CS 221: Artificial Intelligence
Fall 2011

Lecture 2: Search

(Slides from Dan Klein,

with help from Stuart Russell, Andrew Moore, Teg Grenager,
Peter Norvig)

Problem types

Fully observable, deterministic
» single-belief-state problem

Non-observable
» sensorless (conformant) problem

Partially observable/non-deterministic
= contingency problem
* interleave search and execution

Unknown state space
= exploration problem
= execution first

Search Problems

= A search problem consists of:

- s soce 8 1 01 O
.
/

\

E, 1

= A transition model

= A start state, goal test, and path cost function

= A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

Transition Models

= Successor function

. Successors(!) = {(N, 1,'), (E, 1,!)}

= Actions and Results
. Actions(!) ={N, E}

+ Result(JEll . N) =l ; Resutt(Efj) -
- Cost(Fll N, Rl = 1 Cost([ll EJ) = -

Example: Romania

= State space:
= Cities
= Successor
function:
» (o to adj city
with cost = dist
Start state:
= Arad

= (Goal test:

= |s state ==
Bucharest?

Solution?

State Space Graphs

= State space graph: A
mathematical
representation of a
search problem

» For every search problem,
there’ s a corresponding
state space graph

= The successor function is
represented by arcs

= This can be |arge or Ridiculously tiny search graph

NP) for a tiny search problem
infinite, so we won t
create it in memory

= Search Problem:
= Pacman positions:

= Food count: 30

Exponential State Space Sizes

Eat all of the food

10x12 =120

Search Trees

.

T T

= A search tree:
= This is a “what if” tree of plans and outcomes
= Start state at the root node
= Children correspond to successors
* Nodes contain states, correspond to paths to those states
= For most problems, we can never actually build the whole tree

Another Search Tree

= Search:
» Expand out possible plans
= Maintain a frontier of unexpanded plans
» Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end
™~
* Important ideas:
» Frontier (aka fringe) Detailed pseudocode
n Expansion is in the book!

= Exploration strategy

= Main question: which frontier nodes to explore?

State Space vs. Search Tree

Each NODE in in the
search tree is an
entire PATH in the
State space.

S
s
d e
/N /\
We construct both b C e h r
on demand — and | N N
we construct as a a h r p q f
little as possible. N | | N
p q f q c G
| /\ |
a

States vs. Nodes

= Nodes in state space graphs are problem states

= Represent an abstracted state of the world
» Have successors, can be goal / non-goal, have multiple predecessors

= Nodes in search trees are paths
= Represent a path (sequence of actions) which results in the node’ s state
= Have a problem state and one parent, a path length, (a depth) & a cost
= The same problem state may be achieved by multiple search tree nodes

State Space Graph Search Tree

Depth 5

Depth 6

Depth First Search

Strategy: expand
deepest node first

Implementation:
Frontier is a LIFO
stack

[demo: dfs]

Breadth First Search

Strategy: expand
shallowest node first

Implementation:
Fringe is a FIFO
queue

-
Search D N
| < W
Tiers |
(@
Ny

[demo: bfs]

Santayana’ s Warning

= “Those who cannot remember the past are
condemned to repeat it. "— George Santayana

* Failure to detect repeated states can cause
exponentially more work (why?)

- A @
'} -~ "
f T _.-""' \\"'\-_\
’
\ I ~ a,
b 4 - e

P @ -__'_'_%_H. B - B“‘-!
!] -
C .‘...-. o - _____.-' L} l,."' "‘-._
f. C® Cco = ‘ co

Graph Search

= [n BFS, for example, we shouldn’ t bother
expanding the circled nodes (why?)

d A T
@ h r q
|@ A

h f
? A @@/\
poa Lo % T8

q (l: G a

Graph Search

= Very simple fix: never expand a state twice

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

= Can this wreck completeness? Lowest cost?

Graph Search Hints

= Graph search is almost always better than
tree search (when not?)

* Implement explored as a dict or set

= |mplement frontier as priority Q and set

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Frontier is a priority queue

@ 3
/N
P4 @
Cost (@6 a
contours

Uniform Cost Issues

= Remember: explores
Increasing cost contours

* The good: UCS is
complete and optimal!

= The bad:

= Explores options in every
“direction”
= No information about goal
location Goal

[demos: ucs, ucs2]

Uniform Cost Search

= What will UCS do for this graph?

= \What does this mean for completeness?

Al Lesson

To do more,
Know more

Search Heuristics

= Any estimate of how close a state is to a goal
» Designed for a particular search problem
= Examples: Manhattan distance, Euclidean distance

Heuristics

75

Arad [T

92

Sibiu 99 Fagaras

18] Vaslui

Rimnicu Vilcea

Timisoara

Pitesti

] Mehadia
75

Bucharest
Dobreta [

Eforie
] Giurgiu

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Greedy Best First Search

= Expand the node that seems closest to goal...

Arad
Sibiu
Fagaras @ -
366

380

293 0

= What can go wrong?
[demos: gbf1, gbf2]

Greedy goes wrong

O U

Best First / Greedy Search

= Strategy: expand the closest node to the goal

h=11 h=6
[demos: gbf1, gbf2]

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Best-first orders by distance to goal, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

A* Search Progress

*

source: wikipedia page for A* Algorithm; by Subh83

When should A* terminate?

= Should we stop when we enqueue a goal?

/ \
\/“

= No: only stop when we dequeue a goal

Is A* Optimal?

e

o B

= WWhat went wrong?
= Actual bad path cost (5) < estimate good path cost (1+6)

* \WWe need estimates (h=7) to be less than
actual (5) costs!

Admissible Heuristics

= A heuristic 4 is admissible (optimistic) if:
h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

Never overestimate!

Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* |[nadmissible heuristics are often useful too (why?)

Notation:

Optimality of A*: Blocking

g(n) = cost to node n

h(n) = estimated cost from n

to the nearest goal (heuristic)

f(n) = g(n) + h(n) =
estimated total cost via n

G*: a lowest cost goal node

G: another goal node

Optimality of A*: Blocking

Proof:

What could go wrong?

We’ d have to have to pop a
suboptimal goal G off the
frontier before G*

This can’ t happen:

* |magine a suboptimal
goal G is on the queue

= Some node n which is a

subpath of G* must also
be on the frontier (why?)

= n will be popped before G

f(n) =gn) + h(n)

g(n) + h(n) < g(G")
9(G™) < g(G)
9(G) = f(G)
f(n) < f(G)

Properties of A*

Uniform-Cost

b

A*

UCS vs A* Contours

= Uniform-cost expanded

In all directions
Goal

= A* expands mainly
toward the goal, but

does hedge its bets to
ensure optimality @Goal

[demos: conu, cona]

Example: 8 Puzzle

7 2 4 l 2

A} 6 3 4 5

8 3 l 6 7 8
Start State Goal State

What are the states?
How many states?

What are the actions?

What states can | reach from the start state?
What should the costs be?

8 Puzzle

Heuristic: Number tiles
misplaced

Why is it admissible?

1 2

4 5

8 3 l

6

7 8

h(start) =
8

Start State

Goal State

Average nodes expanded when
optimal path has length...

This is a relaxed-problem | ...4 steps | ...8 steps | ...12 steps
heuristic:
UCS [112 6,300 3.6 x 106
TILES |13 39 227

Move A to B if adjacent(A;B)and-emphtyB)

8 Puzzle

What if we had an easier 2 | 4 C s
8-puzzle where any tile
could slide one step atany | s 6 30| 4 |]] 5
time, ignoring other tiles?
. s (Il 3 |l 1 6 If| 7 || 8
Total Manhattan distance
Why admISSIbIef) Start State Goal State
Average nodes expanded when

h(start) = optimal path has length...
3+1+2+...=18 ...4 steps |...8 steps |...12 steps

TILES 13 39 227
Relaxed problem:

MANHATTAN | 12 25 73

Move A to B if adjacent(A,B) and-emphyB)

Trivial Heuristics, Dominance

= Dominance: h, = h_ if
Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:
= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
I

max(hg, hy)

Other A* Applications

Path finding / routing problems
Resource planning problems
Robot motion planning
Language analysis

Machine translation

Speech recognition

Summary: A*

= A* uses both backward costs, g(n), and
(estimates of) forward costs, h(n)

= A* is optimal with admissible heuristics

= Heuristic design is key: often use relaxed
problems

= A* is not the final word in search algorithms
(but it does get the final word for today)

