 2de�(N) � 3de=N < 3e1+ Æ�1� � eÆ ;we now have jpj < N� and jqj < N1��. 12



We now have an equation with three unknowns, k; p; q, the product of two of which is known. Wemay view this problem as follows: given a polynomial f(x; y; z) = x(A + y + z) � 2, �nd (x0; y0; z0)satisfying:f(x0; y0; z0) � 0 (mod e) where jx0j < eÆ; jy0j < e� ; jz0j < e1�� ; and y0z0 = N:We now follow an approach similar to the one used in Section 4. It is easy to prove a variant ofFact 4.1 for three variables, and as before, we wish to �nd a polynomial with small norm that has(x0; y0; z0) as a root. Given an integer m we de�ne the polynomials� gi;k(x; y; z) := xifk(x; y; z)em�k ,� hj;k(x; y; z) := yjfk(x; y; z)em�k , and� h0̀ ;k(x; y; z) := z`fk(x; y; z)em�k ,taking care to substitute N for all occurrences of the product yz. We refer to the gi;k as the x-shifts, the hj;k as the y-shifts, and the h0̀ ;k as the z-shifts. We are interested in �nding a low-norminteger combination of the polynomials gi;k(xX; yY; zZ), hj;k(xX; yY; zZ), and h0̀ ;k(xX; yY; zZ), whereX = N Æ, Y = N�, and Z = N1�� are bounds on the respective variables. Again, we build a latticefrom the coeÆcients vectors of the polynomials for all k = 0; : : : ;m; we use i = 0; : : : ;m�k, j = 0; : : : ; t,and ` = 0; : : : ; u, for some t and u to be optimized later. We use LLL to �nd short vectors in thislattice, giving rise to two polynomials G1(x; y; z) and G2(x; y; z) that share (x0; y0; z0) as a root overthe integers. Plugging in z = N=y, we reduce these to the bivariate equations H1(x; y) and H2(x; y)and take resultants to reveal y0 = p.One additional optimization can be made. We modify the polynomials above, instead usingycgi;k(xX; yY; zZ), ychj;k(xX; yY; zZ), and ych0̀ ;k(xX; yY; zZ), for some c which can also be opti-mized. We refer to this as the overall shift. Now in order to use Fact 4.1 we require the resulting shortvector to be less than the weaker bound of pcem. This technique is most useful when q is much largerthan p, since it eliminates occurrences of the variable z.The optimization problem for t, u, and c is straightforward but tedious. Once the optimal overallshift and the optimal number of y- and z-shifts for a given � are found, the determinant of the resultinglattice will be small enough to use Facts 3.2 and 4.1 provided Æ is suÆciently small. Below is a listingof values of Æ for which we can launch a successful attack. Here we assume p < N� and d < N Æ.� Æ1/2 0.28471/3 0.31831/4 0.36471/6 0.44121/10 0.53911/50 0.77501/100 0.83871/1000 0.9483In these experiments, we did not take into account the optimizations suggested in Section 5. Therefore,further improvements may be possible.It is interesting that low private key attacks become more e�ective for more unbalanced RSAmoduli. Unbalanced moduli are used in RSA for paranoids introduced by Shamir [11].13



8 ExperimentsWe ran several dozen experiments to test our results when d > N0:25. Our experiments were carried outusing the LLL implementation available in Victor Shoup's NTL package [12]. In all our experimentsLLL produced two independent relations g1(x; y) and g2(x; y). In every case, the resultant h(y) :=Resx(g1(x; y); g2(x; y)) with respect to x was a polynomial of the form h(y) = (y + p+ q)h1(y), withh1(y) irreducible over Z (similarly for x). Hence, the unique solution (x0; y0) was correctly determinedin every trial executed. Below we show the parameters of some attacks executed. All experiments usethe lattice described in Section 5. Advantage overn d Æ m t rank of lattice running time Wiener's attack1000 bits 280 bits 0:280 7 3 45 14 hours 30 bits2000 bits 550 bits 0:275 7 3 45 65 hours 50 bits4000 bits 1060 bits 0:265 5 2 25 14 hours 60 bits10000 bits 2550 bits 0:255 3 1 11 90 minutes 50 bitsThese tests were performed under Solaris running on a 500MHz Intel Pentium III processor. In each ofthese tests, d was chosen uniformly at random in the range �34N Æ; N Æ� (thus guaranteeing the conditiond > N0:25). Prior to these results it was not possible to break RSA for such large d.9 Conclusions and Open ProblemsOur results show that Wiener's bound on low private exponent RSA is not tight. In particular, wewere able to improve the bound �rstly from d < N0:25 to d < N0:2847. Using an improved analysisof the determinant, we obtained d < N0:292. Our results also improve Wiener's attack when largevalues of e are used. We showed that our attack becomes ine�ective only once e > N1:875. In contrast,Wiener's attack became ine�ective as soon as e > N1:5.Unfortunately, we cannot state our attack as a theorem since we cannot prove that it alwayssucceeds. However, experiments that we carried out demonstrate its e�ectiveness. We were not ableto �nd a single example where the attack fails. This is similar to the situation with many factoringalgorithms, where one cannot prove that they work; instead one gives strong heuristic arguments thatexplain their running time. In our case, the heuristic \assumption" we make is that the two shortestvectors in an LLL reduced basis give rise to algebraically independent polynomials. Our experimentscon�rm this assumption. We note that a similar assumption is used in the work of Bleichenbacher [1]and Jutla [7].Our work raises two natural open problems. The �rst is to make our attack rigorous. Moreimportantly, our work is an application of Coppersmith's techniques to bivariate modular polynomials.It is becoming increasingly important to rigorously prove that these techniques can be applied to somebivariate polynomials.The second open problem is to improve our bounds. A bound of d < N1� 1p2 cannot be the �nalanswer. It is too unnatural. We believe the correct bound is d < N1=2. We hope our approacheventually will lead to a proof of this stronger bound.To conclude, we note that Wiener suggested a defense against the low private exponent attackbased on the Chinese Remainder Theorem (CRT). When N = pq the idea is to use a private key dsuch that both dp = d mod (p� 1) and dq = d mod (q� 1) are small. Such d speed up RSA signature14



generation since RSA signatures are often generated modulo p and q separately and then combinedusing the CRT. Since dp 6= dq the value of d is likely to be large, namely close to �(N). Consequently,our low exponent attack does not apply to such d. It is an open problem whether there is an eÆcientattack on such private keys. The best known attack runs in time min(pdp; pdq ).References[1] D. Bleichenbacher. On the security of the KMOV public key cryptosystem. In proceedingsCrypto '97, Lecture Notes in Computer Science, vol. 1294, Springer-Verlag, pp. 235-248, 1997.[2] D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key d Less Than N0:292. Inproceedings Eurocrypt '99, Lecture Notes in Computer Science, vol. 1592, Springer-Verlag,pp. 1-11, 1999.[3] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnera-bilities. Journal of Cryptology, vol. 10, pp. 233{260, 1997.[4] J. H�astad. Solving simultaneous modular equations of low degree. SIAM Journal on Com-puting, vol. 17, no. 2, pp. 336{341, 1988.[5] N. Howgrave-Graham. Finding small roots of univariate modular equations revisited. In pro-ceedings Cryptography and Coding, Lecture Notes in Computer Science, vol. 1355, Springer-Verlag, pp. 131{142, 1997.[6] A. Joux and J. Stern. Lattice reductions: a toolbox for the cryptanalyst. Journal of Cryp-tology, vol. 11, no. 3, pp. 161{185, 1998.[7] C. Jutla. On �nding small solutions of modular multivariate polynomial equations. Inproceedings Eurocrypt '98, Lecture Notes in Computer Science, vol. 1403, Springer-Verlag,pp. 158{170, 1998.[8] A. Lenstra, H. Lenstra, and L. Lov�asz. Factoring polynomials with rational coeÆcients.Mathematische Annalen, vol. 261, pp. 515{534, 1982.[9] L. Lov�asz. An algorithmic theory of numbers, graphs, and convexity. SIAM CBMS-NSFRegional Conference Series in Applied Mathematics, vol. 50, 1986.[10] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, vol. 21, no. 2, pp. 120{126, 1978.[11] A. Shamir. RSA for Paranoids. RSA Laboratories CryptoBytes, vol. 1, no. 3, pp. 1{4, 1995.[12] V. Shoup. Number Theory Library (NTL), http://www.shoup.net/ntl/.[13] E. Verheul and H. van Tilborg. Cryptanalysis of less short RSA secret exponents. ApplicableAlgebra in Engineering, Communication, and Computing, vol. 8, pp. 425{435, 1997.[14] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on InformationTheory, vol. 36, no. 3, pp. 553{558, 1990.15



A Appendix A: Precise Calculation of the DeterminantWe give the exact expressions evaluating to the determinant of the lattice described in Section 4. Weknow detx = em(m+1)(m+2)(5+4Æ)=12dety = etm(m+1)(1+Æ)=2+t(m+1)(m+t+1)=4The determinant of the entire lattice is detx �dety and its dimension is w = (m+1)(m+2)=2+t(m+1).To satisfy det(L) = detx �dety < emw we must havem(m+ 1)(m+ 2)5 + 4Æ12 + tm(m+ 1)1 + Æ2 + t(m+ 1)(m+ t+ 1)4 < m(m+ 1)(m+ 2)2 + tm(m+ 1)Which leads to m(m+ 2)(�1 + 4Æ) + 3tm(�1 + 2Æ) + 3t(t+ 1) < 0For every m the left hand side is minimized at t = m(1�2Æ)�12 . Plugging this value in leads to:�(3 + 2m+ 7m2) + Æ(28m2 + 20m)� 12m2Æ2 < 0implying Æ < 76 � 13r7 + 16m + 4m2 + 56mAs was shown in Section 4, when m goes to in�nity this values converges toÆ < 76 � p73 � 0:2847For a particular value of Æ < 0:2847 we must take m to be at leastm > �1 + 10Æ + 2(�5 + 16Æ + 16Æ2)1=27� 28Æ + 12Æ2For example, when Æ = 0:27 we must take m � 10 leading to a lattice of dimension 86. This explicitbound can be improved using the techniques of Section 5. In fact, the experiments described inSection 8 show that a lattice of dimension 45 is suÆcient for Æ = 0:275.B Appendix B: Proof of Theorem 5.1This Appendix provides a proof of Theorem 5.1.We use the following approach. First we introduce the notion of diagonally dominant matrices,and show that there is an easy bound on the determinant of any lattice formed from a subset of therows of a diagonally dominant matrix M . We then show that for certain submatrices of geometricallyprogressive matrices there is a unitary transformation over R that puts the submatrix into a diagonallydominant form, giving the desired determinant bounds. We then verify that these bounds yield theconclusion of Theorem 5.1. 16



Let M be an n � n triangular matrix with rows u1; : : : ; un. We write the jth component of uias ui;j. We say that M is diagonally dominant to within a factor C when jui;j j � C � jui;ij for alli; j = 1; : : : ; n. When the factor C is understood, we say simply that M is diagonally dominant.Let S be a subset of the row indices. We de�neM jS to be the jSj�nmatrix whose rows are ui; i 2 S.We say that an arbitrary w� n matrix ~M is diagonally dominant when there is a S � f1; : : : ; ng anddiagonally dominant matrixM such that ~M =M jS and jSj = w. We say that a lattice L is diagonallydominant when there is a basis u1; : : : ; uw for L such that the matrix with rows u1; : : : ; uw is diagonallydominant. Diagonally dominant lattices have determinants that are easy to bound, as shown in thefollowing fact.Fact B.1 Let w � n be given and take S � f1; : : : ; ng with jSj = w. If L is a lattice spanned by therows ui; i 2 S of a diagonally dominant matrix M , thendet(L) � nw=2CwYi2S jui;ij:Proof Observe that since ku�i k � kuik we have:det(L) =Yi2S ku�i k �Yi2S kuik �Yi2SpnCjui;ij = nw=2CwYi2S jui;ij:Now letM be an (a+1)b� (a+1)b geometrically progressive matrix. Observe that if for every row(k; `) the bound Dc0+c1i+c2j+c3k+c4` for the column (i; j) is less than the bound Dc0+c1k+c2`+c3k+c4`for the entry on the diagonal, then by conditions (i) and (ii) on geometrically progressive matrices wehave that M is diagonally dominant to within a factor C. The columns of interest are those in whichthis bound does not hold; to wit, we call a column index (i; j) bad when the following condition holds:Dc0+c1i+c2j+c3k+c4` > Dc0+c1k+c2`+c3k+c4`;or equivalently, c1(k � i) + c2(` � j) < 0. It should be noted that the \badness" of a column is astatement about the bound on the entry in the column, which is a function of the parameters of thegeometrically progressive matrix, not of the entry itself. Indeed, the actual entry M(i; j; k; `) of a badcolumn (i; j) could be zero, leading us to the following observation.Remark B1. LetM be a geometrically progressive matrix and S a subset of the rows. IfM(i; j; k; `) = 0for every bad column (i; j) of every row (k; `) 2 S, then M jS is diagonally dominant to within a factorC. This is because for each (i; j) that is not bad in the row (k; `), we haveM(i; j; k; `) � C �Dc0+c1i+c2j+c3k+c4` � C �Dc0+c1k+c2`+c3k+c4` = C �M(k; `; k; `):Remark B1 suggests that we should be looking for a submatrix M jS whose entries are zero in badcolumns. Although this is unlikely for any submatrix M jS of the matrix M developed in Section 4,what we shall see is that there is a unitary transformation over R that eliminates entries at bad columnsin rows of M jS . Once the diagonal dominance of this transformed submatrix has been established,Fact B.1 can then be employed to bound the determinant of the corresponding lattice.Our goal now is to show that special submatrices of geometrically progressive matrices can be putinto a diagonally dominant form. Consider the following situation: suppose we take a subset S ofthe rows of a geometrically progressive matrix M and wish to bound the determinant of the latticedescribed by M jS . We wish to guarantee that there are \enough" rows included in S so that we may17



eliminate all nonzero entries at bad columns in rows of M jS . We prove this for certain natural subsetsS in Lemma B.2. We then use this guarantee to show that such an elimination procedure will besuccessful; namely, we show that there is a unitary transformation U over R such that U �M jS isdiagonally dominant. This is shown in Lemma B.3, leading directly to a proof of Theorem 5.1.Lemma B.2 Let M be an (a + 1)b � (a + 1)b geometrically progressive matrix with parameters (C,D, c0, c1, c2, c3, c4, �), let B 2 R be a constant. De�neSB := f(k; `) 2 f0; : : : ; ag � f1; : : : ; bg jM(k; `; k; `) � Bg :For all (k; `) 2 SB and i � k; j � `, if column (i; j) is bad in row (k; `) then (i; j) 2 SB.Proof We begin by assuming that (i; j) is bad, so Dc1(k�i)+c2(`�j) < 1 and thusD(��1)c1(k�i)+(��1)c2(`�j) = �Dc1(k�i)+c2(`�j)�(��1) � 1: (3)Seeking contradiction, we now assume (i; j) 62 SB, that is, M(i; j; i; j) > B. It follows thatD(c1+c3)i+(c2+c4)j =M(i; j; i; j) > B �M(k; `; k; `) = D(c1+c3)k+(c2+c4)`:Hence D(c1+c3)(k�i)+(c2+c4)(`�j) < 1: (4)Combining equations (3) and (4) yieldsD(�c1+c3)(k�i)+(�c2+c4)(`�j) < 1: (5)Note that i � k and j � ` by the hypotheses of the theorem, and we are guaranteed �c1 + c3 � 0and �c2 + c4 � 0 since M is geometrically progressive. So (�c1 + c3)(k � i) + (�c2 + c4)(` � j) � 0.Furthermore, D � 1, so D(�c1+c3)(k�i)+(�c2+c4)(`�j) � D0 = 1;contradicting equation (5). Hence, (i; j) 2 SB as desired.Lemma B.3 Let M be an (a + 1)b � (a + 1)b geometrically progressive matrix with parameters (C,D, c0, c1, c2, c3, c4, �), let B 2 R be a constant, de�neSB := f(k; `) 2 f0; : : : ; ag � f1; : : : ; bg jM(k; `; k; `) � Bg ;and set w := jSB j. There is a w � w unitary matrix U over R such that U � M jSB is diagonallydominant to within a factor (1 + C)w.Proof We proceed by induction. There are w rows in the matrix M jSB , and we build matrices Ursuch that the last r rows of Ur �M jSB are diagonally dominant1 to within a factor (1 + C)w, and the�rst w � r rows identical to those in M jSB . The U we seek is Uw.Clearly, U0 = I trivially satis�es this condition. Now suppose we have a unitary matrix Ur�1 overR such that the last r�1 rows of Ur�1 �M jSB are diagonally dominant to within a factor (1+C)w andthe �rst w�r rows are identical to those ofM jSB . We would like to �nd Ur that satis�es this conditionfor the last r rows, and we do this by �nding a unitary matrix V over R such that Ur := V � Ur�1satis�es this condition. Roughly speaking, the purpose of V is to \clean up" row (w� r+1) of M jSB ;1To say that the last r rows of a w � n matrix ~M are diagonally dominant means simply that ~M j(w�r+1);:::;w isdiagonally dominant. 18



that is, it guarantees that (1 + C)w times the last column of row (w � r + 1) dominates all othercolumns of row (w � r + 1) in V � Ur�1 �M jSB .Since M jSB is formed from rows of M , we may choose a pair (k; `) such that row (w � r + 1) ofM jSB is the (k; `)th row of M . By Lemma B.2, for every bad column (i; j) satisfying i � k and j � `,the corresponding row (i; j) is in SB. So there are at most w� 1 bad columns with nonzero entries inthe row (clearly, (k; `) is not bad.)We build V in stages by constructing elementary row operations V1; : : : ; Vw�1 and letting V :=Vw�1 � Vw�2 � � � V1. Each Vs sets another bad column (is; js) in the row to 0, so that the (w� r+ 1)throw of Vs � � � V1 � Ur�1 �M jSB has nonzero entries in at most w � s � 1 bad columns. We show thateach Vs increases every column of the row by at most a factor of (1 + C).De�ne v(s) := (Vs � � � V1 � Ur�1 �M jSB )jfw�r+1g;that is, v(s) is the (w + r � 1)th row of Vs � � � V1 � Ur�1 �M jSB . We denote the entry in the (i; j)thcolumn of v(s) as v(s)(i; j). We maintain the following three invariants for s = 1; : : : ; w � 1:(i) ��v(s)(i; j)�� � (1 + C)sC �Dc0+c1i+c2j+c3k+c4` for all columns (i; j);(ii) i > k or j > ` implies v(s)(i; j) = 0; and,(iii) the number of bad columns with nonzero entries in v(s) is at most w � s� 1.These conditions are satis�ed trivially for s = 0, since v(0) is identical to row (k; `) of the geo-metrically progressive matrix M . Now suppose that every column (i; j) of v(s�1) satis�es these threeconditions. If there are no nonzero entries of v(s�1) at bad columns, we are done, and may takeVs; : : : ; Vw�1 := I. Otherwise, let (is; js) be the rightmost bad column such that v(s�1)(is; js) 6= 0.Since v(s�1)(is; js) 6= 0, we know by the inductive hypothesis that is � k and js � `. Since (is; js)is also bad, we know that (is; js) 2 SB. So we may pick a t such that row (is; js) of M is row t ofM jSB . De�ne Vs to be the elementary row operation that subtracts v(s�1)(is;js)M(is;js;is;js) times row t from row(w � r + 1). Observe for every column (i; j),���v(s)(i; j)��� � ���v(s�1)(i; j)��� + ����� v(s�1)(is; js)M(is; js; is; js) �M(i; j; is; js)������ (1 + C)s�1C �Dc0+c1i+c2j+c3k+c4`+ (1 + C)s�1C �Dc0+c1is+c2js+c3k+c4`Dc0+c1is+c2js+c3is+c4js � C �Dc0+c1i+c2j+c3is+c4js`= (1 + C)sC �Dc0+c1i+c2j+c3k+c4`:So condition (i) is met.Now let (i; j) be given with either i > k or j > `. Since v(s�1)(is; js) 6= 0, we know by condition (ii)of the inductive hypothesis that is � k and js � `. So either i > k � is or j > ` � js, implyingM(i; j; is; js) = 0. Thusv(s)(i; j) = v(s�1)i; j � v(s�1)(is; js)M(is; js; is; js) �M(i; j; is; js) = 0� 0 = 0;satisfying condition (ii). 19



We now claim that the number of bad columns with nonzero entries in v(s) is at most w � s� 1.Clearly, v(s)(is; js) = 0, and columns to the right of (is; js) are unchanged from v(s�1). Since (is; js)was chosen to be the rightmost nonzero bad column of v(s�1), this implies that no nonzero column inv(s) to the right of (is; js) is bad. But since this is the sth elimination step, there are at least s � 1bad columns (i; j) to the right of (is; js) satisfying i � k and j � `. Thus, the number of bad columnswith nonzero entries in v(s) is at most w � s� 1, satisfying condition (iii).Thus, v(w�1) has a zero in every bad column, sov(w�1)(i; j) � (1 + C)w�1C �Dc1i+c2j+c3k+c4` � (1 + C)w �M(k; `; k; `)for all columns (i; j). Setting V := Vw�1 � � � V1 and Ur := V � Ur�1, we have that the last r rows ofUr �M jSB are diagonally dominant to within a factor (1+C)w. Finally, taking U := Uw completes theresult.We are now ready to complete the proof of Theorem 5.1.Proof of Theorem 5.1 By Lemma B.3 we have a w�w unitary matrix U over R such that U �M jSBis diagonally dominant to within a factor (1 + C)w. Since U is unitary over R, the lattice L0 inducedby the rows of U �M jSB has the same determinant as the lattice L induced by the rows of M jSB , soby Fact B.1 yielding the desired bounddet(L) = det(L0) � ((a+ 1)b)w=2(1 + C)w2 Y(k;`)2SBM(k; `; k; `):
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